
George M. Bergman Math H110, Fall 2008 Supplementary material

Some notes on sets, logic, and mathematical language

These are ‘‘generic’’ notes, for use in Math 110, 113, 104 or 185. (This printing is adapted for use in
Math 110 with Friedberg, Insel and Spence’s Linear Algebra. Part 1 below has a large overlap with
Appendices A and B of that text, but I have left it in for completeness, and because it gives further
examples of the concepts in question.)

These pages do not develop in detail the definitions and concepts to be mentioned. That is done, to
various degrees, in Math 55, Math 74, Math 125 and Math 135. I hope you will nevertheless find them
useful and thought-provoking. I recommend working the exercises for practice; but don’t hand them in
unless they are listed in a homework assignment for the course.

1. Set-theoretic symbols

Symbol. Meaning, usage, examples, discussion.

∅ The empty set.

, Here denotes the set of all natural numbers, i.e., {0, 1, 2, 3, ... } , while (from ‘‘Zahl’’,
German for ‘‘number’’) denotes the set of all integers, { ... , – 3, – 2, –1, 0, 1, 2, 3, ... } .

(Many older authors started the natural numbers with 1, but it is preferable to start with 0, since
natural numbers are used to count the elements of finite sets, and ∅ is a finite set.)

, , Of these, (for ‘‘quotient’’) denotes the set of all rational numbers, i.e., fractions that can be
written with integer numerator and denominator, denotes the set of real numbers, and the
set of complex numbers.

The five sets just named used to be, and often still are, denoted by bold-face letters N , Z , Q ,
R and C . The forms , ... , arose as quick ways to write these boldface letters on the
blackboard. Since it is convenient to have distinctive symbols for these important sets, printed
forms imitating the ‘‘blackboard bold’’ symbols were then designed, and are now frequently used,
as shown.

(However, Friedberg, Insel and Spence have set up their own convention, under which all fields
are denoted by italic letters, e.g., F, so that in particular, the real and complex fields are R
and C, while vector spaces are sans-serif, so that the n-dimensional vector spaces over F, R
and C are written F n, R n and C n. They do not use any symbols for the natural numbers,
integers, or rationals.)

∈ ‘‘Is a member of’’. E.g., 3 ∈ .

{ } ‘‘The set of all’’. This is often used together with ‘‘ : ’’ or ‘‘
�
’’ (different authors prefer the one or

the other; Friedberg, Insel and Spence use ‘‘:’’), which stand for ‘‘such that’’. For instance, the set
of positive integers can be written {1, 2, 3, ... } or {n ∈ : n > 0} or {n

�
n ∈ , n > 0} . The set of

all square integers can be written {0, 1, 4, 9, ... , n2, ... } or {n2 : n ∈ } . Note also that
{n2 : n ∈ } = {m2 : m ∈ } = {m2 + 2m + 1 : m ∈ } . (Why?)

⊆ ‘‘Is a subset of’’. E.g., ∅ ⊆ {1} ⊆ ⊆ ⊆ ⊆ . {n2 : n ∈ } ⊆ {n ∈ : n ≥ 0} . ⊆ .

⊂ or ⊂≠ ‘‘Is a proper subset of’’; that is, a subset that is not the whole set. For instance, ⊂≠ . In fact,
all the formulas used above to illustrate ‘‘⊆’’ remain true with ⊂≠ in place of ⊆ except for

⊆ . Since a proper subset is, in particular, a subset, one may use ⊆ even when ⊂≠ is true;
and one generally does so, unless one wants to emphasize that a subset is proper. But beware:
some authors (especially in Eastern Europe) use ⊂ for ‘‘is a subset of’’.
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⊇, ∈, etc. Obvious variants of the above symbols: A ⊇ B means B ⊆ A; x ∈X means x is not a member
of X; A ⊆ B means A is not a subset of B; etc..

Warning: The phrases ‘‘A lies in X ’’ and ‘‘A is contained in X ’’ can mean either A ∈X or
A ⊆ X. (The former phrase more often means A ∈X and the latter A ⊆ X, but this is no
guarantee.) So in your writing, if there is danger of ambiguity, either use the mathematical
symbols, or use the unambiguous phrases ‘‘is a member of’’ and ‘‘is a subset of’’.

∩ Intersection: A ∩ B = {x : both x ∈A and x ∈B are true } . For instance,
{x ∈ : x > 9} ∩ {x ∈ : x ≤ 12} = {10, 11, 12} .

∩ Intersection of an indexed family of sets. For instance, if A0 , A1 , ... are sets, then ∩n =0, 1, ... An ,
also written ∩n ∈ An , ∩ ∞

n = 0 An and A0 ∩ A1 ∩ ... ∩ An ∩ ... , means {x : x is a member of
all of A0 , A1 , etc.} .

In an intersection ∩ i ∈I Ai , I does not have to be a set of integers; it can be any set such that
Ai is defined for each i ∈I. When a set I is used in this way to index (i.e., list) other entities, it
is called an index set.

∪ Union: A ∪ B = {x : x ∈A or x ∈B } . For instance, {x ∈ : x > 0} ∪ {x ∈ : x < 12} = . Note
that if A ⊆ B then A ∪ B = B and A ∩ B = A.

