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1. The gamma function

Initially, we define the gamma function by

Γ(z) =

∫ ∞
0

xz−1e−x dx (Re(z) > 0). (1)

If z is real, the improper integral converges at the upper end because e−x goes to zero much
faster than the growth of any power xz−1. This convergence is uniform on z ≤ b because if
z ≤ b, then xz−1 ≤ xb−1 for x > 1. It converges at the lower end for z > 0, uniformly on
z ≥ a, for any a > 0, because if z ≥ a then xz−1 ≤ xa−1 for x < 1.

For complex z, since |xz−1| = xRe(z)−1, it follows that the integral converges absolutely for
Re(z) > 0, and uniformly on a ≤ Re(z) ≤ b, for any 0 < a < b. In particular, if Re(z) > 0,
the integral converges uniformly on a neighborhood of z, so we can differentiate under the
integral sign to get

Γ′(z) =

∫ ∞
0

xz−1e−x ln(x) dx.

This proves that Γ(z) is analytic on Re(z) > 0.
Integrating by parts with u = xz and v = −e−x gives∫ ∞

0

xze−x dx = −xze−x
∣∣∞
0

+ z

∫ ∞
0

xz−1e−x dx (Re(z) > 0).

The first term on the right hand side vanishes, yielding the identity

Γ(z + 1) = zΓ(z). (2)

In particular, since Γ(1) =
∫∞
0
e−xdx = 1, it follows that

Γ(n+ 1) = n! (3)

for every integer n ≥ 0, so we can think of Γ(z + 1) as a kind of continuous version of the
factorial function. Another special value is

Γ(1/2) =

∫ ∞
0

e−x√
x
dx =

√
π, (4)

which can be derived from the classical integral∫ ∞
0

e−u
2

du =
√
π/2 (5)



by letting u =
√
x.

We can rewrite (2) as

Γ(z) =
Γ(z + 1)

z
, (6)

and use this to define an analytic continuation of Γ(z) to the domain D1 = {Re(z) >
−1} − {0}, then to D2 = {Re(z) > −2} − {0,−1}, and so on in succession, the extension
to each Dn = {Re(z) > −n} − {0,−1, . . . , 1 − n} being consistent with the previous one
because (2) already holds on Dn−1. This proves:

Proposition 1. The gamma function Γ(z), as defined by (1), has an analytic continuation
(necessarily unique) to the domain C − {0,−1,−2, . . .}, and satisfies (2) for all z in this
domain.

From here on, Γ(z) will stand for the gamma function analytically continued to this larger
domain.

2. The beta function

To understand more about the gamma function it will be helpful to introduce its cousin,
the beta function, defined by

B(r, s) =

∫ 1

0

xr−1(1− x)s−1dx (Re(r),Re(s) > 0). (7)

Like (1), this integral converges absolutely and uniformly on a neighborhood of any (r, s)
such that Re(r),Re(s) > 0 and defines a function analytic in each variable. By making the
change of variable y = 1− x in (7) it is easy to verify that

B(r, s) = B(s, r). (8)

The relationship between Γ(z) and B(r, s) comes about by making the change of variable
u = x+ y in

Γ(r)Γ(s) =

(∫ ∞
0

xr−1e−x dx

)(∫ ∞
0

ys−1e−y dy

)
=

∫ ∞
0

∫ ∞
0

xr−1ys−1e−(x+y) dx dy

to get

Γ(r)Γ(s) =

∫ ∞
0

e−u
(∫ u

0

xr−1(u− x)s−1 dx

)
du. (9)

Letting x = uy in the inner integral, we see that∫ u

0

xr−1(u− x)s−1 dx = ur+s−1
∫ 1

0

yr−1(1− y)s−1 dy = ur+s−1B(r, s).

