A Representation-Theoretic Model for k-Atoms

Mark Haiman Li-Chung Chen

University of California, Berkeley

AMS Western Section Meeting Claremont McKenna College May 3, 2008

Skew-linked partitions

Definition

Partitions λ and μ are skew linked, written

$$\lambda \xrightarrow{\theta} \mu$$

if there exists a skew diagram θ with the same row lengths (in order) as λ and the same column lengths as μ .

Definition (from previous slide)

Partitions λ and μ are skew linked, written

$$\lambda \xrightarrow{\theta} \mu$$

if there exists a skew diagram θ with the same row lengths (in order) as λ and the same column lengths as μ .

Example:

• Every partition is linked to itself: $\lambda \xrightarrow{\lambda} \lambda$.

• • • • • • • • • • • •

- Every partition is linked to itself: $\lambda \xrightarrow{\lambda} \lambda$.
- Every λ is linked to the one-row partition (*n*).

- Every partition is linked to itself: $\lambda \xrightarrow{\lambda} \lambda$.
- Every λ is linked to the one-row partition (*n*).

• If $\lambda \xrightarrow{\theta} \mu$, then $\lambda \leq \mu$ in the dominance partial ordering on partitions.

- Every partition is linked to itself: $\lambda \xrightarrow{\lambda} \lambda$.
- Every λ is linked to the one-row partition (*n*).

If λ → μ, then λ ≤ μ in the dominance partial ordering on partitions.
Transpose symmetry: λ → μ if and only if μ' → λ'

- Every partition is linked to itself: $\lambda \xrightarrow{\lambda} \lambda$.
- Every λ is linked to the one-row partition (*n*).

• If $\lambda \xrightarrow{\theta} \mu$, then $\lambda \leq \mu$ in the dominance partial ordering on partitions.

- Transpose symmetry: $\lambda \xrightarrow{\theta} \mu$ if and only if $\mu' \xrightarrow{\theta'} \lambda'$
- The two partitions λ and μ determine θ (and conversely, of course).

The "k-atom" case

Let κ be a (k + 1)-core (no hook-length = k + 1), and let θ be the set of boxes in κ with hook-length at most k. Example (k = 4):

Then θ skew-links a *k*-bounded partition λ to the transpose of its Lapointe-Morse *k*-conjugate:

$$\lambda \xrightarrow{\theta} \mu = (\lambda^{[k]})'$$

The "k-atom" case

Let κ be a (k + 1)-core (no hook-length = k + 1), and let θ be the set of boxes in κ with hook-length at most k. Example (k = 4):

These cases, along with the $\mu = (n)$ cases, are the key examples!

Combinatorics of skew-linked partitions Row chains in a skew-linking shape

Decomposing a skew-linking shape θ into row chains

Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

Now we group the rows into partitions, according to how far each row is from the end of its chain.

A remarkable fact is that doing it by columns leads to the same tuple of partitions.

Some other (easy) facts

The tuple of partitions

$$(\nu^{(1)}, \nu^{(2)}, \dots, \nu^{(r)})$$

associated to a skew-linked pair $\lambda \xrightarrow{\theta} \mu$ has the following properties.

Some other (easy) facts

The tuple of partitions

$$(\nu^{(1)}, \nu^{(2)}, \dots, \nu^{(r)})$$

associated to a skew-linked pair $\lambda \xrightarrow{\theta} \mu$ has the following properties.

• We have diagram containments

$$\nu^{(1)} \supseteq \nu^{(2)} \supseteq \cdots \supseteq \nu^{(r)}.$$

In particular,

$$\gamma \stackrel{}{=}_{\mathsf{def}} (|\nu^{(1)}|, |\nu^{(2)}|, \dots, |\nu^{(r)}|)$$

is a partition.

Some other (easy) facts

The tuple of partitions

$$(\nu^{(1)}, \nu^{(2)}, \dots, \nu^{(r)})$$

associated to a skew-linked pair $\lambda \xrightarrow{\theta} \mu$ has the following properties.