∪ Union of an indexed family of sets. Thus ∪n =0, 1, ... An = ∪n ∈ An = ∪ ∞
n =0 An =

A0 ∪ A1 ∪ ... ∪ An ∪ ... . Example: ∪n ∈ {i ∈ : i <n } = .
Often, when the intent is clear from context, the above notations are abbreviated. For instance,

if we know that we have one set Ai for each i in a certain index-set I, then instead of
∪ i ∈I Ai , we may write ∪ I Ai or ∪ i Ai or just ∪ Ai . Likewise, if we have a set Xn for
each positive integer n, the intersection ∩ ∞

n =1 Xn may be written ∩n Xn or simply ∩ Xn .
c ‘‘Complement of’’: cA means {x : x ∈A} .

But {x : x ∈A} makes no sense if we don’t say what x’s are allowed! So the notation cA is
used only when discussing subsets of a fixed set. For instance, if we are discussing subsets of the
integers, then c{even integers} = {odd integers}, while if we are considering subsets of , then
c{even integers} denotes the set consisting of all odd integers and non-integer rationals. To be
more precise, we can use the next symbols:

– or \ A – B (or A\ B) means {x ∈A : x ∈B} . E.g., – {even integers} = {odd integers} . Note that
A – B is defined even if B is not a subset of A. For instance, – {negative real numbers} = .

f : X → Y This indicates that f is a function (also called a ‘map’ or ‘mapping’) from the set X to the set Y.
(In reading the symbol out loud, one can use words such as ‘‘the map f from X to Y ’’, or ‘‘f
sending X to Y ’’.)

Such an f is said to be one-to-one (or injective) if for every two distinct elements x1 , x2 ∈X,
the elements f (x1) and f (x2) of Y are also distinct. For instance, the operation of cubing an
integer is a one-to-one function → ; but the squaring map is not one-to-one, because
(– n)2 = n2 .

The function f : X → Y is said to be onto Y if every element of Y equals f (x) for some
x ∈X. For instance, the squaring and cubing maps → are not onto, since not all integers are
squares or cubes. On the other hand, the cubing map → is both one-to-one and onto.

Given f : X → Y, the set X is called the domain of f. What about the set at the other end of
the arrow? A complication is that if f is not onto Y, then Y and { f (x) : x ∈X } are different
sets. Traditionally, these were called the ‘‘range’’ and the ‘‘image’’ of f respectively, but the
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usage was not firm; ‘‘range’’ was often used as a synonym for ‘‘image’’. Hence nowadays, the
unambiguous term ‘‘codomain’’ has been introduced to describe Y. A function is called onto if it
is onto its codomain; a synonymous term is ‘‘surjective’’ (from French ‘‘sur’’ = ‘‘onto’’).

A map f : X → Y that is both one-to-one and onto has an inverse map g : Y → X, taking each
y ∈Y to the unique element x ∈X such that f (x) = y. Thus, f may be thought of as defining a
matching X ←→ Y, under which each element of X is matched with a unique element of Y and
vice versa; such a matching is called a one-to-one correspondence between X and Y. So the
phrases ‘‘one-to-one and onto function’’, ‘‘invertible function’’ and ‘‘one-to-one correspondence’’
all describe the same thing; still another term for this is ‘‘bijective map’’ (‘‘bijective’’ meaning
‘‘both injective and surjective’’).

f –1 This symbol is used in three different ways, which are related, but not quite the same. A lot of
confusion can result if they are not distinguished. First, if f is one-to-one and onto, then f –1

denotes the inverse of f, discussed above. Secondly, if f : X → Y is any map, and S is any
subset of Y, then f –1(S ) denotes {x ∈X : f (x) ∈S }, called the inverse image (or preimage) of
S under f. When f is invertible it is not hard to check that this is precisely the image of the set
S under the inverse function f –1: Y → X . However, this definition of f –1(S ) makes sense even
when f is not invertible. Finally, for y ∈Y, the symbol f –1({y}) is often simplified to f –1(y).
Hence when the symbol ‘‘f –1’’ is used, you must check whether the context indicates that f is an
invertible function. If so, you can be confident that f –1 denotes the inverse function; if not, then
f –1 does not stand for a function, but is a way of writing inverse images of sets or elements
under f .

→ While the ordinary arrow referred to above is used to show what the domain and codomain of a
function are, the ‘‘flat-tailed’’ arrow shows which element is carried to which. Thus, f : x → x2

means that f is the squaring function, defined by f (x) = x2. We can use this kind of arrow to
describe a function without denoting it by a letter, e.g., ‘‘the function x → x2’’ (which can be read
‘‘the function x-goes-to-x2’’ or ‘‘the function taking x to x2’’).

× If A and B are sets, A × B means the set of ordered pairs {(a, b) : a ∈A, b ∈B} . I won’t discuss
here precisely how an ordered pair is defined; simply think of it as a ‘‘list’’ of length 2. Note that
a function f of two variables, one A-valued and one B-valued, which takes values in a set C, can
be thought of as a map f : A × B → C. For example, addition of integers is a map × → ,
given by (m, n) → m +n, while exponentiation of real numbers using natural numbers as
exponents, given by (x, n) → xn, is a map × → .

Likewise, A × B × C denotes the set of ordered 3-tuples {(a, b, c) : a ∈A, b ∈B, c ∈C}, and one
defines a function of three variables as a map on such a triple product-set; and so on.

