Math 1A—Calculus, Fall 2010—Haiman Midterm Exam 1

1. [10 pts] What is the geometric relationship between the graphs of $f(x) = \sqrt{x-3} + 1$ and $g(x) = \sqrt{x-1}$?

2. [12 pts] Find the inverse function of $f(x) = \ln(2 + \sqrt{x})$. What are the domain and range of f(x) and of its inverse function?

3. [10 pts] Is $5^{\log_2 3}$ equal to $3^{\log_2 5}$? Justify your answer.

4. [10 pts] Sketch a graph of a function f(x) such that $\lim_{x\to 1^-} f(x)$ and $\lim_{x\to 1^+} f(x)$ both exist, and f is continuous from the from the right at x = 1, but not continuous at x = 1.

5. [12 pts] Find

$$\lim_{x \to 2} \frac{x-2}{x-4/x}$$

6. [12 pts] Find all vertical and horizontal asymptotes to the graph

$$y = \frac{2x^2}{x - 3x^2}.$$

- 7. [12 pts] Find the tangent line to the curve $y = 2x^3 3x$ at the point (1, -1).
- 8. [10 pts] Differentiate $3e^{2x} + 4e^{-x}$

9. (a) [4 pts] Show that if $1 - \epsilon/5 < x < 1 + \epsilon/5$, then $2 - \epsilon < 5x - 3 < 2 + \epsilon$.

(b) [8 pts] For what function f(x) and numbers a and L does part (a) prove that $\lim_{x\to a} f(x) = L$?