
Notes on partitions and their generating functions

1. Partitions of n.

In these notes we are concerned with partitions of a number n, as opposed to partitions of a set.
A partition of n is a combination (unordered, with repetitions allowed) of positive integers, called
the parts, that add up to n. In other words, a partition is a multiset of positive integers, and it is
a partition of n if the sum of the integers in the multiset is n. It is conventional to write the parts
of a partition in descending order, for example

(7, 5, 2, 2)

is a partition of 16 into 4 parts. We write |λ| = n to indicate that λ is a partition of n. Some
authors also use the notation λ ` n for this.

We define the following quantities enumerating partitions:

p(n, k) = number of partitions of n with k parts

p(n) = total number of partitions of n

q(n, k) = number of partitions of n with k distinct parts

q(n) = total number of partitions of n with distinct parts
For example, the partitions of 5 are (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), and (1, 1, 1, 1, 1).
Thus p(5) = 7, p(5, 1) = 1, p(5, 2) = 2, p(5, 3) = 2, p(5, 4) = 1, and p(5, 5) = 1, while q(5) = 3,
q(5, 1) = 1, and q(5, 2) = 2.

2. Ferrers diagram and conjugate partition

The Ferrers diagram, also called Young diagram, of a partition λ ` n is a rectangular array of n
boxes, or cells, with one row of length j for each part j of λ.

For example, the diagram of (7, 5, 2, 2) is

.

The conjugate of a partition λ ` n is the partition of n whose diagram you get by reflecting the
diagram of λ about the diagonal so that rows become columns and columns become rows. We use
the notation λ∗ for the conjugate of λ. In our example above, with λ = (7, 5, 2, 2), the diagram of
λ∗ is
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and so we see that λ∗ = (7, 5, 2, 2)∗ = (4, 4, 2, 2, 2, 1, 1).
Some obvious but useful facts about λ∗ are, first, (λ∗)∗ = λ, that is, the conjugate of the conjugate

is the original partition and, second, the number of parts of λ is equal to the largest part of λ∗. As
a consequence, we see that p(n, k), the number of partitions of n with k parts, is also the number
of partitions of n with largest part λ1 = k.

The conjugate λ∗ can be computed directly without drawing the Ferrers diagrams. Let λ =
(λ1, λ2, . . . , λl) and denote its conjugate by λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
m). Notice that l = λ∗1 and m = λ1.

Now λ∗i is the length of column i in the diagram of λ, and there is one cell in this column for every
row of length at least i. Therefore λ∗i is equal to the number of parts ≥ i in λ, or equivalently the
largest j such that λj ≥ i. For example, we compute

(6, 6, 5, 3, 3, 3, 2, 1, 1)∗ = (9, 7, 6, 3, 3, 2)

because λ9 is the last 1, λ7 is the last 2, λ6 is the last 3, λ3 is the last part ≥ 4 and also the last 5,
and λ2 is the last 6 in λ.

A partition λ is called self-conjugate if λ∗ = λ. This means its Ferrers diagram is symmetric, as
in for example λ = (5, 5, 3, 2, 2):

.

We define

k(n) = number of self-conjugate partitions of n.

This number turns up fairly often in partition theory. One interesting fact about k(n) is given by
the following theorem:

Theorem: k(n) is also the number of partitions of n into distinct, odd parts.

Proof: We’ll give a bijection φ from {self-conjugate λ ` n} to {λ ` n with distinct odd parts}.
Given a self-conjugate λ, define φ(λ) to be the partition whose parts are the “hooks” in the

diagram of λ, as illustrated below:

= + + ,

so that φ((5, 5, 3, 2, 2)) = (9, 7, 1)
Each hook has odd size because it is symmetric about the middle, and each hook is strictly larger

than the next one, which nests inside it. Therefore φ(λ) has distinct odd parts. On the other hand,
given distinct odd numbers, we can form corresponding symmetric hooks and nest them together
into a diagram. This operation clearly defines φ−1 and thus shows we have a bijection.



