Math 110 Assignment 5

(I) Exercises.

Axler Chapter 3: 14, 15; Chapter 10: 1, 2, 4; Chapter 4: 1, 5; Chapter 5: 1, 2, 3, 5
(a) Show that the map $S: P_{3}(\mathbb{R}) \rightarrow \mathbb{R}^{4}$ defined by $S p(z)=\left(p(0), p(1), p^{\prime}(0), p^{\prime}(1)\right)$ is linear and injective. Hint: show that $p(a)=p^{\prime}(a)=0$ if and only if $(z-a)^{2}$ is a factor of $p(z)$.
(b) Using Exercise (a), show that for all real numbers a, b, c, d there is a unique polynomial $p(z) \in P_{3}(\mathbb{R})$ such that $p(0)=a, p(1)=b, p^{\prime}(0)=c$, and $p^{\prime}(1)=d$. In other words, there is a unique arc of a cubic curve $y=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ with prescribed endpoints $(0, a)$ and $(1, b)$, and prescribed slopes c, d at the endpoints. Such arcs are called cubic splines.
(II) Problems. Due Friday, Mar. 2 by 3pm at the location your GSI has specified for turning in homework.

1. Axler Chapter 5 Exercise 12
2. We proved in class that if r_{1}, \ldots, r_{d+1} are distinct elements of \mathbb{F}, then the evaluation map

$$
T: P_{d}(\mathbb{F}) \rightarrow \mathbb{F}^{d+1}
$$

defined by $T p(z)=\left(p\left(r_{1}\right), \ldots, p\left(r_{d+1}\right)\right)$ is invertible (we did this for $\mathbb{F}=\mathbb{R}$ in the lecture, but the same proof is valid for any field \mathbb{F}). Using this result, prove that if r_{1}, \ldots, r_{d+1} are distinct, then the matrix

$$
A=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
r_{1} & r_{2} & \ldots & r_{d+1} \\
r_{1}^{2} & r_{2}^{2} & \ldots & r_{d+1}^{2} \\
\vdots & \vdots & & \vdots \\
r_{1}^{d} & r_{2}^{d} & \ldots & r_{d+1}^{d}
\end{array}\right) \in M_{(d+1) \times(d+1)}(\mathbb{F})
$$

is invertible.