The set A × B is called the product (or direct product ) of the sets A and B because if A
and B are finite, A having m members and B having n members, then A × B will have m n
members. In analytic geometry one regards the set × of pairs of real numbers as labeling the
points of the plane. The numbers so used are called the ‘‘Cartesian coordinates’’ of the points,
after René Descartes who developed this approach to geometry. Hence one often calls the direct
product A × B of any two sets their Cartesian product.

If f : X → Y is a function, then {(x, f (x)) : x ∈X } ⊆ X × Y, is called the graph of f – again,
the idea comes from analytic geometry.
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Exercise 1. Let X and Y be sets. Find conditions on a subset S ⊆ X × Y that are necessary
and sufficient for S to be the graph of a function X → Y. (I.e., necessary and sufficient
conditions on S for there to exist a function f : X → Y such that S is the graph of f.) If
these conditions hold, will S uniquely determine the function?

In view of the answer to the above exercise, set-theorists often define a function from a set X
to a set Y as a subset of X × Y having the appropriate properties.

The sets A × A, A × A × A, etc. are often written A2, A3, etc.. Also, if A and B are sets,
the set of functions from A to B is often written BA, since if A is a finite set with m
elements and B a finite set with n elements, this set of functions will have nm elements.

2. Logical connectives

Let us begin by noting that there is a kind of inverse relation between statements and
possibilities – the more statements we make, the more we limit the set of possibilities; the more
possibilities there are, the more limited is the set of true statements.

For instance, suppose we are considering an integer-valued variable x. If we require that x be
positive, then the set of possibilities we are considering forms the set {1, 2, 3, ... } . If instead we
had stated that x is even, then the set would have been { ... , – 4, – 2, 0, 2, 4, ... } . If we impose
both conditions, then the only possibilities for x are the positive even integers, a proper subset of
the two sets named. More generally, if P and Q are any two conditions, and we assume that P
and Q hold, then the set of cases we are allowing is the intersection of the set of cases allowed
by P alone and the set of cases allowed by Q alone. This will help you remember the next
symbol, which is similar to ∩ .

∧ ‘‘And’’: If P and Q are two statements, then we define ‘‘P ∧ Q’’ to hold if and only if P and
Q both hold. For example, the condition 0 ≤ x ≤ 1 is an abbreviation of (0 ≤ x) ∧ (x ≤ 1). The
operation ∧ is called ‘‘conjunction’’.

On the other hand, if we want to consider all cases allowed by a condition P and also all
cases allowed by Q – the union of the two sets of cases – then we are considering the condition
‘‘P or Q holds’’. This is a weaker condition than either P or Q, in line with the ‘‘inverse
relation’’ noted above between statements and cases. The symbol used is similar to ∪, namely

∨ ‘‘Or’’: If P and Q are two statements, we say that ‘‘P ∨ Q’’ holds in a situation if P holds or
if Q holds (possibly both). For instance, for all real numbers x, we have (x < 10) ∨ (x > 0). The
condition x ≤ y is equivalent to (x < y) ∨ (x = y). As another example, for all integers a, b we
have (a ≥ 0) ∨ (b ≥ 0) ∨ (ab ≥ 1). The operation ∨ is called ‘‘disjunction’’.

The ‘‘inverse relation’’ between statements and possibilities that we have mentioned is
sometimes a cause of confusion. Many beginning calculus students, when asked to say what real
numbers x satisfy x2 >1, will describe these as the set of x satisfying ‘‘x >1 and x < –1’’.
What they mean is that the set consists of all x satisfying x >1 and all x satisfying x < –1. But
the correct way to express this union of cases is not by the conjunction ‘‘x >1 and x < –1’’, but by
the disjunction ‘‘x >1 or x < –1’’. That is:

{x : x2 >1} = ( – ∞, –1) ∪ (1, + ∞) = {x : x < –1} ∪ {x : x > 1} = {x : (x < –1) ∨ (x > 1)} .

¬ ‘‘Not’’. E.g., ¬ (x = y) means x ≠ y.

⇒ ‘‘Implies’’. For instance, if x ∈ , then x > 2 ⇒ x > 0.
If P and Q are statements, then ‘‘P ⇒ Q’’ is a statement which is considered to be true in
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all cases except those where P is true but Q is false. P ⇒ Q may also be expressed in words
‘‘If P then Q’’ or ‘‘Q if P’’. For instance, the true statement ‘‘x > 2 ⇒ x > 0’’ can expressed
‘‘x > 0 if x > 2’’.

There are certain conventions in the everyday (nonmathematical) use of words such as ‘‘or’’
and ‘‘if’’, which we use unconsciously, but need to become aware of so as to understand that they
do not apply to mathematical usage.

In everyday life, we generally use the word ‘‘or’’ only when we do not know which of the two
possibilities is true. E.g., if a letter comes in the mail and you say, ‘‘This is either from John or
Stephanie’’, you are asserting that it is from one of them, but also, implicitly, that you do not yet
know which one. There are variants on this convention: If you say ‘‘I am holding a penny in
either my right hand or my left hand’’, then you know which hand it is in, but the person you are
speaking to does not. On the other hand, a mathematical statement P ∨ Q is considered to be true
even when we do know which of P or Q holds. For instance, we have noted that for all real
numbers x, (x < 10) ∨ (x > 0). So in particular, the statement (100 < 10) ∨ (100 > 0) is true, and so
is (5 < 10) ∨ (5 > 0), and so is (0 < 10) ∨ (0 > 0). Of course, a mathematician does not pointlessly
write down ‘‘P ∨ Q’’ when he or she and the reader both know that P is true, or both know that
Q is true, any more than a nonmathematician would. But it must be understood that P ∨ Q is
true in such cases, in order that the truth of a mathematical statement not be lost when our
knowledge increases.