The right hand side of (9) is therefore equal to

B(r, s)

∫ ∞
0

ur+s−1e−u du = B(r, s)Γ(r + s),



yielding the identity
Γ(r)Γ(s) = B(r, s)Γ(r + s). (10)

We will see shortly that Γ(z) has simple poles at z = 0,−1,−2, . . ., and no zeroes.
Temporarily taking this for granted, it is possible to continue B(r, s) analytically to all
r, s 6∈ {0,−1,−2, . . .} by rewriting (10) as

B(r, s) =
Γ(r)Γ(s)

Γ(r + s)
. (11)

In these notes, however, we will only need to make use of the beta function on the domain
where it is defined by (7).

We now make a change of variable

x =
u

u+ 1
, 1− x =

1

u+ 1
, dx =

du

(u+ 1)2

in (7), obtaining an alternative formula

B(r, s) =

∫ ∞
0

ur−1

(u+ 1)r+s
du (Re(r),Re(s) > 0). (12)

One advantage of this formula is that for r + s = 1, we can evaluate it using the residue
theorem. To do this we consider the contour integral∫

C

(−z)r−1

z + 1
dz, (13)

where we use the principal branch (−z)r−1 = e(r−1) Log(−z) and the contour shown here.

Ε

R

�

Since Log(z) has a branch cut on the negative real axis, (−z)r−1 has a branch cut
on positive real axis. Along the upper side of the cut, we have Arg(−z) = −π and
(−z)r−1 = e−iπ(r−1)xr−1. Along the lower side, we have Arg(−z) = π and (−z)r−1eiπ(r−1).



As R→∞ and ε→ 0, the contribution to our contour integral from the legs on each side of
the real axis is therefore

(e−iπ(r−1) − eiπ(r−1))
∫ ∞
0

xr−1

x+ 1
dx = −2i sin(π(r − 1))B(r, 1− r).

The integral on the big circle |z| = R goes to zero as R → ∞, because R |zr−1/(z + 1)| ∼
RRρ−1/R = Rρ−1, where ρ = Re(r) = 1 − Re(s) < 1. Similarly, the integral on the small
circle |z| = ε goes to zero as ε → 0, because ε |zr−1/(z + 1)| ∼ ε ερ−1 = ερ there, and ρ > 0.
Hence ∫

C

(−z)r−1

z + 1
dz = −2i sin(π(r − 1))B(r, 1− r).

Since the function (−z)r−1/(z + 1) has a pole at z = −1 with residue 1r−1 = 1, the residue
theorem gives

−2i sin(π(r − 1))B(r, 1− r) = 2πi,

or
sin(π(1− r))

π
B(r, 1− r) = 1.

Using (11) with Γ(1) = 1 and the identity sin(π − x) = sin(x), this becomes

Γ(z)Γ(1− z)
sin πz

π
= 1 (14)

In deriving (14), we assumed that 0 < Re(z) < 1. However, since this is an identity between
analytic functions, it follows that it holds throughout their domains of definition, that is, for
every complex number z which is not an integer.

One useful consequence of (14) is the following.

Proposition 2. The gamma function Γ(z) has no zeroes, and has a simple pole of order
(−1)n/n! at z = −n, for every integer n ≥ 0.

To prove the proposition, note that (14) implies that Γ(z) has no zeroes at non-integer
values of z. Since Γ(n) = (n − 1)! for positive integers n, it has no zeroes in its domain.
For integers n ≥ 0, the function sin(πz)/π has a zero at z = −n with first derivative
cos(−πn) = (−1)n. Using Γ(1 − (−n)) = n!, it follows from (14) that Γ(z) has simple pole
at z = −n with residue (−1)n/n!. �

As another nice application, we can derive the value Γ(1/2) =
√
π in (4) in a new way,

and therefore also deduce (5), by setting z = 1/2 in (14).

3. The product formula

By iterating (6), we get

Γ(z) =
1

z

1

z + 1
· · · 1

z + n− 1
Γ(z + n). (15)



If Γ(z + n) were to approach a limit as n→∞, this would give an infinite product formula
for Γ(z). Of course, limn→∞ Γ(z + n) does not exist, so the corresponding product doesn’t
converge, but we can try to improve it. For instance, multiplying and dividing by (n− 1)! =
Γ(n), we can rewrite (15) as

Γ(z) =
1

z

(
n−1∏
k=1

1

1 + z/k

)
Γ(z + n)

Γ(n)
.

