Math 1A—Calculus, Fall 2010-Haiman Midterm Exam 2

1. (15 pts) Differentiate

$$
f(x)=\frac{A x+B}{C x+D}
$$

where A, B, C, D are constants. Simplify your answer.
2. (15 pts) Differentiate $x^{\left(\tan ^{-1} x\right)}$.
3. (15 pts) The pressure, P, and volume, V, of gas in a piston are related by $P V=500 \mathrm{~N} \mathrm{~cm}$ (Ncm stands for Newton centimeters). What is the rate of change of P when $V=20 \mathrm{~cm}^{3}$ and $d V / d t=-5 \mathrm{~cm}^{3} / s$?
4. (15 pts) Find the absolute maximum and minimum values of the function $f(x)=(\ln x) / x$ on the interval $[1,5]$. You may find it useful to know that $(\ln 5) / 5 \approx 0.322$ and $1 / e \approx 0.368$.
5. (a) (10 pts) Find the linear approximation to the function $f(x)=x^{3}$ at $a=1$.
(b) (5 pts) Find the estimated value of $(1.05)^{3}$ given by the linear approximation in part (a). Is the estimated value larger than the actual value, or smaller?
6. For the function

$$
f(x)=e^{-x^{2} / 2}
$$

(a) (10 pts) Find the intervals on which f is increasing or decreasing.
(b) (10 pts) Find the intervals on which the graph of f in concave upwards or concave downwards.
(c) (5 pts) Find the inflection points on the graph of f.