• We have diagram containments

$$\nu^{(1)} \supseteq \nu^{(2)} \supseteq \cdots \supseteq \nu^{(r)}.$$

In particular,

$$\gamma = (|\nu^{(1)}|, |\nu^{(2)}|, \dots, |\nu^{(r)}|)$$

is a partition.

The statistic

$$n(\gamma) = \sum_{i} (i-1) \gamma_i = \sum_{i} (i-1) |\nu^{(i)}|$$

is equal to the number of "missing boxes," $|\beta|$, where $\theta = \alpha/\beta$.

Haiman & Chen (U.C. Berkeley)

8 / 1

How to construct small $\mathbb{C}[\mathbf{x}] * S_n$ modules

Note: " $\mathbb{C}[\mathbf{x}] * S_n$ module" = " $\mathbb{C}[x_1, \ldots, x_n]$ module with S_n action."

Motivation: How to construct irreducible S_n -modules.

Let $V = \varepsilon \uparrow_{S_{\lambda'}}^{S_n}$ be the S_n module induced from the sign representation of the Young subgroup $S_{\lambda'}$.

Let $W = 1 \uparrow_{S_{\lambda}}^{S_n}$ be induced from the trivial representation of the Young subgroup S_{λ} .

How to construct small $\mathbb{C}[\mathbf{x}] * S_n$ modules

Note: " $\mathbb{C}[\mathbf{x}] * S_n$ module" = " $\mathbb{C}[x_1, \ldots, x_n]$ module with S_n action."

Motivation: How to construct irreducible S_n -modules.

Let $V = \varepsilon \uparrow_{S_{\lambda'}}^{S_n}$ be the S_n module induced from the sign representation of the Young subgroup $S_{\lambda'}$.

Let $W = 1 \uparrow_{S_{\lambda}}^{S_n}$ be induced from the trivial representation of the Young subgroup S_{λ} .

The irreducible V_{λ} is the image of the essentially unique homomorphism

$$V \xrightarrow[\phi]{} W.$$

This uniquely characterizes V_{λ} as

- **(**) generated by an (essentially unique) $S_{\lambda'}$ -antisymmetric element, and
- **2** co-generated by an (essentially unique) S_{λ} -invariant linear functional.

Question

Which $\mathbb{C}[\mathbf{x}] * S_n$ modules can be characterized in a similar fashion?

Let $V = \left(\varepsilon \uparrow_{S_{\lambda'}}^{S_n} \right) \otimes \mathbb{C}[\mathbf{x}]$, the free $\mathbb{C}[\mathbf{x}]$ module on our previously considered induced S_n module.

Let $W = (1 \uparrow_{S_{\mu}}^{S_{n}}) \otimes \mathbb{C}[\mathbf{x}]^{*}$, a co-free $\mathbb{C}[\mathbf{x}]$ module on an induced S_{n} module, but we may have $\mu \neq \lambda$.

Let *d* be the smallest degree such that there is a non-zero S_n -module homomorphism

$$\psi\colon \left(\varepsilon\uparrow_{\mathcal{S}_{\lambda'}}^{\mathcal{S}_n}\right)\otimes\mathbb{C}[\mathbf{x}]_d\to 1\uparrow_{\mathcal{S}_{\mu}}^{\mathcal{S}_n}.$$

Suppose further that λ and μ are such that ψ is essentially unique.

10 / 1

イロト 不得下 イヨト イヨト 二日

With $V = \left(\varepsilon \uparrow_{S_{\lambda'}}^{S_n} \right) \otimes \mathbb{C}[\mathbf{x}]$ and $W = \left(1 \uparrow_{S_{\mu}}^{S_n} \right) \otimes \mathbb{C}[\mathbf{x}]^*$, let d = smallest degree such that there is a non-zero homomorphism

$$\psi \colon \left(\varepsilon \uparrow_{\mathcal{S}_{\lambda'}}^{\mathcal{S}_n} \right) \otimes \mathbb{C}[\mathbf{x}]_d \to 1 \uparrow_{\mathcal{S}_{\mu}}^{\mathcal{S}_n}.$$

Suppose that λ and μ are such that ψ is essentially unique.