Similarly, in nonmathematical usage we generally make statements of the form ‘‘If P then
Q ’’ only when there is some uncertainty as to whether the statements P and/or Q hold; but
again, to make mathematical usage consistent, we must accept ‘‘P ⇒ Q ’’ as true in all cases
except when P holds and Q does not.

Note also that in nonmathematical usage, ‘‘P or Q’’ sometimes means ‘‘P or Q, but not
both’’. (E.g., in the ‘‘John or Stephanie’’ example and the ‘‘which hand’’ example above.) In
mathematical usage, the meaning of ‘‘or’’ is not restricted in that way; so (5 < 10) ∨ (5 > 0) is a
true statement.

⇔, iff P ⇔ Q means (P ⇒ Q) ∧ (Q ⇒ P), i.e., ‘‘P is true if and only if Q is true’’. Thus, ‘‘⇔’’ is
synonymous with ‘‘if and only if’’, often abbreviated by mathematicians to ‘‘iff’’.

The next two exercises give some practice with the logical connectives described in this section.

Exercise 2. Suppose x is an element, and A, B are sets. Find, for each statement in the left-hand
column below, the logically equivalent statement in the right-hand column. (There is one statement in
the right-hand column not equivalent to any of the statements in the left-hand column.)

x ∈ A ∪ B (x ∈A) ∧ (x ∈B)
x ∈ A ∩ B (x ∈A) ⇒ (x ∈B)
x ∈ cA (x ∈A) ∧ (x ∈B)
x ∈ A \ B x ∈A

(x ∈A) ∨ (x ∈B)

Exercise 3. Suppose P and Q are two mathematical assertions. (Examples might be ‘‘n > 0’’ and ‘‘n
is even’’ if we are talking about an integer n.) Find, for each statement in the left-hand column below,
the logically equivalent statement in the right-hand column. (There are two statements in the right-hand
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column not equivalent to any of the statements in the left-hand column.)

P ∧ Q Q ⇒ P
P ∨ (¬Q) Q ∧ P
P (¬P) ⇒ Q
P ∨ Q (¬P) ∧ (¬Q)
¬ (P ∧ Q) (¬P) ∨ (¬Q)

¬P
¬¬P

General warning: Do not confuse statements (called by logicians propositions) with sets. For instance,
if X is a statement, e.g., ‘‘a > 10’’, then it makes no sense to write ‘‘u ∈X’’ or ‘‘a ∈X’’. And if X and
Y are sets, then ‘‘X ⇒ Y ’’ makes no sense.

There are, of course, important relations between statements and sets. For instance, if X and Y are
sets, then X ⊆ Y is a statement, while if P(x) is a statement about a real number x, then {x ∈ : P(x)}
is a set.

3. Quantifiers

Here are two symbols that are extremely important in constructing mathematical statements.

∀ ‘‘For all’’ or ‘‘for every’’. If we are referring to real numbers, then ∀ x, (x+1)2 = x2+ 2x +1 is a
true statement; so is ∀ x, (x < 0) ∨ (x = 0) ∨ (x > 0). Referring to integers n, the statement
∀ n, (2n – 1)2 > 0 is true, though it is not true for real numbers.

To make such formulas precise, we should show what class of possible ‘‘n’’ we are talking
about. We can do this by writing, for instance, ∀ n ∈ , (2n – 1)2 > 0. For greater clarity
parentheses may be introduced, e.g., (∀ n ∈ ) (2n – 1)2 > 0 or (∀ n ∈ ) ((2n – 1)2 > 0).

∃ ‘‘There exists ... such that’’, or ‘‘for some’’. For example, (∃ x ∈ ) x > 10 says that there exists
an element x belonging to the set of integers, and such that x > 10; or briefly ‘‘There exists an
integer greater than 10’’. Similarly, (∃ x ∈ ) x2 = 3 means ‘‘There exists a real number whose
square is 3’’. (Both of these are true statements.) Still another way of reading (∃ x ∈ ) is ‘‘For
at least one real number x it is true that’’.

(Some people also write ∃! or ∃1 to mean ‘‘For exactly one value’’, or equivalently, ‘‘There
exists a unique value such that’’.)

Exercise 4. Suppose P(x) and Q(x) are statements about an integer x. (Examples of such
statements are ‘‘x > 0’’, ‘‘x is odd’’, ‘‘x ≠ 55’’, ‘‘x = x’’, etc..) In each of the cases below, if you believe
that the equivalence asked about holds, say briefly why, while if you decide that two statements are not
equivalent, try to find an example of propositions P and Q for which one of the statements is true,
and the other is not.
(a) Is (∀ x) P(x) equivalent to ¬ (∃ x) (¬P(x)) ?
(b) Is (∃ x) (P(x) ∧ Q(x)) equivalent to ((∃ x) P(x)) ∧ ((∃ x) Q(x)) ?
(c) Is (∀ x ∈{1, 2, 3}) P(x) equivalent to P(1) ∧ P(2) ∧ P(3) ?
(d) Is ¬ (∀ x) P(x) equivalent to (∀ x) (¬P(x)) ?