As it turns out, limn→∞ Γ(z + n)/Γ(n) does not exist either, so this still does not lead to
a convergent infinite product. However, we can fix this with the aid of the following limit
formula.

Proposition 3. For all z in the domain of the gamma function,

lim
n→∞

n−zΓ(z + n)

Γ(n)
= 1. (16)

To prove the proposition, we first observe that (2) implies

n−zΓ(z + n)

Γ(n)
=

(
z − 1 + n

n

)
n1−zΓ(z − 1 + n)

Γ(n)
,

and therefore (16) holds for z if and only if it holds for z− 1, since the factor in parentheses
has limit equal to 1. Using this, we can reduce to the case Re(z) < 0, or equivalently to
proving that

lim
n→∞

nzΓ(n− z)

Γ(n)
= 1 (17)

for Re(z) > 0. Now, using (10) and (12), since Γ(z) has no zeroes, we have

lim
n→∞

nzΓ(n− z)

Γ(n)
=

1

Γ(z)
lim
n→∞

nzB(z, n− z)

=
1

Γ(z)
lim
n→∞

nz
∫ ∞
0

xz−1

(1 + x)n
dx

=
1

Γ(z)
lim
n→∞

∫ ∞
0

uz−1

(1 + u/n)n
du,

where we got the last integral by substituting u = nx. Recalling that

lim
n→∞

(1 + u/n)−n = e−u,

we see that the last integral becomes Γ(z), giving (17), provided it is permissible to take the
limit inside the integral. This can be justified using the fact that the improper integral is
absolutely convergent for Re(z) > 0, and that (1 + u/n)−n = e−n ln(1+u/n) converges to e−u

monotonically, because −n ln(1 + u/n) is a decreasing function of n. �



Recall that the limit

γ = lim
n→∞

(
(1 +

1

2
+ · · ·+ 1

n− 1
)− ln(n)

)
exists; its value γ ≈ 0.577216 is known as Euler’s constant.

Together with Proposition 3, this suggests that we adjust (15) by writing it as follows:

Γ(z) = e

(
ln(n)−(1+ 1

2
+···+ 1

n−1
)
)
z 1

z

(
n−1∏
k=1

ez/k

1 + z/k

)
n−zΓ(z + n)

Γ(n)
. (18)

Taking the limit as n→∞ in (18) now yields the following result.

Proposition 4. The gamma function has a convergent infinite product representation

Γ(z) = e−γz
1

z

∞∏
k=1

ez/k

1 + z/k
, (19)

where γ is Euler’s constant.

Note that (19) makes sense for all z in the domain of Γ(z), and that each factor in the
denominator contributes a pole at one of the values z = 0,−1,−2, . . ..

As an interesting application, we can combine (19) with (14) to obtain infinite product
representations

π

sinπz
= Γ(z)Γ(1− z) = −zΓ(z)Γ(−z) =

1

z

∞∏
k=1

1

1− z2/k2

sin πz = πz
∞∏
k=1

(1− z2/k2).

Taking the logarithm and differentiating gives a nice infinite series representation

π cot πz =
1

z
+
∞∑
k=1

2z

z2 − k2
=

1

z
+
∞∑
k=1

(
1

z − k
+

1

z + k

)
.

Here we see that even though the series

∞∑
k=−∞

1

z − k

is divergent when summed separately at each end, it converges beautifully to π cotπz when
the terms are grouped in a sufficiently symmetrical manner.

