Math 1A—Calculus, Fall 2010-Haiman Midterm Exam 1

1. [10 pts] What is the geometric relationship between the graphs of $f(x)=\sqrt{x-3}+1$ and $g(x)=\sqrt{x}-1$?
2. [12 pts] Find the inverse function of $f(x)=\ln (2+\sqrt{x})$. What are the domain and range of $f(x)$ and of its inverse function?
3. [10 pts] Is $5^{\log _{2} 3}$ equal to $3^{\log _{2} 5}$? Justify your answer.
4. [10 pts] Sketch a graph of a function $f(x)$ such that $\lim _{x \rightarrow 1^{-}} f(x)$ and $\lim _{x \rightarrow 1^{+}} f(x)$ both exist, and f is continuous from the from the right at $x=1$, but not continuous at $x=1$.
5. [12 pts] Find

$$
\lim _{x \rightarrow 2} \frac{x-2}{x-4 / x}
$$

6. [12 pts] Find all vertical and horizontal asymptotes to the graph

$$
y=\frac{2 x^{2}}{x-3 x^{2}} .
$$

7. [12 pts] Find the tangent line to the curve $y=2 x^{3}-3 x$ at the point $(1,-1)$.
8. [10 pts] Differentiate $3 e^{2 x}+4 e^{-x}$
9. (a) [4 pts] Show that if $1-\epsilon / 5<x<1+\epsilon / 5$, then $2-\epsilon<5 x-3<2+\epsilon$.
(b) [8 pts] For what function $f(x)$ and numbers a and L does part (a) prove that $\lim _{x \rightarrow a} f(x)=L$?
