Practice Final Exam Solutions

1. Differentiate the function

$$
y=\frac{(x+1) \sqrt{x+2}}{\sqrt[3]{x+3}}
$$

It's easiest to use logarithmic differentiation, which gives

$$
y^{\prime}=\frac{(x+1) \sqrt{x+2}}{\sqrt[3]{x+3}}\left(\frac{1}{x+1}+\frac{1}{2(x+2)}-\frac{1}{3(x+3)}\right) .
$$

2. Evaluate the limit if it exists (possibly as an infinite limit).
(a) $\lim _{x \rightarrow 1^{+}} \frac{x}{1-x}$
(b) $\lim _{x \rightarrow 1^{-}} \frac{x}{1-x}$
(c) $\lim _{x \rightarrow 1} \frac{x}{1-x}$
(a) $-\infty$, (b) $+\infty$, (c) doesn't exist.
3. Find all points P on the curve $y=x^{2}+1$ with the property that the tangent line at P passes through the origin.

We have $y^{\prime}=2 x$. At $P=\left(c, c^{2}+1\right)$, the equation of the tangent line is $y=2 c(x-c)+c^{2}+1$. It passes through origin if and only if this equation holds at $x=y=0$, which gives $-c^{2}+1=$ 0 , so $c= \pm 1$. The two points P are $(-1,2)$ and $(1,2)$.
4. Use a linear approximation to estimate $\sqrt{37}$.

Let $f(x)=\sqrt{x}$, so $f^{\prime}(x)=1 /(2 \sqrt{x})$. The linear approximation near $x=36$ is $y=$ $(1 / 12)(x-36)+6$. With $x=37$, this gives $\sqrt{37} \approx 6+1 / 12 \approx 6.0833$. For comparison, the actual value to four decimal places is $\sqrt{37} \approx 6.0828$.
5. If $\sin (y-x)=y+x$, express $d y / d x$ in terms of x and y.

$$
\begin{aligned}
& \begin{aligned}
\cos (y-x)\left(y^{\prime}-1\right) & =y^{\prime}+1 \\
\quad(\cos (y-x)-1) y^{\prime} & =\cos (y-x)+1 \\
y^{\prime}= & \frac{\cos (y-x)+1}{\cos (y-x)-1} .
\end{aligned} .
\end{aligned}
$$

6. Find the constant a for which $f(x)=x^{3}+a x^{2}$ has an inflection point at $x=1$. For this value of a, find the intervals of concavity of $f(x)$.

Compute $f^{\prime \prime}(x)=6 x+2 a$. We need $f^{\prime \prime}(1)=0$, so $a=-3$. From the sign of the second derivative $f^{\prime \prime}(x)=6 x-6$, we see that $f(x)=x^{3}-3 x^{2}$ is concave downward on $(-\infty, 1)$ and concave upward on $(1, \infty)$.
7. Use Newton's method to find the root of $x^{4}+x-4=0$ in the interval [1,2], correct to 6 decimal places.

The formula for the next approximation is

$$
x_{n+1}=x_{n}-\frac{x_{n}^{4}+x_{n}-4}{4 x_{n}^{3}+1} .
$$

Starting with $x_{1}=1$ yields $x \approx 1.283782$, accurate to 6 decimal digits at x_{5}. Starting with $x_{1}=2$, you have to go to x_{6} before the result is accurate to 6 digits.
8. Find the points on the parabola $y=x^{2}$ closest to $(0,1)$.

We must minimize $d^{2}=x^{2}+(y-1)^{2}=x^{2}+\left(x^{2}-1\right)^{2}$. The derivative is $2 x+4 x\left(x^{2}-1\right)=$ $2 x\left(2 x^{2}-1\right)$, which is zero at $x=0, x= \pm 1 / \sqrt{2}$. At $x=0$, we get $d^{2}=1$, while at $x= \pm 1 / \sqrt{2}$ we get $d^{2}=3 / 4$, so the closest points are $(\pm 1 / \sqrt{2}, 1 / 2)$.
9. Find the limit.

$$
\begin{aligned}
\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}\right. & \left.-\frac{1}{x-1}\right) \\
\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right) & =\lim _{x \rightarrow 1} \frac{x-1-\ln x}{(x-1) \ln x} \\
& =\lim _{x \rightarrow 1} \frac{1-1 / x}{\ln x+(x-1) / x} \\
& =\lim _{x \rightarrow 1} \frac{x-1}{x \ln x+x-1} \\
& =\lim _{x \rightarrow 1} \frac{1}{\ln x+2} \\
& =1 / 2,
\end{aligned}
$$

where we have used L'Hospital's rule twice.
10. Evaluate the integral.

