Math 1A-Calculus, Fall 2010-Haiman
 Final Exam

1. [4] Simplify $\cos \left(\sin ^{-1}(2 x)\right)$ and state its domain.
2. [4] At which points is the function $f(x)= \begin{cases}1 /\left(1-e^{x}\right) & x<0 \\ -x & 0 \leq x<1 \quad \text { (a) continuous, (b) } \\ \cos \pi x & x \geq 1\end{cases}$ continuous from the right, (c) continuous from the left, (d) neither?
3. [4] Differentiate $\ln \left(e^{\sqrt{2} x}+e^{-\sqrt{2} x}\right)$.
4. [5] Find the point (a, b) on the graph $y=e^{x}$ where its tangent line passes through $(0,0)$.
5. [4] Use a linear approximation or differentials to estimate $(8.15)^{2 / 3}$.
6. [4] Find the limit, either finite or infinite, or explain why it does not exist.

$$
\lim _{x \rightarrow \pi / 2} \frac{e^{x}-1}{\cos x}
$$

7. [4] Find the limit, either finite or infinite, or explain why it does not exist.

$$
\lim _{x \rightarrow \infty} \frac{\ln (x+2)}{\ln (x+1)}
$$

8. [4] Find the limit, either finite or infinite, or explain why it does not exist.

$$
\lim _{x \rightarrow 1}(x+1)^{x-1}
$$

9. [5] If $x^{3}+y^{3}=x y+2$, find $d y / d x$ in terms of x and y.
10. [5] If $-1 \leq f^{\prime}(x) \leq 1$ for all x, and $f(1)=5$, what can you conclude about the value of $f(4)$?
11. [5] Find all local maxima and minima of the function $f(x)=\frac{x}{x^{2}+9}$.
12. [5] Find the largest possible perimeter of a rectangle with lower-left corner at $(0,0)$ and upper-right corner on the arc of the curve $x y=4$ between $(1,4)$ and $(4,1)$.
13. [5] Alice is walking east and Bob is walking west along opposite sides of a street 10 m wide. If each walks at a speed of $2 \mathrm{~m} / \mathrm{s}$, how fast is the distance between them decreasing when Alice is 30 m west of Bob?
14. [4] For what values of A is the graph of $\cos x+A x^{2}$ concave upward at every point?
15. [4] Show that $\int(\ln x)^{2} d x=x(\ln x)^{2}-2 x \ln x+2 x+C$.
16. [5] Evaluate the integral $\int_{0}^{2}|x(x-1)| d x$.
17. [5] Evaluate the indefinite integral $\int \frac{x^{3}}{x^{2}+1} d x$.
18. [5] Evaluate the integral $\int_{0}^{\pi / 4} \tan x d x$.
19. [5] Find the area of the region enclosed by the curve $x y=3$ and the line $x+y=4$.
20. [5] Let R be the region bounded by the x-axis, the line $x=e$, and the graph of $y=\ln x$. Set S be the solid obtained by rotating R about the y-axis.

Set up, but do not evaluate, an integral which gives the volume of S using the method of slices.
21. [5] Set up, but do not evaluate, an integral which gives the volume of the solid S in the previous problem using the method of cylindrical shells.
22. [4] Find the average value of $\sqrt{1-x^{2}}$ on the interval $[-1,1]$.