Exercise 5. To show that the statement (∃ x ∈ ) x2 = x is true, it is enough to give the single example
x = 0. Suppose P(x) is a statement about an element x, and we want to prove one of the statements
below. In which cases can this be done by giving just a single example? In each such case, say what
the nature of the example must be.
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(a) (∃ x) P(x) (c) (∀ x) ¬P(x)
(b) (∀ x) P(x) (d) ¬ (∀ x) P(x)

Exercise 6. Suppose A and B are sets. Translate each of statements (a)-(b) below, which are
expressed using the symbols ∀ and ∃ , into a statement about A and B expressed using only the
set-theoretic symbols discussed in the first section of this note.

(a) (∀ x) ((x ∈A) ⇒ (x ∈B)) (c) (∀ x) (x ∈A)
(b) (∀ x) ((x ∈A) ⇔ (x ∈B)) (d) (∃ x) ((x ∈A) ∧ (x ∈B))

Exercise 7. Suppose A0 , A1 , A2 , ... are subsets of a set X.
(a) Match each set on the left with the set on the right that is equal to it.

∪ i ∈ Ai {x ∈X : (∃ i ∈ ) (x ∈Ai )}

∩ i ∈ Ai {x ∈X : (∀ i ∈ ) (x ∈Ai )}.

(b) Show that one has the equality {x ∈X : (∃ i ∈ ) (x ∈Ai )} = {x ∈X : (∀ i ∈ ) (x ∈Ai )} if and only
if the sets A0 , A1 , A2 , ... are all equal.

Note: The English word ‘‘any’’ sometimes means ∀, and sometimes ∃ ; we usually understand
which is meant from context. Thus, if you say, ‘‘I wonder whether anyone knows’’, you are asking
whether (∃ x) (x knows) is true. But the sentence ‘‘Anyone you ask will be able to tell you’’ means
‘‘(∀ x) (If you ask x, x can tell you)’’. Hence in learning to use the mathematical symbols ∀ and ∃ ,
you must pay attention to the meanings of statements, not just the English words used.

4. Bound and free variables

Suppose we write an equation such as x5 = x. There are various things that we may mean:

(i) x may represent a definite number that we are considering, e.g., the height of a certain bridge in
meters, or the greatest common divisor of 25 – 1 and 28 – 1. In this case, x5 = x is an assertion about
that number. This assertion is either true or false.

(ii) We may regard x5 = x as a condition on integers x. This is then satisfied by some integers, and not
by others. Taken by itself, it is neither ‘‘true’’ nor ‘‘false’’.

(iii) We may be asserting x5 = x as an identity. E.g., if we are considering integers, then by x5 = x we
would really mean (∀ x ∈ ) x5 = x, which is false. On the other hand, in Math 113 one encounters the
ring 5 , and x5 = x is a valid identity in that ring; i.e., (∀ x ∈ 5) x5 = x is true.

(iv) We may use the equation x5 = x in the proposition (∃ x ∈ ) x5 = x (which is true).

(v) We may use the equation x5 = x in defining the set { x ∈ : x5 = x} (which equals { –1, 0, 1}).

In use (i), x is a constant; it represents a specific number we are talking about (even if we don’t know
its value), and as we have said, the statement x5 = x is then true or false.

In uses (ii)-(v), x is a variable. But there is a difference between (ii) and the other cases. In (ii),
x5 = x is a condition in which we may substitute different values of x, making the condition true or
false; x is called a free variable. In (iii) and (iv), the variable is bound by the quantifier ∀ or ∃ . One
cannot ask whether the statement (∃ x ∈ ) x5 = x is ‘‘true for x = 3’’, although one can ask whether
x5 = x is true for x = 3. Similarly, it makes no sense to ask whether (∀ x ∈ ) x5 = x is true for x = 1
or for x = 2, because it is not a statement about a single integer x, but a statement whose validity is
determined by substituting all integers for x in the statement x5 = x, and seeing whether it holds in
every case. (It doesn’t, so as mentioned in (iii) above, ‘‘(∀ x ∈ ) x5 = x’’ is false.)
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One could avoid the ambiguity of ‘‘x5 = x’’ meaning either (i), (ii) or (iii) by insisting that different
letters be used for constants and variables, and that the symbol ∀ x ∈X be written whenever it is meant.
We shall not impose such strict rules, but we should always understand what we mean, and be explicit
when necessary for clarity.

A bound variable is an example of the more general concept of a dummy variable. This is a variable
symbol, say x, which occurs within an expression, but such that the expression is not a function of x;
rather, the value of the expression is determined by some process that involves considering different values
of x. We have seen how this is so in (iii) and (iv). The x in (v) is also a dummy variable, because the
set in question is determined by looking over all values of x in , and collecting those which satisfy
x5 = x. You have seen similar situations in calculus: recall the difference between formulas like x2 and
Σ10

x = 1 x2. The first is a function of x, while the second represents a specific number, 385, computed with
the help of the first function. Likewise, in the expression ∫

1

x = 0
x2 dx, x is a dummy variable.

