Midterm Exam

You may consult the class textbook and your own notes. No other printed materials or eletronic devices may be used.

1. $[12 \mathrm{pts}]$ Show that if $\operatorname{Re}(z)>0$, then

$$
\operatorname{Arg}(z)=\frac{\log (z / \bar{z})}{2 i}
$$

2. (a) [9 pts] Using the identity $z^{3}+1=(z+1)\left(z^{2}-z+1\right)$, show that the roots of the quadratic equation $z^{2}-z+1=0$ are the two complex cube roots of -1 which are not real.
(b) $[6 \mathrm{pts}]$ Derive the exact values of $\cos (\pi / 3)$ and $\sin (\pi / 3)$ from part (a).
3. [14 pts] Without explicitly calculating the derivatives, show that the function $u(x, y)=$ $\ln \left(x^{2}+y^{2}\right)$ is harmonic, i.e., it satisfies the Laplace equation $u_{x x}+u_{y y}=0$, for all $(x, y) \neq$ $(0,0)$.
4. (a) $[8 \mathrm{pts}]$ Show that if a is a non-zero complex number, and one value of a^{i} is real, then every value of a^{i} is real.
(b) [5 pts] For which complex numbers $a \neq 0$ are the values of a^{i} real?
5. (a) [10 pts] Prove that if a function $f(z)$ is analytic on a simply connected domain D, then f has an antiderivative $F(z)$ on D.
(b)[6 pts] Give an example showing that part (a) does not always hold if the domain D is not assumed to be simply connected.
6. [14 pts] Show that the function

$$
f(z)=e^{-2 x y} \cos \left(x^{2}-y^{2}\right)+i e^{-2 x y} \sin \left(x^{2}-y^{2}\right)
$$

where $z=x+i y$, is entire.
7. [16 pts] Given $R>1$, let S be the region defined by $|z| \leq R, \operatorname{Re}(z) \geq 0$ and $\operatorname{Im}(z) \geq 1$. Let C be the boundary of S. By evaluating the contour integral

$$
\int_{C} \frac{1}{z^{2}} d z
$$

and letting R approach infinity, find

$$
\int_{0}^{\infty} \frac{x^{2}-1}{\left(x^{2}+1\right)^{2}} d x
$$

