Math 185-Introduction to Complex Analysis
Haiman, Summer 2014
Problem Set 7
Due Monday, August 4

Exercises from the textbook:
86.2, 86.8 (note that the integral is convergent at both ends, so its 'Cauchy principal value' is its actual value).
88.4, 88.9 (and justify the convergence of the integral), 88.12
$90.1,90.2,90.3,90.5$
93.5
94.5, 94.8

Additional problems:

1. (a) Show that

$$
\operatorname{Res}_{z=e^{i \pi / n}}\left(\frac{1}{z^{n}+1}\right)=\frac{-e^{i \pi / n}}{n}
$$

for every positive integer n (see $\S 83$, Theorem 2).
(b) Use a contour with straight sides along the positive real axis and the ray at angle $2 \pi / n$, and a circular arc of large radius R connecting them (see Exercise 86.9 for an illustration when $n=3$) to show that

$$
\int_{0}^{\infty} \frac{1}{x^{n}+1} d x=\frac{\pi}{n \sin (\pi / n)}
$$

for all integers $n \geq 2$.
2. (a) Show that the equation $z=e^{-z}$ has exactly one real solution $z=x_{0}$.
(b) Use Rouché's Theorem to show that $z=e^{-z}$ has no other solutions in the half-plane $\operatorname{Re}(z) \geq x_{0}$.