3. Generating functions for partitions

We begin with the generating function P (x) =
∑
p(n)xn which counts all partitions of all

numbers n, with weight xn for a partition of n.
To choose an arbitrary partition λ of unrestricted n, we can decide independently for each positive

integer i how many times to include i as a part of λ.
Each use of i as a part contributes i to the total size n. The generating function for the choice

of any number of repetitions of the part i is therefore 1 + xi + x2i + · · · = 1/(1− xi). Multiplying
for all i we get

P (x) =
∑

n

p(n)xn =
∞∏
i=1

1
1− xi

=
1

(1− x)(1− x2)(1− x3) · · ·
.

This infinite product need not disturb us. If we want a particular coefficient p(n) we need only
multiply out those factors involving x to a power n or less, and there finitely many of these. Thus
the infinite product makes sense since only a finite number of the factors contribute to any given
term.

As an exercise to convince yourself this works, you could multiply out the product
1

1− x
1

1− x2

1
1− x3

1
1− x4

1
1− x5

· · · ,

keeping track only of terms up to degree x5. Then compare the coefficients with the values of p(0)
through p(5) which you compute by actually listing all partitions of n for n = 0 to 5.

The strategy we used to write down P (x) lends itself to endless variations. Here are some
examples.

(1) To count partitions whose parts are ≤ k, use only the factors for i = 1, 2, . . . , k to get

P≤k(x) =
∑

p≤k(n)xn =
k∏

i=1

1
1− xi

=
1

(1− x)(1− x2) · · · (1− xk)
.

Taking the conjugate partition gives a bijection between partitions of n with parts ≤ k and parti-
tions of n with at most k parts. Therefore P≤k(x) also counts partitions with at most k parts.

(2) To count partitions with exactly k parts, we can again take conjugates and count partitions
with largest part equal to k. This is almost the same problem as in (1), except that we should
replace the factor 1/(1− xk) with xk + x2k + · · · = xk/(1− xk) to account for the requirement that
we take at least one part equal to k. This gives the generating function

Pk(x) =
∑

n

p(n, k)xk =
xk

(1− x)(1− x2) · · · (1− xk)
.

(3) To determine the number o(n) of partitions of n with only odd parts, we use only the factors
for odd values of i to get the generating function

O(x) =
∑

n

o(n)xn =
∏
i odd

1
1− xi

=
1

(1− x)(1− x3)(1− x5) · · ·
.

(4) To count partitions with distinct parts, we must choose for each i whether to use the part i
once, or not at all, that is, our partition is a set rather than a multiset. Thus the factor 1/(1− xi)
in P (x) must be replaced by (1 + xi), giving the generating function

Q(x) =
∑

n

q(n)xn =
∞∏
i=1

(1 + xi) = (1 + x)(1 + x2)(1 + x3) · · · .



(5) To count partitions with distinct, odd parts, we combine what we did in examples (3) and
(4) to get the generating function

K(x) =
∑

n

k(n)xn =
∏
i odd

(1 + xi) = (1 + x)(1 + x3)(1 + x5) · · · .

According to the theorem in the previous section, this is also the generating function counting
self-conjugate partitions:

K(x) =
∑

n

k(n)xn.

(6) Another way to get a generating function for p(n, k) is to use a two-variable generating
function for all partitions, in which we count each partition λ = (λ1, λ2, . . . , λk) ` n with weight
ykxn, where n is the size and k is the number of parts. The monomial giving the weight contribution
for a single part of i now becomes yxi instead of just xi and accordingly we get the generating
function

P (x, y) =
∑
n,k

p(n, k)ykxn =
∞∏
i=1

1
1− yxi

=
1

(1− yx)(1− yx2)(1− yx3) · · ·
.

Setting y = 1 gets us back to our original generating function P (x).