Proposition

With the above hypotheses, there is an essentially unique $\mathbb{C}[\mathbf{x}] * S_n$ homomorphism, homogeneous of degree zero

$$\phi \colon V \to W[-d].$$

Its image $M_{\lambda,\mu}$ is a graded $\mathbb{C}[\mathbf{x}] * S_n$ module uniquely characterized as

- generated by an (essentially unique) $S_{\lambda'}$ -antisymmetric element (in degree 0), and
- co-generated by an (essentially unique) S_μ-invariant linear functional (on the top degree, which is equal to d).

11 /

Main theorem

Theorem (Chen)

- The necessary and sufficient condition for the hypotheses of the preceding proposition to hold is that λ be skew-linked to μ .
- 2 In that case, the degree $d = (top \text{ degree of } M_{\lambda,\mu})$ is equal to $n(\gamma) = |\beta|$, where the skew diagram linking λ to μ is $\theta = \alpha/\beta$.
- **3** Moreover, the degree zero and top degree components of $M_{\lambda,\mu}$ are irreducible S_n modules isomorphic to V_{λ} and V_{μ} , respectively.

• If $\lambda = \mu$, then $M_{\lambda,\mu}$ is just the irreducible S_n -module V_{λ} , in degree zero, with the x_i 's annihilating it.

- If $\lambda = \mu$, then $M_{\lambda,\mu}$ is just the irreducible S_n -module V_{λ} , in degree zero, with the x_i 's annihilating it.
- If μ = (n), then (by results of Garsia, Procesi and N. Bergeron), M_{λ,(n)} is dual to the cohomology ring of the Springer variety X_λ. Its graded Frobenius characteristic is equal to the Hall-Littlewood polynomial

$$H_{\lambda}(z;t) = \sum_{\kappa} K_{\kappa,\lambda}(t) S_{\kappa}(z).$$

- If $\lambda = \mu$, then $M_{\lambda,\mu}$ is just the irreducible S_n -module V_{λ} , in degree zero, with the x_i 's annihilating it.
- If μ = (n), then (by results of Garsia, Procesi and N. Bergeron), M_{λ,(n)} is dual to the cohomology ring of the Springer variety X_λ. Its graded Frobenius characteristic is equal to the Hall-Littlewood polynomial

$$H_{\lambda}(z;t) = \sum_{\kappa} K_{\kappa,\lambda}(t) S_{\kappa}(z).$$

Remark: Garsia and Procesi prove the character formula directly from the structure of the module. Conceivably, we might determine the character of a general $M_{\lambda,\mu}$ by similarly elementary means.

- If $\lambda = \mu$, then $M_{\lambda,\mu}$ is just the irreducible S_n -module V_{λ} , in degree zero, with the x_i 's annihilating it.
- If μ = (n), then (by results of Garsia, Procesi and N. Bergeron), M_{λ,(n)} is dual to the cohomology ring of the Springer variety X_λ. Its graded Frobenius characteristic is equal to the Hall-Littlewood polynomial

$$H_{\lambda}(z;t) = \sum_{\kappa} K_{\kappa,\lambda}(t) S_{\kappa}(z).$$

Conjecture

If λ is k-bounded and $\mu = (\lambda^{[k]})'$ is the transpose of its k-conjugate, then the graded Frobenius characteristic of $M_{\lambda,\mu}$ is equal to the k-atom $A_{\lambda}^{(k)}(z;t)$ of Lascoux, Lapointe and Morse.

Bits of the proof of Chen's theorem

Goal: characterize λ , μ such that the space

$$\mathsf{Hom}_{\mathcal{S}_n}\big(\left(\varepsilon\uparrow_{\mathcal{S}_{\lambda'}}^{\mathcal{S}_n}\right)\otimes\mathbb{C}[\mathbf{x}]_d,\ 1\uparrow_{\mathcal{S}_{\mu}}^{\mathcal{S}_n}\big)$$

has dimension 1 in the smallest degree d for which it is non-zero.