4. The Gauss-Legendre duplication formula



Although log Γ(z) is multiple-valued, its derivative (log Γ(z))′ = Γ′(z)/Γ(z) makes sense
as a single-valued function, analytic on the whole domain of Γ(z) since Γ(z) has no zeroes.
From the product formula (19), we obtain

(log Γ(z))′ = −γ − 1

z
+
∞∑
k=1

(
1

k
− 1

z + k

)
, (20)

(log Γ(z))′′ =
∞∑
k=0

1

(z + k)2
. (21)

Evaluating (20) when z is a positive integer n gives a nice expression

Γ′(n)

(n− 1)!
= −γ +

n−1∑
k=1

1

k
,

but here we will instead concern ourselves chiefly with (21).
Consider the product

Gn(z) =
n−1∏
j=0

Γ(
z + j

n
) = Γ(

z

n
)Γ(

z + 1

n
) · · ·Γ(

z + n− 1

n
).

Using (21), we find

(logGn(z))′′ =
n−1∑
j=0

1

n2

∞∑
k=0

1

((z + j)/n+ k)2
=

n−1∑
j=0

∞∑
k=0

1

(z + j + kn)2
.

Since every non-negative integer m has a unique expression as m = kn+ j for integers k ≥ 0
and 0 ≤ j ≤ n− 1, the last sum is equal to the right hand side of (21). Thus we have

(logGn(z))′′ = (log Γn(z))′′,

or
(logGn(z)/Γ(z))′′ = 0.

This implies that Gn(z)/Γ(z) is the exponential of a linear function, that is,

Gn(z) = eA+BzΓ(z) = CM z Γ(z)

for constants C and M (depending on n). Since Gn(z) and Γ(z) are real and positive for
real z > 0, the constants C and M are real and postive. We shall now evaluate them.

Using (2), we get

Gn(z + n) =
z

n

z + 1

n
· · · z + n− 1

n
G(z).

Combining this with
Γ(z + n) = z(z + 1) · · · (z + n− 1)Γ(z),



we discover that
nz+nGn(z + n)

Γ(z + n)
=
nzGn(z)

Γ(z)
.

In other words, the expression nzGn(z)/Γ(z) = CM znz is a periodic function of z with
period n. Since C and M are real, this is only possible if M = 1/n. We now have

Gn(z) = C n−z Γ(z).

At z = 0, Γ(z) has a pole with residue 1, and the factor Γ(z/n) in Gn(z) therefore has a pole
with residue n. Cancelling these factors and setting z = 0 gives

C = nΓ(
1

n
) · · ·Γ(

n− 1

n
) = n

(
n−1∏
j=1

Γ(
j

n
)Γ(

n− j
n

)

)1/2

= n
π(n−1)/2(∏n−1

j=1 sin(jπ/n)
)1/2 ,

by (14). Now we invoke the trigonometric identity

sin(nθ) = 2n−1
n−1∏
j=0

sin(θ + jπ/n), (22)

a generalization of the more familiar identity

sin(2θ) = 2 sin(θ) cos(θ) = 2 sin(θ) sin(θ + π/2)

for n = 2. Accepting (22) for the moment, we have

sin(nθ)

sin θ
= 2n−1

n−1∏
j=1

sin(θ + jπ/n).

Letting θ approach zero then gives
∏n−1

j=1 sin(jπ/n) = n/2n−1, whence C = n1/2(2π)(n−1)/2.
Putting all this together gives Gauss’s identity

Γ(
z

n
)Γ(

z + 1

n
) · · ·Γ(

z + n− 1

n
) = (2π)(n−1)/2n

1
2
−zΓ(z). (23)

The special case n = 2, known as Legendre’s duplication formula, reads

Γ(
z

2
)Γ(

z + 1

2
) = 21−z√π Γ(z). (24)

Note that setting z = 1 in this formula gives Γ(1/2) =
√
π once again.

Now we briefly turn our attention to the derivation of (22). Setting ω = eiπ/n and z = eiθ,
(22) reads

zn − z−n = i1−n
n−1∏
j=0

(z ωj − z−1ω−j).



This can be derived algebraically by substituting z2 for z in the factorization

zn − 1 =
n−1∏
j=0

(z − ω2n), (25)

which express the fact that the powers of ω2 are the n-th roots of unity. One also needs
to know that ω0ω1 · · ·ωn−1 = in−1. Setting z = 0 in (25) gives the square of this equation,
showing that ω0ω1 · · ·ωn−1 = ±in−1. To establish the sign we need only note that both sides
of (22) are positive for 0 < θ < π/n.

