Math 185-Introduction to Complex Analysis
Haiman, Summer 2014
Problem Set 3
Due Monday, July 7

Exercises from the textbook:
18.1(c), 18.5, 18.9, 18.11
20.3, 20.4, 20.8(a), 20.9
24.2(d), 24.4(b), 24.6, 24.7
26.1(c), 26.2(b), 26.7
27.2, 27.3

Additional problems:

1. Find

$$
\lim _{z \rightarrow-1+i} \frac{(1+i) z+2}{z^{2}+2 z+2}
$$

2. Prove that $f(z)=1 / z$ is continuous for all $z \neq 0$. Hint: the hardest way is to work directly from the definition. Try one of the following alternatives: (a) use Theorem 18.3 from the textbook (b) use $1 / z=\bar{z} /|z|^{2}$ and the fact that the real-valued function $1 / x$ is continuous for $x \neq 0$, or (c) prove the stronger assertion that $f(z)$ is differentiable for all $z \neq 0$.
3. Exercise 26.6 with the following modification: take the domain of definition of $g(z)=$ $\ln r+i \theta$ to be ($r>0,-\pi<\theta<\pi$) instead of ($r>0,0<\theta<2 \pi$), and then show that $G(z)=g\left(z^{2}+1\right)$ is analytic in the whole right half-plane $x>0$, with $G^{\prime}(z)=2 z /\left(z^{2}+1\right)$.