4. Partition identities

In the last section we counted p(n, k) in two essentially different ways. One was direct, using the
2-variable generating fucntion

P (x, y) =
∑
n,k

p(n, k)ykxn =
∞∏
i=1

1
1− yxi

.

The other was indirect, using conjugation to get

Pk(x) =
∑

n

p(n, k)xn =
xk

(1− x) · · · (1− xk)
.

We can make this last equation into a 2-variable generating function by summing with a factor yk

for all k:

P (x, y) =
∑
n,k

p(n, k)ykxn =
∑

k

Pk(x)yk =
∑

k

ykxk

(1− x) · · · (1− xk)
.

As a result we arrive at a partition identity
∞∏
i=1

1
1− yxi

=
∞∑

k=0

ykxk

(1− x) · · · (1− xk)

expanding an infinite product as an infinite sum of finite products. Though we derived it combi-
natorially, this is a purely algebraic identity. One theme in combinatorics is to find combinatorial
explanations for algebraic identities like this. Often such identities are first discovered in some
entirely different context, and are understood combinatorially only later.

We can obtain further identities by more subtle combinatorial analysis of Ferrers diagrams. As
an example, we will work out an analog for partitions with distinct parts of what we just did above.
Note that if λ has k distinct parts, then its diagram must contain the diagram of the “staircase”
partition (k− 1, k− 2, . . . , 1). Furthermore, it is not hard to see that the rows of the difference are



just the parts of an ordinary partition with k parts, and this latter partition can be arbitrary. The
figure below illustrates this with λ = (7, 6, 3, 2).

∗ ∗ ∗

∗ ∗

∗
←→

The diagram of λ is shown on the left, with the staircase diagram contained in it marked by ∗’s.
The corresponding difference partition is shown on the right. To choose a partition with k distinct
parts, we can choose an ordinary partition with k parts and then boost it with a staircase. This
has the effect of adding

(
k
2

)
to its total size, or multiplying the generating function by x(k

2). We
obtain the generating function

Qk(x) =
∑

n

q(n, k)xn =
xk+(k

2)

(1− x) · · · (1− xk)
.

Now, proceeding just as above but for partitions with distinct parts, we arrive at the partition
identity for Q(x, y) =

∑
n,k q(n, k)ykxn:

∞∏
i=1

(1 + yxi) =
∞∑

k=0

ykxk+(k
2)

(1− x) · · · (1− xk)

The connection between partition combinatorics and algebraic identities can also be applied in
reverse, to get surprising combinatorial facts. As an example, consider the generating functions
found in the previous section for partitions with distinct parts,

Q(x) = (1 + x)(1 + x2)(1 + x3) · · · ,
and for partitions with odd parts,

O(x) =
1

(1− x)(1− x3)(1− x5) · · ·
.

In an effort to simplify O(x), let us write it with a product of (1− xi) for all i in the denominator,
cancelled by the product for even i in the numerator:

O(x) =
(1− x2)(1− x4)(1− x6) · · ·
(1− x)(1− x2)(1− x3) · · ·

=
∏

i(1− x2i)∏
i(1− xi)

.

But (1− x2i)/(1− xi) = 1 + xi, giving

O(x) =
∏

i

(1 + xi) = Q(x).

Thus we have proved the following combinatorial identity by simple algebraic manipulation with
the generating function.

Theorem: For each n, the number o(n) of partitions of n into odd parts is equal to the number
q(n) of partitions of n into distinct parts.

An interesting exercise is to find a bijective proof of the above theorem.



5. The Durfee square

We now consider another way of getting partition identities from analysis of the Ferrers diagrams.
Define the Durfee square of λ to be the largest square array that fits in the upper left corner of the
Ferrers diagram. Here are examples, with the Durfee square marked with ∗’s:

∗ a a a

l

l

∗ ∗ a

∗ ∗ a

l l

l

∗ ∗ ∗ a a a

∗ ∗ ∗ a a

∗ ∗ ∗

l

l

.

