Practice Final Exam

1. Differentiate the function

$$
y=\frac{(x+1) \sqrt{x+2}}{\sqrt[3]{x+3}}
$$

2. Evaluate the limit if it exists (possibly as an infinite limit).
(a) $\lim _{x \rightarrow 1^{+}} \frac{x}{1-x}$
(b) $\lim _{x \rightarrow 1^{-}} \frac{x}{1-x}$
(c) $\lim _{x \rightarrow 1} \frac{x}{1-x}$
3. Find all points P on the curve $y=x^{2}+1$ with the property that the tangent line at P passes through the origin.
4. Use a linear approximation to estimate $\sqrt{37}$.
5. If $\sin (y-x)=y+x$, express $d y / d x$ in terms of x and y.
6. Find the constant a for which $f(x)=x^{3}+a x^{2}$ has an inflection point at $x=1$. For this value of a, find the intervals of concavity of $f(x)$.
7. Use Newton's method to find the root of $x^{4}+x-4=0$ in the interval [1,2], correct to 6 decimal places.
8. Find the points on the parabola $y=x^{2}$ closest to $(0,1)$.
9. Find the limit.

$$
\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)
$$

10. Evaluate the integral.

$$
\int_{1}^{2} x \sqrt{x-1} d x
$$

11. Find the area enclosed by the lines $x=0, y=1$ and the curve $y=\sqrt[3]{x}$.
12. Evaluate the integral.

$$
\int_{0}^{\pi / 2}\left|\cos x-\frac{1}{2}\right| d x
$$

13. Differentiate the function

$$
f(x)=\int_{x}^{2 x} \frac{e^{t}}{t} d t
$$

14. Find the most general function $f(x)$ for which $f^{\prime \prime}(x)=\cos x$.
15. Find an interval $[0, c]$ on which the average value of the function $f(x)=x^{2}+2$ is equal to 5 .
16. Set up an integral for the volume of the solid obtained by rotating the region enclosed by the x axis, the line $x=2$, and the curve $y=\ln x$ about the y axis, using
(a) the method of slices;
(b) the method of cylindrical shells.

Evaluate one of these integrals to find the volume.
17. Find the volume of a pyramid with a square base of length 2 on each side, and height 3 .
18. Evaluate the limit by expressing it as an integral.

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{i^{2}}{n^{2}}
$$