$$
\int_{1}^{2} x \sqrt{x-1} d x
$$

Substitute $u=x-1, d u=d x$ to get

$$
\int_{0}^{1}(u+1) \sqrt{u} d u=\int_{0}^{1} u^{3 / 2}+u^{1 / 2} d u=2 / 5+2 / 3=16 / 15
$$

11. Find the area enclosed by the lines $x=0, y=1$ and the curve $y=\sqrt[3]{x}$.

Integrating with respect to y gives

$$
\left.\int_{0}^{1} y^{3} d y=y^{4} / 4\right]_{0}^{1}=1 / 4
$$

Integrating with respect to x gives

$$
\left.\int_{0}^{1}(1-\sqrt[3]{x}) d x=x-(3 / 4) x^{4 / 3}\right]_{0}^{1}=1-3 / 4=1 / 4
$$

12. Evaluate the integral.

$$
\int_{0}^{\pi / 2}\left|\cos x-\frac{1}{2}\right| d x
$$

We have $\cos x-1 / 2 \geq 0$ on $[0, \pi / 3]$ and $\cos x-1 / 2 \leq 0$ on $[\pi / 3, \pi / 2]$. Our integral is therefore equal to

$$
\begin{aligned}
\int_{0}^{\pi / 3}\left(\cos x-\frac{1}{2}\right) d x+\int_{\pi / 3}^{\pi / 2}\left(\frac{1}{2}-\cos x\right) d x & \left.\left.=\sin x-\frac{x}{2}\right]_{0}^{\pi / 3}+\frac{x}{2}-\sin x\right]_{\pi / 3}^{\pi / 2} \\
& =\sqrt{3} / 2-\pi / 6+\pi / 12+\sqrt{3} / 2-1 \\
& =\sqrt{3}-\pi / 12-1
\end{aligned}
$$

13. Differentiate the function

$$
f(x)=\int_{x}^{2 x} \frac{e^{t}}{t} d t
$$

We have $f(x)=F(2 x)-F(x)$, where $F^{\prime}(x)=e^{x} / x$ by the Fundamental Theorem of Calculus. Therefore $f^{\prime}(x)=2 F^{\prime}(2 x)-F^{\prime}(x)=\left(e^{2 x}-e^{x}\right) / x$.
14. Find the most general function $f(x)$ for which $f^{\prime \prime}(x)=\cos x$.

Antidifferentiating twice gives $f^{\prime}(x)=\sin x+C_{1}, f(x)=-\cos x+C_{1} x+C_{2}$.
15. Find an interval $[0, c]$ on which the average value of the function $f(x)=x^{2}+2$ is equal to 5 .

We require

$$
5=\frac{1}{c} \int_{0}^{c}\left(x^{2}+2\right) d x=\frac{1}{c}\left(c^{3} / 3+2 c\right)=c^{2} / 3+2 .
$$

Then $c^{2}=9, c=3$. We take the positive square root, since we were looking for an interval with left endpoint zero (although the average of $f(x)$ on $[-3,0]$ is also equal to 5).
16. Set up an integral for the volume of the solid obtained by rotating the region enclosed by the x axis, the line $x=2$, and the curve $y=\ln x$ about the y axis, using
(a) the method of slices;
(b) the method of cylindrical shells.

Evaluate one of these integrals to find the volume.
Note that $y=\ln x$ crosses the x axis at $x=1$. The integral for (a) is

$$
\left.\int_{0}^{\ln 2} \pi\left(4-e^{2 y}\right) d y=4 \pi y-\pi e^{2 y} / 2\right]_{0}^{\ln 2}=4 \pi \ln 2-2 \pi+\pi / 2=4 \pi \ln 2-3 \pi / 2 .
$$

The integral for (b) is

$$
\int_{1}^{2} 2 \pi x \ln x d x
$$

It can be evaluated using integration by parts, a technique you will learn in your next calculus course.
17. Find the volume of a pyramid with a square base of length 2 on each side, and height 3 .

Let z be the vertical distance from the point at the top of the pyramid. The horizontal cross-section at z is a square with sides of length $2 z / 3$ and area $4 z^{2} / 9$. The volume is

$$
\left.\int_{0}^{3} 4 z^{2} / 9 d z=4 z^{3} / 27\right]_{0}^{3}=4 .
$$

18. Evaluate the limit by expressing it as an integral.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{i^{2}}{n^{2}} \\
& \int_{0}^{1} x^{2} d x=1 / 3
\end{aligned}
$$