If the Durfee square is c by c, we call c the Durfee number of λ. The rest of the diagram of λ
consists of two parts, which we call the arm (marked above with a’s) and the leg (marked with l’s).
The arm and the leg are diagrams themselves. Obviously the arm can be any partition with at
most c parts, and the leg any partition with parts at most c.

Suppose we wish to choose a partition (of unrestricted n) with Durfee number c. We can start
with the Durfee square and choose the arm and leg independently. The Durfee square contributes
c2 to the total size n. The generating function for the choice of an arm is

P≤c(x) =
1

(1− x)(1− x2) · · · (1− xc)
,

and the generating function for the choice of a leg is the same. Multiplying, we find the generating
function for partitions with Durfee number c to be

xc2P≤c(x)2 =
xc2

(1− x)2(1− x2)2 · · · (1− xc)2
.

Summing for all values of c gives P (x) by the addition principle, leading to the identity
∞∏
i=1

1
1− xi

=
∞∑

c=0

xc2

(1− x)2(1− x2)2 · · · (1− xc)2

= 1 +
x

(1− x)2
+

x4

(1− x)2(1− x2)2
+

x9

(1− x)2(1− x2)2(1− x3)2
+ · · · .

6. Euler’s identity

The following wonderful partition identity was discovered by Euler:
∞∏
i=1

(1− xi) = 1 +
∞∑

k=1

(−1)k(x(3k2−k)/2 + x(3k2+k)/2).

This looks a little forbidding but actually the right hand side is very simple. It describes a power
series in which most terms are zero and the others have coefficient±1; they occur for those exponents
xn where n is of the form (3k2±k)/2. Writing out some terms should make this clearer: the identity
reads

(1− x)(1− x2)(1− x3) · · · = 1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − · · · .



We shall interpret Euler’s identity combinatorially and prove it by means of a bijection. By the
methods of section 3 we see that

Q(x, y) =
∞∏
i=1

(1 + yxi)

is the generating function for partitions into distinct parts, counted with weight ykxn for a partition
λ of n with k parts. We’ll use the notation λ |= n to mean that λ is a partition of n into distinct
parts. Setting y = −1 in Q(x, y), each partition into distinct parts will count with weight xn if it
has an even number of parts and −xn if it has an odd number of parts. Thus the coefficient of xn in
Q(x,−1) is the difference |{λ |= n, even # of parts}|− |{λ |= n, odd # of parts}|. Now Q(x,−1) is
just the left-hand side of Euler’s identity, so to prove the identity we must show that the difference
|{λ |= n, even # of parts}| − |{λ |= n, odd # of parts}| is also counted by the right hand side.

In other words, we are to show that except when n = (3k2 ± k)/2, there are exactly as many
λ |= n with an even number of parts as λ |= n with an odd number of parts. When n = (3k2±k)/2
we want there to be one extra partition λ with an even number of parts if k is even, and one extra
with an odd number of parts if k is odd. In fact, we will see that matters can be arranged so that
the extra partition will have k parts. Once we identify the extra partitions, we will then throw
them out and find a bijection between all other partitions with an even number of distinct parts,
and all other partitions with an odd number of distinct parts.

The extra partitions are going to be the “wedge-shaped” partitions (2k − 1, 2k − 2, . . . , k) and
(2k, 2k − 1, . . . , k + 1), for every k. For k = 4 they look like this:

, .

You can easily verfify for yourself that the first wedge is a partition of (3k2 − k)/2 and the second
is a partition of (3k2 +k)/2. You can also verify that these wedges are precisely the partitions with
the properties (i) all the parts are consecutive, and (ii) the last part is either equal to the number
of parts, or one more than the number of parts.

To prove the theorem we now construct a bijection

{non-wedge λ |= n, even # of parts} ↔ {non-wedge λ |= n, odd # of parts}.

