Quiz 2 Solution (Version B)

In each of the following, (1) decide whether the limit exists as a number, as an infinite limit, or not at all, and (2) evaluate the limit if it exists.
(a)

$$
\lim _{x \rightarrow 2} \frac{\sqrt[3]{x^{2}-4}}{\sqrt[3]{x-2}}
$$

(b)

$$
\lim _{x \rightarrow 0^{+}} \frac{|x|-x}{x^{2}}
$$

(c)

$$
\lim _{x \rightarrow 0^{-}} \frac{|x|-x}{x^{2}}
$$

(a) For $x \neq 2, \sqrt[3]{x^{2}-4} / \sqrt[3]{x-2}=\sqrt[3]{x+2}$. Substituting $x=2$ gives $\lim _{x \rightarrow 2} \frac{\sqrt[3]{x^{2}-4}}{\sqrt[3]{x-2}}=\sqrt[3]{4}$.
(b) For $x>0,|x|=x$, so $(|x|-x) / x^{2}=0$, which gives $\lim _{x \rightarrow 0^{+}} \frac{|x|-x}{x^{2}}=0$.
(c) For $x<0|x|=-x$, so $(|x|-x) / x^{2}=-2 / x$, which becomes large and positive for x negative and approaching zero. Therefore $\lim _{x \rightarrow 0^{-}} \frac{|x|-x}{x^{2}}=+\infty$.

