# Math 110-Linear Algebra <br> Fall 2009, Haiman <br> Problem Set 9 

Due Monday, Nov. 2 at the beginning of lecture.

1. Prove that if $A$ and $Q$ are $n \times n$ matrices over $\mathbb{F}$, with $Q$ invertible, then $\operatorname{det}\left(Q^{-1} A Q\right)=$ $\operatorname{det}(A)$. Deduce that if $V$ is a finite-dimensional vector space and $T: V \rightarrow V$ is a linear transformation, then $\operatorname{det}\left([T]_{\beta}\right)$ does not depend on the choice of the ordered basis $\beta$ of $V$.
2. A matrix of the form

$$
A=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1}
\end{array}\right)
$$

is called a Vandermonde matrix.
(a) Show that the determinant $\operatorname{det}(A)$ is a polynomial in the variables $x_{1}, x_{2}, \ldots, x_{n}$ in which every term has degree $n(n-1) / 2$. (The degree of a monomial $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$ is defined to be $a_{1}+\cdots+a_{n}$.)
(b) Show that $\operatorname{det}(A)$ becomes zero if $x_{i}=x_{j}$ for any $i$ and $j$. This implies that $\operatorname{det}(A)$ is divisible as a polynomial in the $x_{i}$ 's by the product

$$
\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) .
$$

(c) Show that the coefficient of the monomial $x_{1}^{0} x_{2}^{1} \cdots x_{n}^{n-1}$ in $\operatorname{det}(A)$ is equal to 1 .
(d) Deduce from the above that $\operatorname{det}(A)$ is equal to the product in part (b).
3. Suppose $M$ is an $n \times n$ matrix of the form

$$
M=\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)
$$

where $A$ and $C$ are square. Express $\operatorname{det}(M)$ in terms of $\operatorname{det}(A)$ and $\operatorname{det}(C)$. Give reasoning to justify your answer.
4. Prove that an upper triangular matrix (that is, a square matrix $A$ such that $a_{i j}=0$ for $j<i$ ) is invertible if and only if all its diagonal entries are non-zero.
5. Suppose $f: M_{m \times n}(\mathbb{F}) \rightarrow \mathbb{F}$ is an $m$-multilinear function of the rows of $A \in M_{m \times n}$ (recall that this means $f$ is linear as a function of each row separately when the other rows are held constant). Suppose $f$ also has the property that $f(A)=0$ whenever $A$ has two
equal rows. Prove that $f(B)=-f(A)$ whenever $B$ is obtained from $A$ by switching two rows.
6. A permutation of order $n$ is a bijective function $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$. If $\pi$ is a permutation of order $n$, we define the permutation matrix $P(\pi)$ to be the $n \times n$ matrix with $(\pi(j), j)$-th entry equal to 1 for all $j=1, \ldots, n$, and all other entries equal to zero.
(a) Show that the linear transformation $L_{P(\pi)}$ sends $e_{j}$ to $e_{\pi(j)}$.
(b) Show that $L_{P(\pi)}$ sends $\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)^{T}$ to $\left(x_{1}, \ldots, x_{n}\right)^{T}$.
(c) The inversion number $i(\pi)$ is defined to be the number of pairs of integers $1 \leq j<$ $k \leq n$ such that $\pi(j)>\pi(k)$. Prove that $\operatorname{det}(P(\pi))=(-1)^{i(\pi)}$.