We’ll define the bijection by means of an involution S on all non-wedge partitions with distinct
parts. An involution is an operation such that S ◦ S is the identity, i.e., if you do it twice, you get
back what you started with. We will arrange for the involution to change the number of parts by
1, that is S(λ) will always have exactly one more or one less part than λ. In particular, S sends
partitions with an even number of parts to partitions with an odd number, and vice versa. Since
S is an involution, it is its own inverse, and thus establishes the required bijection.

To define S, we use two numbers determined by the diagram of λ |= n. We define i(λ) to be
the smallest part of λ. This is the length of the last row in the diagram. We define j(λ) to be the
number of consecutive parts starting with the largest part. This is the length of the diagonal of
cells leading down and to the left from the last cell in the first row of the diagram.



For example, if we take λ = (7, 6, 5, 3, 2) then i(λ) = 2 and j(λ) = 3 because the first 3 parts
7, 6, 5 are consecutive. The diagram looks like this:

j

j

j

i i

The operation S either transfers the “i” cells up to the “j” position or vice versa, depending
which one makes sense. There are two cases:

Case I. i ≤ j. In this case, remove the last row of λ and extend each of the first i rows by one
cell. For example

∗ ∗ ∗

→

∗

∗

∗

This makes sense provided the last row (to be removed) is not also among the first i rows (to be
extended). But that could only happen if j ≤ i, hence j = i, which would make λ a wedge of the
first type, and we excluded those. Notice that after applying S in case I, j for the new partition
S(λ) is i for the old partition λ. Also i for the new partition S(λ) is the length of the (possibly
extended) next to last row of λ, so is greater than i(λ).

Case II. i > j. In this case, remove 1 cell from each of the first j rows and add a new last row
of length j. For example,

∗

∗

∗
→

∗ ∗ ∗

This makes sense provided the new row of size j that we are trying to add is smaller than the row
we are putting it below. The old last row has length i, but after we peel off cells from the first j
rows, it might be reduced to i− 1, if there were only j rows to begin with. Since we are in the case
i > j the only bad possibility is that i = j + 1 and the j rows include the last row. But that would
mean our partition is a wedge of the second type, which we excluded. Notice that in case II, i for
the new partition S(λ) is j for the old one λ. Also, after removing 1 from each of the first j rows
they are still consecutive, so j for the partition S(λ) is at least j(λ).

Obviously, S changes the number of parts by 1 in either case. It remains to prove is that S is
an involution. In case I, we saw that j(S(λ)) = i(λ) and i(S(λ)) > i(λ). Therefore S(λ) belongs to
case II if λ belongs to case I. Similarly, in case II, we saw that i(S(λ)) = j(λ) and j(S(λ)) ≥ j(λ),



so S(λ) belongs to case I if λ belongs to case II. Since the operations in case I and case II undo each
other, we conclude that S(S(λ)) = λ in either case. This completes the proof of Euler’s identity.

7. MacMahon’s recurrence

Proving Euler’s identity is worth the work because it is not only beautiful but also useful.
MacMahon observed that it can be used to get an efficient recurrence for the partition numbers
p(n). The left hand side of Euler’s identity is 1/P (x), so we have the generating function identity

(1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − · · · )P (x) = 1.

Considering the coefficient of xn in this identity, we see that

p(n)− p(n− 1)− p(n− 2) + p(n− 5) + p(n− 7)− p(n− 12)− p(n− 15) + · · · = 0,

or
p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)− · · · .

This is of course not an infinite sum; for each n it just continues as long as the terms are p(j) for
j ≥ 0. The starting point is p(0) = 1.

How many terms are actually in the recurrence for p(n)? Since the terms are p(j) with j =
n − (3k2 ± k)/2, the last term corresponds to the largest k for which (3k2 − k)/2 ≤ n. This will
be approximately

√
2n/3, so the recurrence involves only about 2

√
2n/3 terms. Thus to compute

p(1000), say, we need to use only 50 previous values.


