Math 110 Assignment 6

(I) Exercises.

Axler Chapter 5: 4, 6 (hint: what is the matrix of T in the standard basis?), 7 (hint: find the nullspace of $T), 8,11,17,18,19,20,23,24$
(a) Show that the map $S: P_{3}(\mathbb{R}) \rightarrow \mathbb{R}^{4}$ defined by $S p(z)=\left(p(0), p(1), p^{\prime}(0), p^{\prime}(1)\right)$ is linear and injective. Hint: show that $p(a)=p^{\prime}(a)=0$ if and only if $(z-a)^{2}$ is a factor of $p(z)$.
(II) Problems. Due Friday, Mar. 9 by 3pm at the location your GSI has specified for turning in homework.

1. $(4 / 10)$ Axler Chapter 5, Exercise 21
2. (6/10) Suppose V is finite-dimensional and $P \in \mathcal{L}(V)$. Prove that the following are equivalent:
(a) $P^{2}=P$,
(b) P is diagonalizable and its eigenvalues belong to the set $\{0,1\}$,
(c) there exist subspaces $U, W \subseteq V$ such that $V=U \oplus W$ and $P=P_{U, W}$, i.e., P is the projection operator on the direct summand U.
