Math 110-Linear Algebra
 Fall 2009, Haiman
 Problem Set 12

Due Monday, Nov. 23, at the beginning of lecture.

1. Let J_{n} denote the $n \times n$ matrix over \mathbb{R} whose entries are all equal to 1 .
(a) Show that $(1,1, \ldots, 1)^{t}$ is an eigenvector of J_{n}. What is its eigenvalue?
(b) Find the dimension of the nullspace of J_{n}.
(c) Use (a) and (b) to show that J_{n} is diagonalizable, and find the diagonal matrix similar to J_{n}.
(d) Find the characteristic polynomial of J_{n}.
(e) Let $Z_{n}=J_{n}-I_{n}$ be the $n \times n$ matrix with zeroes on the diagonal and ones in all off-diagonal entries. Find $\operatorname{det}\left(Z_{n}\right)$, and show that Z_{n} is invertible for $n>1$.
(f) Find the characteristic polynomial of Z_{n}.
(g) Find a quadratic polynomial $f(t)$ (with coefficients depending on n) such that $f\left(Z_{n}\right)=$ 0.
(h) Use (g) to calculate the inverse of Z_{n}, expressed as a linear combination of Z_{n} and I_{n}. (This generalizes Problem Set 7, Problem 3.)
2. Let $T: V \rightarrow V$ be a linear operator, where V is finite dimensional. Suppose that W_{1}, \ldots, W_{k} are T-invariant subspaces of V such that $T_{W_{i}}$ is diagonalizable for each i. Prove that if $W_{1}+\cdots+W_{k}=V$, then T is diagonalizable.
3. Section 5.4, Exercises 13 and 20.
