1. Evaluate the limit if it exists (possibly as an infinite limit).
(a) $\lim _{x \rightarrow 1} \frac{1}{\ln x}$
(b) $\lim _{x \rightarrow 1} \frac{1}{(\ln x)^{2}}$
(a) $\lim _{x \rightarrow 1} 1 / \ln x$ does not exist, (b) $\lim _{x \rightarrow 1} 1 /(\ln x)^{2}=+\infty$.
2. Differentiate the function $y=\sin (\sin (\sin x))$.

$$
y^{\prime}=\cos (\sin (\sin x)) \cos (\sin x) \cos x
$$

3. Find (a) all local maxima and minima of the function

$$
f(x)=\frac{x}{x^{2}+1},
$$

and (b) the intervals of increase or decrease of $f(x)$.
(a) $f^{\prime}(x)=\left(1-x^{2}\right) /\left(x^{2}+1\right)^{2}$ is zero at $x= \pm 1 . f(-1)=-1 / 2$ is a local (and absolute) minimum, and $f(1)=1 / 2$ is a local (and absolute) maximum. (b) $f(x)$ is decreasing on $(-\infty,-1)$ and $(1, \infty)$, increasing on $(-1,1)$.
4. Find the linear approximation to the function $f(x)=\ln x$ near $x=2$.

Since $f^{\prime}(2)=1 / 2, f(2)=\ln 2$, the linear approximation is $y=(x-2) / 2+\ln 2$.
5. If $y=e^{x y}$, express $d y / d x$ in terms of x and y.

$$
\begin{aligned}
y^{\prime} & =e^{x y}\left(x y^{\prime}+y\right) \\
\left(1-x e^{x y}\right) y^{\prime} & =y e^{x y} \\
y^{\prime} & =\frac{y e^{x y}}{1-x e^{x y}}
\end{aligned}
$$

6. Suppose we use Newton's method to approximate the root r of the function whose graph is shown, using $x_{1}=1$ for the first approximation.

For the next approximation x_{2}, decide whether $x_{2}<r$ or $x_{2}>r$. Justify your answer.
The tangent line at $x=1$ crossess the x axis to the right of r, because the graph is concave downward. Therefore $x_{2}>r$.
7. Find the largest area of a rectangle with horizontal and vertical sides, lower-left corner at the origin $(0,0)$, and upper-right corner on the curve $y=e^{-x}$.

We must maximize $A=x e^{-x}$. We have $d A / d x=(1-x) e^{-x}=0$ at $x=1$. It's a maximum by the first derviative test. The area is $A=e^{-1}$.
8. Find the limit.

$$
\lim _{x \rightarrow \infty} x^{1 /(1+\ln x)}
$$

We have $\lim _{x \rightarrow \infty} x^{1 /(1+\ln x)}=\lim _{x \rightarrow \infty} e^{(\ln x) /(1+\ln x)}$. Now $\lim _{x \rightarrow \infty}(\ln x) /(1+\ln x)=1$, so $\lim _{x \rightarrow \infty} x^{1 /(1+\ln x)}=e$.
9. If $\int_{a}^{x} f(t) d t=x \ln x$ for all $x>0$, find the function $f(x)$ and the constant a.

By the fundamental theorem of calculus, $f(x)=\frac{d}{d x}(x \ln x)=1+\ln x$. Since $x \ln x=0$ at $x=1$, the constant a is equal to 1 .
10. Evaluate the integral.

$$
\int_{0}^{2} x e^{-x^{2}} d x
$$

Substitute $u=-x^{2}, d u=-2 x d x$, to get

$$
\left.-\frac{1}{2} \int_{0}^{-4} e^{u} d u=-\frac{1}{2} e^{u}\right]_{0}^{-4}=\frac{1-e^{-4}}{2}
$$

11. Evaluate the indefinite integral.

$$
\begin{gathered}
\int \frac{(x+1)(x+2)}{x^{2}} d x \\
\int \frac{(x+1)(x+2)}{x^{2}} d x=\int 1+3 x^{-1}+2 x^{-2} d x=x+3 \ln x-2 / x+C
\end{gathered}
$$

12. Sketch the region enclosed by the lines $x=2, y=2$ and the curve $x y=1$, and find its area.

The area is given by

$$
\left.\int_{1 / 2}^{2} 2-1 / x d x=2 x-\ln x\right]_{1 / 2}^{2}=3-\ln 2+\ln (1 / 2)=3-2 \ln 2 .
$$

13. Find the average value of the function $f(x)=1 / x$ on the interval $[1,3]$.

$$
\left.\frac{1}{2} \int_{1}^{3} \frac{d x}{x}=\frac{\ln x}{2}\right]_{1}^{3}=\frac{\ln 3}{2} .
$$

14. Find the volume of the circular cone obtained by rotating the triangle enclosed by the x and y axes and the line $x+y=1$ about the y axis.

$$
\left.\int_{0}^{1} \pi(1-y)^{2} d y=-\int_{1}^{0} \pi u^{2} d u=-\pi u^{3} / 3\right]_{1}^{0}=\pi / 3
$$

15. Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region enclosed by the x axis, the line $x=2$, and the curve $y=x e^{-x}$ about the y axis.

$$
\int_{0}^{2} 2 \pi x^{2} e^{-x} d x
$$

