Math 110 Assignment 4

(I) Exercises.

Axler Chapter 3: 17 (by relating it to properties of linear maps, rather than by working directly with the definitions of matrix operations), 19, 21, 22, 23, 25, 26.
(a) Show that the operator $T p(z)=p^{\prime \prime}(z)-2 z p^{\prime}(z)+z p(z)$ is linear and maps $P_{d}(\mathbb{R})$ into $P_{d+1}(\mathbb{R})$.
(b) Find the matrix of the operator T in Exercise (a) from $P_{4}(\mathbb{R})$ to $P_{5}(\mathbb{R})$, relative to the standard monomial bases of these spaces.
(c) There is a linear map $S: P(\mathbb{F}) \rightarrow \mathbb{F}^{\infty}$ which sends a polynomial $a_{0}+a_{1} z+\cdots+a_{d} z^{d}$ to the sequence of its coefficients $\left(a_{0}, a_{1}, \ldots, a_{d}, 0,0, \ldots\right)$. Is S invertible? Is it injective? Is it surjective?
(II) Problems. Due Friday, Feb. 24 by 3pm at the location your GSI has specified for turning in homework.

Let U and V be finite-dimensional vector spaces over \mathbb{F}, with bases $\left(u_{1}, \ldots, u_{n}\right)$ of U and $\left(v_{1}, \ldots, v_{m}\right)$ of V. For each $j=1, \ldots, n$, Let $L_{j}: U \rightarrow \mathbb{F}$ be the map $L_{j}\left(a_{1} u_{1}+\cdots+a_{n} u_{n}\right)=$ a_{j}. For each $i=1, \ldots, m$, let $K_{i}: \mathbb{F} \rightarrow V$ be the $\operatorname{map} K_{i}(a)=a v_{i}$.
(a) Verify that L_{j} and K_{i} are linear.
(b) What is the matrix $\mathcal{M}\left(K_{i} L_{j}\right)$, with respect to the given bases of U and V ?
(c) Prove that the maps $K_{i} L_{j}$ for all $i=1, \ldots, m$ and $j=1, \ldots, n$ form a basis of $\mathcal{L}(U, V)$.