5. The Riemann zeta function

The Riemann zeta function is initially defined by

ζ(s) =
∞∑
n=1

1

ns
(Re(s) > 1).

It is traditional to use the variable s rather than z in this context. If s is real, the sum is
convergent for s > 1 and uniformly convergent on s ≥ a for any a > 1, as one can see from
the integral test, for example. If s is complex, then |n−s| = n−Re(s), so the sum is absolutely
convergent for Re(s) > 1, uniformly on Re(s) ≥ a for any a > 1. In particular, it can be
differentiated term by term, showing that ζ(s) is analytic on Re(s) > 1.

The zeta function is the cornerstone of applications of analytic methods to number theory.
These applications derive from the infinite product representation

ζ(s) =
∏

p prime

1

1− p−s
(Re(s) > 1). (26)

To understand why (26) holds, consider the finite product over primes less than N , and
expand each factor in a geometric series, valid because |p−s| < 1 for Re(s) > 1:∏

p prime
p<N

1

1− p−s
=
∏

p prime
p<N

(1 + p−s + p−2s + · · · ).

Multiplying this out gives the sum of n−s = p−k1s1 · · · p−kmsm over all positive integers n which
have a factorization n = pk11 · · · pkmm using only primes pi < N . Letting N go to infinity
enlarges the sum to ζ(s) =

∑
n n
−s.

Among the things that can be proven using (26) is the Prime Number Theorem, which
asserts that the number of primes p < N is asymptotic to N/ ln(N). More precise versions of
this estimate would follow from the Riemann hypothesis, perhaps the most famous unsolved
conjecture in all of mathematics. We will discuss the Riemann hypothesis briefly at the end
of these notes.



The proof of the Prime Number Theorem is too involved to go into here. Instead we will
limit ourselves to more modest goals, namely (i) to constuct an analytic continuation of ζ(s)
to the entire complex plane except for s = 1, where it has a simple pole, and (ii) to derive
the famous functional equation

π−s/2Γ(
s

2
)ζ(s) = π−(1−s)/2Γ(

1− s
2

)ζ(1− s) (27)

which this analytic continuation satisfies. Our method will be the same as in the classic
textbook Complex Analysis, by Ahlfors.

Our first observation is that the change of variables u = nx yields the identity∫ ∞
0

xs−1e−nx dx = n−s
∫ ∞
0

us−1e−u du = n−sΓ(s)

for Re(s) > 0. Summing over all n and using the geometric series

∞∑
n=1

e−nx =
e−x

1− e−x
=

1

ex − 1
,

we get ∫ ∞
0

xs−1

ex − 1
dx = ζ(s)Γ(s) (Re(s) > 1).

One can justify taking the summation inside this improper integral by truncating the geo-
metric series to finitely many terms and verifying that the integral of the remainder term
goes to zero as n→∞, for Re(s) > 1.

To understand the last integral better, we relate it to a family of contour integrals∫
CN

(−z)s−1

ez − 1
dz (28)

over contours CN for each integer N ≥ 0, as shown here.

�

�

�

�

�

�

�

�

�

�

�
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R = H 2 N + 1L Π

R- R



In (28) we use the principal branch (−z)s−1 = e(s−1) Log(−z). As in (13), this branch has
values (−z)s−1 = e−iπ(s−1)xs−1 and (−z)s−1 = eiπ(s−1)xs−1, respectively, along the upper and
lower sides of the branch cut on the positive real axis.

For N > 0 we take R = (2N+1)π, so that the top and bottom sides of the square portion
of the contour pass half-way between the poles at ±2πNi and ±2π(N + 1)i.

