Quiz 8 Solution (Version B)

1. Find the limit

$$
\begin{gathered}
\lim _{x \rightarrow \infty} x \ln (1+1 / x) \\
\lim _{x \rightarrow \infty} x \ln (1+1 / x)=\lim _{x \rightarrow \infty} \frac{\ln (1+1 / x)}{1 / x} .
\end{gathered}
$$

Now we have a $0 / 0$ type limit and can apply L'Hospital's rule to get

$$
\lim _{x \rightarrow \infty} \frac{-x^{-2} /(1+1 / x)}{-x^{-2}}=1
$$

2. Find the largest possible volume for a circular cylinder of height h and radius r, if it is required that $h+2 r=1 \mathrm{~m}$.

The volume is

$$
V=\pi r^{2} h=\pi r^{2}(1-2 r)=\pi\left(r^{2}-2 r^{3}\right)
$$

We are to maximize this on the interval $0 \leq r \leq 1 / 2$.

$$
d V / d t=\pi\left(2 r-6 r^{2}\right)=2 \pi r(1-3 r)
$$

giving a critical point at $r=1 / 3$, as well as the endpoints $r=0,1 / 2$. We have $V=0$ at the endpoints, so the absolute maximum is $V=\pi / 27 \mathrm{~m}^{3}$, occuring when $r=h=1 / 3$.