(There is a sixth meaning that ‘‘x5 = x’’ can have, which one learns about in the latter half of
Math 113. Under this interpretation, x is an indeterminate in a polynomial ring such as [x]. I will say
no more about this here, except that so interpreted, the equation x5 = x is false, since x5 and x are
different polynomials; and that this interpretation is like (i) in that x is a particular element rather than a
variable.)

Exercise 8. (a) Give an elementary description of {x ∈ : (∃ y ∈ ) x < y < x2}, and prove it is
correct.

(Suggestion: First figure out by experimentation which real numbers belong to that set, then think
about how to prove the answer you get. To do so, you will need to prove two sets equal, namely the set
given above, and the set you describe. Two sets X and Y are equal if and only if every element of X
is an element of Y, and vice versa. So to prove such an equality, one can begin ‘‘Let r ∈X,’’ and
deduce from what is known that r ∈Y, and then turn around and say ‘‘Now let r ∈Y,’’ and deduce
from what is known that r ∈X.)

(b) Give an elementary description of {x ∈ : (∃ y ∈ ) x < y < x2}, and prove it is correct.

5. Order of quantifiers

If we take a sentence about integers, involving a free variable x, and attach to it one of the prefixes
(∃ x ∈ ) or (∀ x ∈ ), then we have seen above that we get a new statement, in which x is a bound
variable.

Now consider a sentence with two free variables, such as y = x2, a condition on a pair of integers x
and y. Suppose that we add to this the prefix (∃ x ∈ ), getting the statement (∃ x ∈ ) y = x2. Then x
has been bound, and the result is a condition on the integer-valued variable y; in words, ‘‘y is a square’’.
For some values of y this is true, namely 0, 1, 4, 9, ... . For other values it is false.

In particular, since the set of y for which this condition is satisfied is nonempty, it is true that
(∃ y ∈ )(∃ x ∈ ) y = x2. Since the set does not contain all integers, it is false that
(∀ y ∈ )(∃ x ∈ ) y = x2. These examples illustrate the process of adding several prefixes to a statement,
so as to successively bind several variables.

Consider now the statement about two integers x and y : x > y. Note that the statement
(∃ x ∈ ) x > y is true for all y, because there is no largest integer y. Hence

(∀ y ∈ )(∃ x ∈ ) x > y

is a true statement. On the other hand, the statement (∀ y ∈ ) x > y is not true for any integer x; if it
were, then x would be an integer larger than all integers (including itself!) Hence



- 9 -

(∃ x ∈ )(∀ y ∈ ) x > y

is a false statement.
Since one statement is true and the other false, they do not mean the same thing; so a change in the

order of the prefixes ∃ x ∈ and ∀ y ∈ can change the meaning of a statement!

Exercise 9. Consider the sentence, ‘‘There is someone at the hotel who cleans every room’’. Explain
two ways this sentence can be interpreted, and translate them into two quantifications of the relation ‘‘(X
cleans R )’’. Which words in the sentence correspond to ‘‘∃’’ in the translation, and which to ‘‘∀’’?

Ambiguities in the meanings of English sentences like the one in the above exercise are generally
cleared up by context. So I repeat what I said at the end of section 3: in translating a sentence into
symbols, we must look at the idea, not just the words, to see how the quantifiers should be used.

Some mathematicians treat ‘‘∀’’ simply as an abbreviation of the words ‘‘for all’’, and put it where
they might put those words in a sentence, writing things like ‘‘n +1 > n ∀ n’’. I strongly advise against
this; under that usage, a formula ∃ x P(x, y) ∀ y has exactly the ambiguity illustrated in the above
exercise, since one might ‘‘bracket’’ it either as ∃ x (P(x, y) ∀ y) or as (∃ x P(x, y)) ∀ y. Rather, I
recommend putting quantification symbols before the statement being quantified, as in the examples given
above.

In the next exercise, you will get practice with quantifiers by using them to write symbolically some
definitions that were given with the help of words in freshman calculus.

Exercise 10. Let f : → be a real-valued function of one real variable. Translate conditions
(ii)-(vi) listed below into symbols. Since all variables here are real-valued, you may omit ‘‘ ∈ ’’.
Part (i) is done for you, as an example.

In your answers, do not use symbols such as limu→ x f (u), or d ⁄ dx, since these are the concepts
you are trying to define. Use only basic operations and relations of the real numbers, such as +, –, ·,
|x|, >, <, etc.. (In this exercise, don’t even use in later parts concepts you have defined in earlier
parts; rather, if appropriate, incorporate the symbols of the earlier translation into the later one.)

You may use letters such as ε and δ for some of your variables; but do not write things like
‘‘δ(x)’’ to mean ‘‘a number δ which may depend on x ’’, or, by the same token, ‘‘ f ′(x)’’. Rather,
the order of quantifiers in your answers should show what can and what cannot depend on what.

(i) f is bounded. Answer: (∃ M )(∀ x) | f (x) | < M.
(ii) f is continuous at the point x ∈ .
(iii) f is everywhere continuous.
(iv) f has a limit as x → + ∞ .
(v) f is differentiable at x = 5.
(vi) f is everywhere differentiable.

We end with a quick self-test on material from the preceding sections.

Exercise 11. Mark the following true or false. (Answers at the bottom of page.)

(a) ∈ .
(b) ⊆ .
(c) ∪ = .
(d) ∩ = .
(e) If subsets A and B of a set X

satisfy A ∩ B = ∅, then A = X – B.