For N = 0, the situation is a little different. The contour C0 encloses only the singularity
at the origin (which is a branch point, not a pole), and we can evaluate the integral by letting
R go to zero. The integral on the square portion of C0, which is bounded by a constant
times R · RRe(s)−1 = RRe(s), goes to zero as R → 0 if Re(s) > 0. This leaves the integrals
along the branch cut, giving∫

C0

(−z)s−1

ez − 1
dz = (eiπ(s−1) − e−iπ(s−1))

∫ ∞
0

xs−1

ex − 1
dx = 2i sin(π(s− 1))ζ(s)Γ(s)

for Re(s) > 1. Using (14), we can also write this as

ζ(s) =
i

2π
Γ(1− s)

∫
C0

(−z)s−1

ez − 1
dz. (29)

Now, instead of letting R approach zero, we can keep it fixed, taking R = π, for instance. On
any interval a ≤ Re(s) ≤ b, the contour integral in (29) converges uniformly at the infinite
ends. This justifies differentiating (29) inside the integral sign, showing that the right hand
side defines an analytic function for all s except positive integers, where Γ(1− s) has poles.
However, we already know that ζ(s) is analytic for real Re(s) > 1, so (29) defines an analytic
continuation of ζ(s) to all s 6= 1.

From here on, ζ(s) will denote this analytic continuation.
As one application of (29), observe that if s is an integer, then (−z)s−1 is actually analytic

across what would otherwise be the branch cut on the positive real axis. In this case we can
evaluate the integral in (29) using the residue theorem, obtaining

ζ(−n) = (−1)n n! Resz=0

(
z−n−1

ez − 1

)
(30)

for integers n ≥ 0. The function 1/(ez − 1) has a simple pole at z = 0 and therefore a
Laurent series expansion of the form

1

ez − 1
= z−1

∞∑
n=0

Bn

n!
zn.

The coefficients Bn are called Bernoulli numbers. Here are the first several values:

B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42.

Formula (30) can be expressed in terms of the Bernoulli numbers as

ζ(−n) = (−1)nBn+1.



One can verify with a little algebra that 1/2 + 1/(ez − 1) is an odd function, which shows
that Bn = 0 for n odd and greater than 1. Hence ζ(s) = 0 for s = −2,−4,−6, . . .. These
zeroes are called the trivial zeroes of the zeta function.

For s = 1, the residue theorem gives the value 2πiB0 = 2πi for the contour integral in
(29). Since Γ(1 − s) has a simple pole with residue −1 at s = 1, it follows that ζ(s) has a
simple pole with residue 1 at s = 1.

Our remaining goal is to derive the functional equation (27). For this we observe that,
by the residue theorem, the difference between the integrals (28) over contours CN and and
C0 arises from the poles at ±2πni for n = 1, . . . , N . More precisely, we have∫

CN

(−z)s−1

ez − 1
dz −

∫
C0

(−z)s−1

ez − 1
dz

= 2πi
N∑
n=1

(
Resz=2πni

(
(−z)s−1

ez − 1

)
+ Resz=−2πni

(
(−z)s−1

ez − 1

))
.

The function 1/(ez − 1) has residue 1 at z = 0 and therefore, since its periodic, also at
z = e±2πni for all n. This implies

Resz=2πni

(
(−z)s−1

ez − 1

)
= eiπ(1−s)/2(2πn)s−1, Resz=−2πni

(
(−z)s−1

ez − 1

)
= eiπ(s−1)/2(2πn)s−1,

giving ∫
CN

(−z)s−1

ez − 1
dz −

∫
C0

(−z)s−1

ez − 1
dz = i (2π)s 2 cos(

π

2
(s− 1))

N∑
n=1

ns−1. (31)

We now examine what happens to the integrals along each segment of the contour CN
as N and R = (2N + 1)π go to infinity, assuming that Re(s) = σ < 0. Along the top edge
of the square, ez = ex+(2N+1)πi = −ex, and |z| ≥ R, giving∣∣∣∣(−z)s−1

ez − 1

∣∣∣∣ =
|z|σ−1

ex + 1
< |z|σ−1 ≤ Rσ−1,

since σ − 1 < 0. The integral on this edge is therefore bounded by 2R · Rσ−1 = 2Rσ, which
goes to zero as R → ∞. The same reasoning applies to the integral on the bottom edge of
the square.