Constructing modules from skew-linked partitions Bits of the proof of Chen's theorem

Bits of the proof of Chen's theorem

Goal: characterize λ , μ such that the space

$$\mathsf{Hom}_{\mathcal{S}_n}\big(\left(\varepsilon\uparrow_{\mathcal{S}_{\lambda'}}^{\mathcal{S}_n}\right)\otimes\mathbb{C}[\mathbf{x}]_d,\ 1\uparrow_{\mathcal{S}_{\mu}}^{\mathcal{S}_n}\big)$$

has dimension 1 in the smallest degree d for which it is non-zero.

Lemma

The desired degree d is the minimum of

$$\sum_{i,j} \binom{a_{i,j}}{2}$$

over all non-negative integer matrices A with row sums μ and column sums λ' .

The desired dimension-one condition holds if and only if the minimizing matrix A is unique.

14 / 1

Proposition (Chen)

A matrix A with specified, weakly decreasing, row and column sums uniquely minimizes $\sum_{i,j} {a_{i,j} \choose 2}$ iff it satisfies the following conditions:

The entries a_{i,j} weakly decrease along rows and columns, i.e., A is a plane partition;

3 For every
$$2 \times 2$$
 minor $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of A, we have

$$(a+d) - (b+c) \le 1$$
 if $a, d > 0$
 $(b+c) - (a+d) \le 1$ if $b, c > 0$

Moreover, there exists such a matrix A with column sums λ' and row sums μ if and only λ is skew-linked to μ , in which case A is given by the plane partition with layers $(\nu^{(1)}, \nu^{(2)}, \dots, \nu^{(r)})$.

- < A > < B > < B >

Image: Image:

э

For the extra conclusion of Chen's theorem, that $M_{\lambda,\mu}$ is generated by V_{λ} and co-generated by V_{μ} , we must also prove that

$$\langle \chi^{\lambda} \otimes \operatorname{ch}(\mathbb{C}[\mathbf{x}]_d), \chi^{\mu} \rangle \neq 0.$$

This follows from

- **1** $d = \sum_{i} (i-1) |\nu^{(i)}|$, and

The second point holds because $\lambda = \bigsqcup_i \nu^{(i)}$ and $\mu = \sum_i \nu^{(i)}$.

For the extra conclusion of Chen's theorem, that $M_{\lambda,\mu}$ is generated by V_{λ} and co-generated by V_{μ} , we must also prove that

$$\langle \chi^{\lambda} \otimes \operatorname{ch}(\mathbb{C}[\mathbf{x}]_d), \, \chi^{\mu} \rangle \neq 0.$$

This follows from

- **1** $d = \sum_{i} (i-1) |\nu^{(i)}|$, and
- 2 the Littlewood-Richardson coefficients $c_{\nu^{(1)},...,\nu^{(r)}}^{\lambda}$ and $c_{\nu^{(1)},...,\nu^{(r)}}^{\mu}$ are both non-zero.

The second point holds because $\lambda = \bigsqcup_i \nu^{(i)}$ and $\mu = \sum_i \nu^{(i)}$.

In fact, this implies that

$$\left\langle \chi^{\lambda}\otimes\chi^{\gamma},\,\chi^{\mu}\right
angle \ =\ 1.$$

Note that $\lambda',\,\mu$ and γ are the three projections of the plane partition given by the matrix A.

Haiman & Chen (U.C. Berkeley)

17 / 1

More conjectures about the modules in the k-atom case

Notation: We write $M_{\lambda}^{(k)}$ for $M_{\lambda,\mu}$ when λ is a *k*-bounded partition and $\mu = (\lambda^{[k]})'$ is the transpose of its *k*-conjugate.

Conjecture

The module $M_{\lambda}^{(k)}$ has an S_n equivariant resolution

$$F_m \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow M_{\lambda}^{(k)} \rightarrow 0$$

by free $\mathbb{C}[\mathbf{x}]$ modules F_i whose generators contain only those irreducible S_n modules V_{κ} for which κ is k-bounded.

Conjecture (from previous slide)

The module $M_{\lambda}^{(k)}$ has an S_n equivariant resolution

$$F_m \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow M_{\lambda}^{(k)} \rightarrow 0$$

by free $\mathbb{C}[\mathbf{x}]$ modules F_i whose generators contain only those irreducible S_n modules V_{κ} for which κ is k-bounded.

