Quiz 8 Solution (Version A)

1. Find the limit

$$
\begin{gathered}
\lim _{x \rightarrow 1}(\ln x)(\tan \pi x / 2) \\
\lim _{x \rightarrow 1}(\ln x)(\tan \pi x / 2)=\lim _{x \rightarrow 1} \frac{\ln x}{\cot \pi x / 2} .
\end{gathered}
$$

Now we have a 0/0 type limit and can apply L'Hospital's rule to get

$$
\lim _{x \rightarrow 1} \frac{1 / x}{-(\pi / 2) \csc ^{2} \pi x / 2}=-2 / \pi
$$

2. A rectangular box has height h, width w and depth d. Find the largest possible volume for the box if it is required that $w=2 h$, and the total perimeter $h+w+d$ is 3 m .

The constraints imply $3 h+d=3$, so $d=3-3 h$. The volume is

$$
V=h w d=h(2 h)(3-3 h)=6 h^{2}-6 h^{3} .
$$

We are to maximize this on the interval $0 \leq h \leq 1$.

$$
d V / d t=12 h-18 h^{2}=6 h(2-3 h)
$$

giving a critical point at $h=2 / 3$, in addition to the endpoints $h=0,1$ of the domain. We have $V=0$ at the endpoints, so the absolute maximum is $V=(2 / 3)(4 / 3)(1)=8 / 9 \mathrm{~m}^{3}$, with $h=2 / 3, w=4 / 3, d=1$.

