Math 1A—Calculus, Fall 2010-Haiman Midterm Exam 3

1. (10 pts) Find the limit:

$$
\lim _{x \rightarrow 1} \frac{1-x+\ln x}{(x-1)^{2}}
$$

2. (10 pts) Using Newton's method to approximate the solution of the equation $\cos x=x$, with initial approximation $x_{0}=1$, what is the next approximation? Since you don't have a calculator, write your answer as a formula, rather than evaluating it numerically.
3. (12 pts) Find all asymptotes, including slant asymptotes, to the graph

$$
y=\frac{(2 x+1)^{3}}{(x+1)^{2}}
$$

You do not have to sketch the graph.
4. (12 pts) Find the point or points on the parabola $y=x^{2}$ closest to the point $(0,1)$ on the y-axis. Hint: you can simplify the problem by minimizing the square of the distance rather than the distance itself.
5. (12 pts) Find $f(x)$ if $f^{\prime \prime}(x)=x+\sin x, f^{\prime}(0)=0, f(0)=2$.
6. (12 pts) Evaluate the integral:

$$
\int_{2}^{4} \frac{x^{2}-1}{x} d x
$$

7. (10 pts) Evaluate the integral:

$$
\int_{0}^{3} \sqrt{9-x^{2}} d x
$$

8. (12 pts) Find the derivative $f^{\prime}(x)$, where

$$
f(x)=\int_{0}^{x^{2}} \tan (\sqrt{u}) d u
$$

9. (10 pts) Which is greater: the Riemann sum

$$
\frac{1}{1} \cdot \frac{1}{3}+\frac{1}{1+1 / 3} \cdot \frac{1}{3}+\frac{1}{1+2 / 3} \cdot \frac{1}{3}=47 / 60
$$

or the integral

$$
\int_{1}^{2} \frac{1}{x} d x=\ln 2
$$

and why?