Notation: $\mathcal{M}^{(k)}$ denotes the category of $\mathbb{C}[\mathbf{x}] * S_n$ modules having a *k*-bounded free resolution in the above sense.

Recall that the k-atoms $A_{\lambda}^{(k)}(z;t)$ should be a basis of the space $\Lambda^{(k)}$ spanned by the transformed Schur functions $S_{\kappa}[X/(1-t)]$, where κ is k-bounded.

Lemma

The graded Frobenius characteristic of any module M in $\mathcal{M}^{(k)}$ belongs to the space $\Lambda^{(k)}$.

Haiman & Chen (U.C. Berkeley)

More conjectures on the k-atom modules Irreducible modules in the k-bounded category

Irreducible modules in the category $\mathcal{M}^{(k)}$

Definition

A module $M \neq 0$ is *irreducible in* $\mathcal{M}^{(k)}$ if M has no proper non-zero submodule in $\mathcal{M}^{(k)}$.

 $\mathcal{M}^{(k)}$ is not an abelian category.

However, if two modules in a short exact sequence

$$0 \rightarrow K \rightarrow M \rightarrow Q \rightarrow 0$$

belong to $\mathcal{M}^{(k)}$, then so does the third. Hence:

Proposition

Every finite-length module M in $\mathcal{M}^{(k)}$ has a composition series

$$0 = M_0 \subset M_1 \subset \cdots \subset M_m = M$$

whose quotients M_i/M_{i-1} are irreducible in $\mathcal{M}^{(k)}$.

Conjecture

The irreducible modules in $\mathcal{M}^{(k)}$ are exactly the modules $\mathcal{M}^{(k)}_{\lambda}$.

Image: Image:

æ

More conjectures on the k-atom modules Consequences for k-atoms

Consequences for properties of *k*-atoms

Our two conjectures-

(Let's recall them)

More conjectures on the k-atom modules Consequences for k-atoms

Consequences for properties of k-atoms

Our two conjectures-

Conjecture

- The modules $M_{\lambda}^{(k)}$ are the irreducibles in $\mathcal{M}^{(k)}$;
- **2** The graded Frobenius characteristic of $M_{\lambda}^{(k)}$ is equal to the k-atom $A_{\lambda}^{(k)}(z; t);$

Our two conjectures-

Conjecture

- The modules $M_{\lambda}^{(k)}$ are the irreducibles in $\mathcal{M}^{(k)}$;
- **2** The graded Frobenius characteristic of $M_{\lambda}^{(k)}$ is equal to the k-atom $A_{\lambda}^{(k)}(z; t);$

—imply many expected or new properties of *k*-atoms. Here are some of the elementary consequences.

Our two conjectures-

Conjecture

- The modules $M_{\lambda}^{(k)}$ are the irreducibles in $\mathcal{M}^{(k)}$;
- **2** The graded Frobenius characteristic of $M_{\lambda}^{(k)}$ is equal to the k-atom $A_{\lambda}^{(k)}(z; t);$

—imply many expected or new properties of *k*-atoms. Here are some of the elementary consequences.

• The k-atoms do indeed belong to the space $\Lambda^{(k)}$.

Our two conjectures-

Conjecture

- The modules $M_{\lambda}^{(k)}$ are the irreducibles in $\mathcal{M}^{(k)}$;
- **2** The graded Frobenius characteristic of $M_{\lambda}^{(k)}$ is equal to the k-atom $A_{\lambda}^{(k)}(z; t);$

—imply many expected or new properties of k-atoms. Here are some of the elementary consequences.

- The k-atoms do indeed belong to the space $\Lambda^{(k)}$.
- The highest power t^d of t in $A_{\lambda}^{(k)}(z, t)$ is $d = |\beta|$, where β is the set of boxes with hook-length > (k + 1) in the associated (k + 1)-core.

22 / 1

Our two conjectures-

Conjecture

- The modules $M_{\lambda}^{(k)}$ are the irreducibles in $\mathcal{M}^{(k)}$;
- **2** The graded Frobenius characteristic of $M_{\lambda}^{(k)}$ is equal to the k-atom $A_{\lambda}^{(k)}(z; t);$

—imply many expected or new properties of k-atoms. Here are some of the elementary consequences.