Along the left side of the square, ez = e−Reiy has |ez| = e−R small compared to 1, so
|zs−1/(ez − 1)| is again bounded by a constant times Rσ−1. Along the right side, |ez| = eR

is large compared to 1, and |zs−1/(ez − 1)| is bounded by a constant times e−RRσ−1. Hence
the integrals on these edges also go to zero.

Finally, the integrals along the branch cut have the form

e±iπ(s−1)
∫ ∞
R

xs−1

ex − 1
dx,



so they too go to zero as R→∞. Our conclusion is that

lim
N→∞

∫
CN

(−z)s−1

ez − 1
dz = 0

if Re(s) < 0. Taking the limit as N →∞ in (31), and using (29) for the value of the integral
on C0, we obtain

2πiζ(s)

Γ(1− s)
= i (2π)s 2 cos(

π

2
(s− 1))ζ(1− s),

or
ζ(s) = (2π)s−1 2 cos(

π

2
(s− 1))Γ(1− s)ζ(1− s). (32)

Although we derived this identity assuming that Re(s) < 0, it follows that it holds for all
s 6= 1, since both sides are analytic. Note that on the right hand side, the poles of Γ(1− s)
at positive even integers s and the pole of ζ(1 − s) at s = 0 are cancelled by zeroes of
cos(π

2
(s − 1)), while the poles of Γ(1 − s) at odd integers s > 1 are cancelled by the the

trivial zeroes of ζ(1− s). Alternatively, we can regard (32) as providing another way to see
that ζ(s) = 0 for s = −2,−4,−6, . . ..

Our last step is to use Legendre’s duplication formula (24) to obtain

Γ(1− s) = 2−sπ−1/2Γ(
1− s

2
)Γ(1− s

2
)

and (14) to obtain

cos(
π

2
(s− 1)) = sin(π

s

2
) =

π

Γ(s/2)Γ(1− s/2)
.

Substituting these into (32), we get

ζ(s) = πs−1/2
Γ((1− s)/2)

Γ(s/2)
ζ(1− s),

which is equivalent to the functional equation (27).
We conclude with a brief discussion of the Riemann hypothesis. The product represen-

tation (26) implies that ζ(s) has no zeros in the half plane Re(s) > 1, and the functional
equation (27) then implies that its only zeroes in the half plane Re(s) < 0 are the trivial
zeroes at s = −2,−4,−6, . . .. Thus all non-trivial zeroes of ζ(s) lie in the critical strip
0 ≤ Re(s) ≤ 1. The functional equation further implies that the locations of the zeroes in
the critical strip are symmetric about its midline Re(s) = 1/2. The Riemann hypothesis
asserts, conjecturally, that all zeroes of ζ(s) in the critical strip are actually on the line
Re(s) = 1/2.

It turns out (for reasons involving more advanced techniques of complex analysis) that
the product representation (26) implies that the distribution of prime numbers is strongly
influenced by the location of the nontrivial zeroes of ζ(s). To be specific, the Prime Number
Theorem can be formulated a little more precisely as

N −
∑
p prime
p<N

ln(p) = o(N), (33)



where the notation f(N) = o(g(N)) means limN→∞ f(N)/g(N) = 0. In other words, the
difference between N and the sum of the logarithms of all primes less than N is small
compared to N , for large N . It can be shown that if all zeroes of ζ(s) lie in the region
Re(s) ≤ α (where 1/2 ≤ α ≤ 1), then we can replace (33) with the stronger estimate

N −
∑
p prime
p<N

ln(p) = o(Nα+ε),

for any ε > 0. The Riemann hypothesis then implies that this estimate holds with α = 1/2,
that is, the difference between N and the sum of the logarithms of all primes less than N is
not only small compared to N , but grows essentially no faster than

√
N .


