Math 110 Assignment 2

(I) Exercises.

Axler Chapter 2: 1, 2, 5, 6, 8, 9, 11, 13, 16, 17
(a) Prove that for a list of vectors $\left(v_{1}, \ldots, v_{n}\right)$ in V, the following three conditions are equivalent:
(i) $\left(v_{1}, \ldots, v_{n}\right)$ is linearly dependent;
(ii) one of the vectors is in the span of the previous ones on the list;
(iii) one of the vectors is in the span of all the others on the list.

For the next exercises, recall that when X is a set of vectors in V (as opposed to a list, and not necessarily assuming X is finite), we define $\operatorname{span}(X)$ to be the set of vectors which are linear combinations of some finite list of vectors in X, and we define X to be linearly independent if every finite list of distinct vectors in X is linearly independent.
(b) Show that for all lists $\left(v_{1}, \ldots, v_{n}\right)$ of vectors in V, we have $\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)=$ $\operatorname{span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right)$.
(c) Show that for all lists $\left(v_{1}, \ldots, v_{n}\right)$ of vectors in V, the list $\left(v_{1}, \ldots, v_{n}\right)$ is linearly independent if and only if its members are all distinct and the set $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent.
(d) Show that for any set X of vectors in $V, \operatorname{span}(X)$ is the smallest subspace of V which contains X.
(e) Show that for any set X of vectors in V, X is linearly independent if and only if, for all distinct vectors $v_{1}, \ldots, v_{n} \in X$, and sclars $a_{i} \in \mathbb{F}$,

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}=0 \quad \text { implies } \quad a_{1}=\cdots=a_{n}=0
$$

(II) Problems. Due Friday, Feb. 3 by 3:00pm at your GSI's office or mailbox.

Axler Chapter 2: 7, 14