(f) (∃ x ∈ ) (∀ y ∈ ) x = y.
(g) (∃ x ∈ ) (∀ y ∈ ) x ≠ y.
(h) (∀ x ∈ ) (∃ y ∈ ) x = y.
(i) (∀ x ∈ ) (∃ y ∈ ) x ≠ y.
(j) (∃ x ∈ ) (∀ y ∈ ) x ≠ y.
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6. Some mathematical language

There are several turns of phrase used in mathematical writing that one generally picks up by seeing
how they are used. But it can be helpful to have explanations available, so I give below (at the suggestion
of John Peloquin) a glossary of some of these phrases.

necessary and sufficient conditions. To say that a statement A is necessary and sufficient for a
statement B to hold simply means that A ⇔ B. For instance, if x is a real number, a necessary and
sufficient condition for limn→ ∞ xn = 0 to hold is that | x | < 1.

In this usage, ‘‘sufficient’’ refers to the forward implication A ⇒ B, and ‘‘necessary’’ to the reverse
implication A ⇐ B, and these words can be used separately. So, in considering whether a sum of integers
m + n is even, we see that a sufficient condition is that both m and n be even, but it is not necessary;
while for m + n to be odd, a necessary condition is that at least one of m and n be odd, but it is not
sufficient. When one proves a statement of the form A ⇔ B by proving the implication first in one, and
then in the opposite direction, the proof that A ⇒ B is often called the proof of sufficiency, and the proof
that A ⇐ B the proof of necessity.

A necessary and sufficient condition for something to be true is called a criterion for it to be true; one
also speaks of ‘‘necessary criteria’’ and ‘‘sufficient criteria’’, which just go one way. For instance, most of
the tests for convergence of a series Σ an that one learns in calculus are sufficient criteria for
convergence; but the statement that for Σ an to converge one must have limn→ ∞ an = 0 is a necessary
criterion.

If one proves a necessary and sufficient condition for an element x to have a certain property, this is
called a characterization of the elements that have that property.

to identify. To ‘‘identify’’ two mathematical objects means to regard them as the same. For instance,
when we consider the geometry of the plane, 2 = {(x, y) : x, y ∈ } and of three-dimensional space

3 = {(x, y, z) : x, y, z ∈ }, we often regard 2 as a subset of 3, by identifying each point (x, y) of
the plane with the point (x, y, 0) of 3-space; we thus identify 2 with the (x, y)-plane {(x, y, z) : z = 0}
in 3.

How one justifies regarding two different things as the same, in a precise logical science such as
mathematics, takes some pondering. In examples like the above, it can be thought of as a notational
shorthand; we can say that when we speak about points and subsets of the plane 2 as lying in
3-dimensional space, we mean the images of those points under the map ϕ : 2 → 3 defined by
ϕ((x, y)) = (x, y, 0); and because ϕ preserves geometric structure (e.g., distance, the property of lying in
a straight line, etc.), geometric statements about points of 2 remain true of their images under ϕ .

Some other uses of the term are a little different. For instance, the unit circle, parametrized by radian
measure, is sometimes described as ‘‘the interval [0, 2π] with the two ends 0 and 2π identified’’. I
will not go into how to think of this sort of identification here.

well-defined. When one gives a statement that is supposed to be a definition, it is sometimes necessary
to verify that it really does precisely define some mathematical object. For instance, if we tried to define a
function a from positive rational numbers to positive rational numbers by saying that whenever r = m ⁄ n
with m and n positive integers, we let a(r) = (m +1) ⁄ (n +1), we would face the problem that a positive
rational number can be written in more than one way as a ratio of positive integers; e.g., 2 ⁄ 3 = 4 ⁄ 6; so
we would need to know whether our definition depended only on the given rational number r, or on the
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Answers to Exercise 11: (a) F. (b) T. (c) T. (d) T. (e) F. (f) F. (g) F. (h) T. (i) T. (j) T.
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way we chose to write it as a ratio m ⁄ n. In fact, we see that (2 +1) ⁄ (3 +1) and (4 +1) ⁄ (6 +1) are not
the same rational number; so the above is not a usable definition. On the other hand, if for m ⁄ n we
define b(r) = m2 ⁄ n2, we find that this rational number does not depend on our choice of how to write r
as a ratio. (In fact, b(r) = r2.) If some entity we have defined is indeed determined by the rules we have
stated, rather than varying with choices implicit in our definition, we say that it is well-defined.

Proofs of well-definedness become essential in areas of mathematics where certain entities are defined
as equivalence classes of other entities, and operations on them are defined by choosing ‘‘representatives’’
of these equivalence classes, performing operations on these, and taking the equivalence class of the
resulting element. This is not the place to go into those constructions; but you will see proofs of well-
definedness coming up frequently when you study such topics.

unique. The unique element having a property means the only element with that property. (Thus, in
mathematics, the word ‘‘unique’’ is always used relative to the statement of some property – often
mentioned in the same sentence, but sometimes implicit in the context.) For instance, 2 is the unique real
number x such that x3 = 8; so that equation has a unique solution in . On the other hand, the
equation x2 = 4 does not have a unique solution in , since both 2 and – 2 are solutions.