- The k-atoms do indeed belong to the space $\Lambda^{(k)}$.
- The highest power t^d of t in $A_{\lambda}^{(k)}(z, t)$ is $d = |\beta|$, where β is the set of boxes with hook-length > (k + 1) in the associated (k + 1)-core.
- The k-atom $A_{\lambda^{[k]}}^{(k)}(z,t)$ is the conjugate of $t^d A_{\lambda}^{(k)}(z;1/t)$.

프) (프) 프

22 / 1

• The expansion of a k-atom in terms of l-atoms for l > k has coefficients in $\mathbb{N}[t]$.

э

- The expansion of a k-atom in terms of l-atoms for l > k has coefficients in ℕ[t].
- The expansion of $A_{\lambda}^{(k)}[Y + Z; t]$ in terms of k-atoms in the y variables times k-atoms in the z variables has coefficients in $\mathbb{N}[t]$.

- The expansion of a k-atom in terms of l-atoms for l > k has coefficients in ℕ[t].
- The expansion of $A_{\lambda}^{(k)}[Y + Z; t]$ in terms of k-atoms in the y variables times k-atoms in the z variables has coefficients in $\mathbb{N}[t]$.
- The expansion of the product of a k-atom and an l-atom in terms of (k + l)-atoms has coefficients in ℕ[t].

- The expansion of a k-atom in terms of l-atoms for l > k has coefficients in ℕ[t].
- The expansion of $A_{\lambda}^{(k)}[Y + Z; t]$ in terms of k-atoms in the y variables times k-atoms in the z variables has coefficients in $\mathbb{N}[t]$.
- The expansion of the product of a k-atom and an l-atom in terms of (k + l)-atoms has coefficients in ℕ[t].
- If κ is k-bounded, then the expansion of the Macdonald polynomial $\widetilde{H}_{\kappa}(z; q, t)$ in terms of k-atoms has coefficients in $\mathbb{N}[q, t]$.

- The expansion of a k-atom in terms of l-atoms for l > k has coefficients in $\mathbb{N}[t]$.
- The expansion of $A_{\lambda}^{(k)}[Y + Z; t]$ in terms of k-atoms in the y variables times k-atoms in the z variables has coefficients in $\mathbb{N}[t]$.
- The expansion of the product of a k-atom and an l-atom in terms of (k + l)-atoms has coefficients in $\mathbb{N}[t]$.
- If κ is k-bounded, then the expansion of the Macdonald polynomial $H_{\kappa}(z; q, t)$ in terms of k-atoms has coefficients in $\mathbb{N}[q, t]$.

Finally, we have a conjectured combinatorial formula for the graded Frobenius characteristic of any $M_{\lambda,\mu}$ in terms of *charge* and *catabolism*. It generalizes both the classical charge formula of Lascoux and Schützenberger for Hall-Littlewood polynomials, and the combinatorial definition of k-atoms by Lascoux, Lapointe and Morse.

3

23 / 1

- The expansion of a k-atom in terms of l-atoms for l > k has coefficients in ℕ[t].
- The expansion of $A_{\lambda}^{(k)}[Y + Z; t]$ in terms of k-atoms in the y variables times k-atoms in the z variables has coefficients in $\mathbb{N}[t]$.
- The expansion of the product of a k-atom and an l-atom in terms of (k + l)-atoms has coefficients in ℕ[t].
- If κ is k-bounded, then the expansion of the Macdonald polynomial $\widetilde{H}_{\kappa}(z; q, t)$ in terms of k-atoms has coefficients in $\mathbb{N}[q, t]$.

Finally, we have a conjectured combinatorial formula for the graded Frobenius characteristic of any $M_{\lambda,\mu}$ in terms of *charge* and *catabolism*. It generalizes both the classical charge formula of Lascoux and Schützenberger for Hall-Littlewood polynomials, and the combinatorial definition of *k*-atoms by Lascoux, Lapointe and Morse.

-But that's a topic for another day...

3

(日) (周) (三) (三)