Math 110-Linear Algebra
 Fall 2009, Haiman
 Problem Set 7

Due Monday, Oct. 19 at the beginning of lecture.
Reminder: Midterm 2 is Friday, Oct. 23, covering material from Problem Sets 1 through 7. The emphasis will be on Problem Sets 4 through 7, but you are responsible for knowing the earlier material as well.

1. For the matrices A and D in Section 3.2, Example 3, find invertible matrices G and F such that $D=G A F$.
2. Let $T: P_{4}(\mathbb{R}) \rightarrow P_{4}(\mathbb{R})$ be the linear transformation defined by $T(f(x))=f(x)+$ $f(1-x)$.
(a) Find the matrix of T with respect to the basis of monomials $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$, and calculate $\operatorname{rank}(T)$.
(b) Find a basis of the nullspace $N(T)$.
3. Invert the matrix

$$
\left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

and show your method (i.e., don't just plug it into a computer algebra program).
4. Prove that every 2×2 invertible matrix over \mathbb{R} can be expressed as a product of elementary matrices using only the following three types:

$$
E=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad F=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \quad D(a, b)=\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right) \text { where } a, b \neq 0
$$

Hint: first express each 2×2 elementary matrix as a product of the above types of matrices.
5. In this problem we'll work out a more conceptual proof, using dual spaces, of the fact that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$ for any $A \in M_{m \times n}(\mathbb{F})$. Recall that a linear transformation $\lambda: V \rightarrow \mathbb{F}$ is called a linear functional on V. The vector space $\mathcal{L}(V, \mathbb{F})$ of all linear functionals on V is called the dual space of V, and denoted V^{*}.
(a) Given a linear transformation $T: V \rightarrow W$, we define $T^{*}: W^{*} \rightarrow V^{*}$ by $T^{*}(\lambda)=\lambda T$. Use Theorem 2.10 to show that T^{*} is linear.
(b) Let V be finite-dimensional, with ordered basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$. Using Theorem 2.9, we can define for each $i=1, \ldots, n$ a unique linear functional λ_{i} such that

$$
\lambda_{i}\left(v_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Using the basis $\{1\}$ in \mathbb{F}, show that the coordinate vector $\left[\lambda_{i}\right]_{\beta}^{\{1\}}$ is the i-th unit vector e_{i}. Deduce that $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is a basis of V^{*}, and in particular, that $\operatorname{dim}\left(V^{*}\right)=n=\operatorname{dim}(V)$. The basis $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is called the dual basis to the basis β of V.
(c) Let V and W be finite-dimensional, with ordered bases β and γ. Let β^{\prime} and γ^{\prime} be their dual bases in V^{*} and W^{*}. Show that if $T: V \rightarrow W$ is a linear transformation, then $\left[T^{*}\right]_{\gamma^{\prime}}^{\beta^{\prime}}=\left([T]_{\beta}^{\gamma}\right)^{T}$.
(d) If $S \subseteq V$ is a subspace, we define $S^{\perp}=\left\{\lambda \in V^{*}: \lambda(v)=0\right.$ for all $\left.v \in S\right\}$. Show that S^{\perp} is a subspace of V^{*}. When V is finite dimensional, with basis $\left\{v_{1}, \ldots, v_{n}\right\}$, and dual basis $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ in V^{*}, show that if $S=\operatorname{Span}\left(v_{1}, \ldots, v_{k}\right)$, then $S^{\perp}=\operatorname{Span}\left(\lambda_{k+1}, \ldots, \lambda_{n}\right)$.
(e) Use part (d) to prove that if V is finite-dimensional and $S \subseteq V$ is any subspace, then $\operatorname{dim}\left(S^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}(S)$.
(f) Prove that $N\left(T^{*}\right)=R(T)^{\perp}$.
(g) Use parts (e) and (f) and the dimension theorem to prove that $\operatorname{rank}(T)=\operatorname{rank}\left(T^{*}\right)$.
(h) Use parts (c) and (g) to prove that the rank of a matrix is equal to the rank of its transpose.

