Practice Exam for Midterm 1-Solutions

1. Find the domain and range of the function

$$
f(x)=\frac{1}{(x-2)^{2}}
$$

The domain is $x \neq 2$. The range is $(0, \infty)$, since $f(x)$ is always positive, approaches 0 for large x, and approaches ∞ for x approaching 2 .
2. Express the function

$$
u(t)=\frac{\cos t}{1+\cos t}
$$

as a composite $f \circ g$ of two other functions.
$u=f \circ g$ for $f(t)=t /(1+t), g(t)=\cos t$.
3. An exponential function $f(x)=C a^{x}$ has $f(1)=10$ and $f(3)=40$. Find the constants C and a.
$f(3) / f(1)=a^{3} / a=a^{2}=4$, so $a=2$. Plugging in $x=1$ shows that $C=5$.
4. Evaluate the limit, if it exists (possibly as an infinite limit).

$$
\begin{gathered}
\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3} . \\
\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3}=\lim _{x \rightarrow 3} \frac{x+1-4}{(x-3)(\sqrt{x+1}+2)}=\lim _{x \rightarrow 3} \frac{1}{\sqrt{x+1}+2}=1 / 4 .
\end{gathered}
$$

5. Evaluate the limit, if it exists (possibly as an infinite limit).

$$
\lim _{x \rightarrow \pi / 2} \tan x
$$

The limit doesn't exist, not even as an infinite limit, since $\lim _{x \rightarrow(\pi / 2)^{-}} \tan x=+\infty$ and $\lim _{x \rightarrow(\pi / 2)^{+}} \tan x=-\infty$.
6. Evaluate the limit, if it exists (possibly as an infinite limit).

$$
\lim _{x \rightarrow \infty} \tan ^{-1}\left(x^{2}-x^{4}\right)
$$

$\lim _{x \rightarrow \infty}\left(x^{2}-x^{4}\right)=-\infty$, so $\lim _{x \rightarrow \infty} \tan ^{-1}\left(x^{2}-x^{4}\right)=\lim _{x \rightarrow-\infty} \tan ^{-1}(x)=-\pi / 2$.
7. In the definition of the limit

$$
\lim _{x \rightarrow 1}(5-3 x)=2,
$$

find a value of δ that works for $\varepsilon=0.1$.
Any δ less than or equal to $0.1 / 3$ works. If $|x-1|<0.1 / 3$, then $|(5-3 x)-2|=|3-3 x|=$ $|3 x-3|=3|x-1|<0.1$.
8. Prove that there is at least one real solution of the equation $x e^{x}=1$.

Let $f(x)=x e^{x}$. It is a continuous function. Observe that $f(0)=0$, and $f(1)=e$. Since $0<1<e$, the intermediate value theorem shows that $f(c)=1$ for some $c \in(0,1)$.
9. For what value of the constant c is the function

$$
f(x)= \begin{cases}x+c & \text { if } x \leq-1 \\ x^{2}-c & \text { if } x>-1\end{cases}
$$

continuous on $(-\infty, \infty)$?
The only possible discontinuity is at $x=-1$. Now, $f(-1)=\lim _{x \rightarrow(-1)^{-}} f(x)=-1+c$, and $\lim _{x \rightarrow(-1)^{+}} f(x)=1-c$. To make $f(x)$ continuous at $x=-1$, we must have $-1+c=1-c$, thus $c=1$.
10. Differentiate the function

$$
\begin{gathered}
f(x)=(\sqrt{x}-1)\left(e^{x}+x\right) \\
f^{\prime}(x)=(\sqrt{x}-1)^{\prime}\left(e^{x}+x\right)+(\sqrt{x}-1)\left(e^{x}+x\right)^{\prime}=\frac{1}{2} x^{-1 / 2}\left(e^{x}+x\right)+(\sqrt{x}-1)\left(e^{x}+1\right)
\end{gathered}
$$

11. Differentiate the function

$$
\begin{gathered}
f(x)=\frac{1}{x^{3}-x+2} \\
f^{\prime}(x)=\frac{-\left(x^{3}-x+2\right)^{\prime}}{\left(x^{3}-x+2\right)^{2}}=\frac{-3 x^{2}+1}{\left(x^{3}-x+2\right)^{2}}
\end{gathered}
$$

12. Find an equation of the tangent line to the curve

$$
y=\sqrt{x}
$$

at the point $(4,2)$.
The slope is $y^{\prime}(4)=(1 / 2) 4^{-1 / 2}=1 / 4$. The line has an equation of the form $y=(1 / 4) x+c$. To find c, use $2=(1 / 4) 4+c$ at $(4,2)$, so $c=1$. Hence the desired equation is $y=x / 4+1$.

