Quiz 11 Solution (Version A)

1. Evaluate the integral

$$
\begin{aligned}
& \int_{1}^{4}(1+x) \sqrt{x} d x \\
& \int_{1}^{4}(1+x) \sqrt{x} d x\left.=\int\left(x^{1 / 2}+x^{3 / 2}\right) d x\right]_{1}^{4} \\
&\left.=\frac{2}{3} x^{3 / 2}+\frac{2}{5} x^{5 / 2}\right]_{1}^{4} \\
&=(16 / 3)+(64 / 5)-(2 / 3)-(2 / 5) \\
&=(14 / 3)+(62 / 5)=256 / 15
\end{aligned}
$$

2. Find the derivative of the function

$$
f(x)=\int_{0}^{x^{2}} \ln t d t
$$

Since $f(x)=F\left(x^{2}\right)$, where $F^{\prime}(x)=\ln x$, the chain rule gives

$$
f^{\prime}(x)=2 x \ln \left(x^{2}\right)
$$

(this is also equal to $4 x \ln x$, using laws of logarithms).

