Math 110-Linear Algebra
 Fall 2009, Haiman
 Problem Set 13

Due Friday, Dec. 4, at the beginning of lecture.

1. In the textbook and lecture we saw a quick but "tricky" proof of the Cauchy-Schwarz inequality, Theorem $6.2(\mathrm{c})$. In this problem we will work out a slightly longer but easier to motivate proof using Gram-Schmidt. Note that the proof of Theorem 6.4, which justifies the Gram-Schmidt process, does not use the Cauchy-Schwarz or triangle inequalities, so it is not circular reasoning to use Gram-Schmidt to prove Cauchy-Schwarz.
(a) If x and y are linearly dependent, then they are both scalar multiples of some vector u. Verify that Cauchy-Schwarz holds with equality in this case.
(b) If x and y are linearly independent, deduce from the Gram-Schmidt process that there is an orthonormal basis $\{u, v\}$ of $\operatorname{Span}(\{x, y\})$ such that x is a scalar multiple of u. Letting $x=t u, y=a u+b v$, express $\langle x, y\rangle,\|x\|$, and $\|y\|$ in terms of t, a, and b, and use this to verify that the Cauchy-Schwarz inequality holds, with strict inequality in this case.
2. Prove that if $f:[a, b] \rightarrow \mathbb{C}$ is a continuous function, then

$$
\left|\int_{a}^{b} f(t) d t\right| \leq \sqrt{(b-a) \int_{a}^{b}|f(t)|^{2} d t}
$$

Hint: find a way to apply Cauchy-Schwarz.
3. Section 6.1, Exercises 28 and 29.
4. Section 6.2, Exercise 2(g).
5. Section 6.2, Exercise 21.
6. Use Theorem 6.6 to prove that if W is a finite-dimensional subspace of an inner product space V, then $\left(W^{\perp}\right)^{\perp}=W$.
7. Section 6.3, Exercise 20(b).