(I have actually used the word ‘‘unique’’ four times in the preceding pages of this note, trusting that
most students either knew its mathematical meaning, or would recognize what I meant.)

up to ... . This phrase allows one to modify a statement so as to allow more leeway. For instance, if
a is a positive real number, then the equation x2 = a has a real-number solution which is unique up to
sign. This means that if x1 and x2 are both solutions to that equation, we do not assert that x1 = x2
(as we would if we simply said that the solution was unique), but, rather, that x1 = ± x2 . Likewise, if
f (x) is a continuous function on the real line, then there is a function g whose derivative is f, and this
g is unique up to (or determined up to) an additive constant. In High School geometry, when one learns
that a triangle is ‘‘determined by side-angle-side’’, i.e., by the lengths of two sides and the value of the
angle between them, a fuller statement would be that the triangle is determined up to congruence by this
data. In other words, triangles that agree in this data must be congruent, but need not actually consist of
the same points of the plane. (The fact that most geometry textbooks do not add ‘‘up to congruence’’ to
such statements means that in these statements, they are identifying congruent triangles.)

without loss of generality. In giving a mathematical proof, if we say that ‘‘without loss of generality’’
we may assume that some condition X holds, this means that if we can establish the result in the case
where X holds, we can deduce from this that it holds in general. After saying this, one usually assumes
that X holds for the rest of the proof.

For instance, in proving a theorem about a function f on an interval [a, b], an author might say,
‘‘Without loss of generality, we may assume [a, b] = [0,1]’’. Typically, the reason is that if f is a
function on [a, b], then the function g on [0,1] defined by g(x) = f (a + (b – a) x) has properties
closely corresponding to those of the original function f. (For instance, g(0) = f (a), g(1) = f (b), g is
differentiable if and only if f is differentiable, etc..) Depending on the theorem one is trying to prove,
one may be able to see that knowing the theorem is true for the above function g implies that it is true
for f. In that case, it suffices to go through the details of one’s proof for functions on [0,1]; and, if this
makes the proof easier to write out or to follow, one may say, ‘‘Without loss of generality, we shall
assume [a, b] = [0,1]’’, and complete the proof under that assumption.

Of course, whether it is ‘‘clear’’ that knowing a result in one case implies that it is true in the other
case depends on the situation, and on the mathematical background of one’s readership. If the author of a
text you are reading says, without further explanation, that without loss of generality some assumption may
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be made, this means that he or she judges that the reduction to that case should be straightforward for
students at the level at which the text is aimed; and you should take up the challenge, and see whether you
can supply the reason. If you can’t, you should ask your instructor. In other cases, an author may say
explicitly why a ‘‘without loss of generality’’ statement is justified. You should then look carefully at the
arguments by which he or she reduces the general case to the special case.

(Mathematicians writing for other mathematicians often abbreviate ‘‘without loss of generality’’ to
‘‘w.l.o.g.’’; but this abbreviation seldom appears in undergraduate textbooks.)

The turns of phrase listed above are ones that I have seen students have a great deal of trouble with.
The next couple haven’t led to problems as often, but they are also worth noting once one has mastered the
preceding ones.

maximal. This is a term that is used in the context of sets that have among their members a relation of
some being ‘‘greater than’’ others. This is not the place to discuss the various ways in which such
relations arise, so I will just talk about one case: sets, with the ‘‘greater than’’ relation being the relation
of one set containing another.

So suppose S is some set of subsets of a set X. Then an element A ∈S is said to be maximal in S
if no other member of S contains it.

For instance, if we take X = {1, 2, 3, 4, 5}, and let S consist of all subsets of X that do not contain
any two adjacent integers (integers that are ‘‘next to’’ each other in the list 1, 2, 3, 4, 5), then
{1} ⊂≠ {1, 3} ⊂≠ {1, 3, 5} are members of S, and these inclusions imply that {1} and {1, 3} are not
maximal elements of S. You might check for yourself that S has exactly four maximal elements:
{1, 3, 5}, {1, 4}, {2, 4} and {2, 5}.

An element in such a set which contains all other elements is called a greatest element of the set. If a
set has a greatest element, that will also be a maximal element, but as the example of the preceding
paragraph shows, not every maximal element is a greatest element; the set S of that paragraph does not
have a greatest element. An example of a set that has no maximal elements (and hence also no greatest
element) is the set of all finite subsets of .

by choice of ... This is best illustrated by an example. If in an argument one has said ‘‘Suppose the
polynomial f (x) has a positive root r’’, then if one later says that something is true ‘‘by choice of r’’,
this means it is true because r is a root of f (x), or because r is positive, or because both these
statements are true; in other words, because of the assumptions we made when we specified r. So the
phrase ‘‘by choice of ...’’ is a signal to look back at the point where an element was introduced, and see
what was assumed about it.

Let me end with a warning about an incorrect use of words I have often seen students make. If one
wants to describe {n2 : n ∈ }, it is not correct to call this ‘‘the set containing all squares of integers’’,
because there are many sets that fit those words. For instance, the set of all positive integers, and the set
of all real numbers, both contain all squares of integers (along with other elements). The correct
description of {n2 : n ∈ } is ‘‘the set of (all) squares of integers’’. If, for some reason, one wants a more
emphatic word than ‘‘of’’, one may say ‘‘the set consisting of all squares of integers’’, or ‘‘the set whose
members are all squares of integers’’.


