Math 110-Linear Algebra
 Fall 2009, Haiman
 Problem Set 8

Due Monday, Oct. 26 at the beginning of lecture.

1. For each of the following statements, either prove that it is true for all systems of m linear equations in n unknowns, or give a counterexample.
(a) If the system has a unique solution, then $m \geq n$.
(b) If $m \geq n$ and the system is consistent, then the solution is unique.
(c) Given a fixed coefficient matrix A, if the system $A x=b$ is consistent for every b, then $m \leq n$.
(d) If $m \leq n$, then the system is consistent.
2. Use Gaussian elimination to find all solutions to each of the following systems of linear equations:
(a)

$$
\left(\begin{array}{ccccc}
-3 & -1 & 0 & 3 & -2 \\
-5 & 3 & 2 & -2 & 1 \\
-1 & 1 & 3 & 2 & 2 \\
0 & -2 & 4 & 9 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
8 \\
6 \\
-4 \\
11
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{ccccc}
-3 & -1 & 0 & 3 & -2 \\
-5 & 3 & 2 & -2 & 1 \\
-1 & 1 & 3 & 2 & 2 \\
0 & -2 & 4 & 9 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-12 \\
-11 \\
-6 \\
-13
\end{array}\right)
$$

3. Section 3.4, Exercise 5
