Math 185-Introduction to Complex Analysis

 Haiman, Summer 2014
Problem Set 6

Due Monday, July 28

Exercises from the textbook:
29.5
65.4, 65.8
68.1, 68.3, 68.5, 68.9
$72.1,72.2,72.3,72.4,72.6,72.7,72.11$
73.4 (and explain why $0<|z|<2 \pi$ is the domain of convergence)
77.1(e), 77.2(c), 77.4(a), 77.7
79.1, 79.3
81.3(b)
83.4(a), 83.5(a)

Additional problems:

1. Prove the Newton binomial theorem

$$
(z+1)^{a}=\sum_{n=0}^{\infty}\binom{a}{n} z^{n} \quad \text { for }|z|<1
$$

where a is any complex number. Here we define

$$
\binom{a}{n}=\frac{a(a-1) \cdots(a-n+1)}{n!},
$$

and we use the principal value $(z+1)^{a}=e^{a \log (z+1)}$.
2. (a) The Bessel function

$$
J_{0}(z)=\frac{1}{\pi} \int_{0}^{\pi} \cos (z \sin \phi) d \phi
$$

was defined in Exercise 68.9, where it was also shown to be the coefficient of w^{0} in the Laurent series representation of $e^{z(w-1 / w) / 2}$. By writing $e^{z(w-1 / w) / 2}$ as the product $e^{z w / 2} e^{-z /(2 w)}$, find the Maclaurin series of $J_{0}(z)$.
(b) Using part (a) and the Maclaurin series of $\cos (z \sin \phi)$ as a function of z, find a formula for

$$
\frac{1}{\pi} \int_{0}^{\pi}(\sin \phi)^{2 n} d \phi
$$

3. (a) Establish the series representation

$$
\log (z)=\sum_{n=1}^{\infty} \frac{(1-1 / z)^{n}}{n} \quad \text { for } \operatorname{Re}(z)>1 / 2
$$

(b) Express $\ln (3)$ as the sum of a series of rational numbers.

