
Math 110—Linear Algebra
Fall 2009, Haiman

Problem Set 7

Due Monday, Oct. 19 at the beginning of lecture.

Reminder: Midterm 2 is Friday, Oct. 23, covering material from Problem Sets 1 through
7. The emphasis will be on Problem Sets 4 through 7, but you are responsible for knowing
the earlier material as well.

1. For the matrices A and D in Section 3.2, Example 3, find invertible matrices G and
F such that D = GAF .

2. Let T : P4(R) → P4(R) be the linear transformation defined by T (f(x)) = f(x) +
f(1− x).

(a) Find the matrix of T with respect to the basis of monomials {1, x, x2, x3, x4}, and
calculate rank(T ).

(b) Find a basis of the nullspace N(T ).

3. Invert the matrix 
0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0


and show your method (i.e., don’t just plug it into a computer algebra program).

4. Prove that every 2 × 2 invertible matrix over R can be expressed as a product of
elementary matrices using only the following three types:

E =

(
1 1
0 1

)
, F =

(
1 0
1 1

)
, D(a, b) =

(
a 0
0 b

)
where a, b 6= 0.

Hint: first express each 2× 2 elementary matrix as a product of the above types of matrices.

5. In this problem we’ll work out a more conceptual proof, using dual spaces, of the
fact that rank(A) = rank(AT ) for any A ∈ Mm×n(F). Recall that a linear transformation
λ : V → F is called a linear functional on V . The vector space L(V,F) of all linear functionals
on V is called the dual space of V , and denoted V ∗.

(a) Given a linear transformation T : V → W , we define T ∗ : W ∗ → V ∗ by T ∗(λ) = λT .
Use Theorem 2.10 to show that T ∗ is linear.

(b) Let V be finite-dimensional, with ordered basis β = {v1, . . . , vn}. Using Theorem 2.9,
we can define for each i = 1, . . . , n a unique linear functional λi such that

λi(vj) =

{
1 if i = j

0 otherwise.



Using the basis {1} in F, show that the coordinate vector [λi]
{1}
β is the i-th unit vector ei.

Deduce that {λ1, . . . , λn} is a basis of V ∗, and in particular, that dim(V ∗) = n = dim(V ).
The basis {λ1, . . . , λn} is called the dual basis to the basis β of V .

(c) Let V and W be finite-dimensional, with ordered bases β and γ. Let β′ and γ′ be
their dual bases in V ∗ and W ∗. Show that if T : V → W is a linear transformation, then

[T ∗]β
′

γ′ =
(
[T ]γβ

)T
.

(d) If S ⊆ V is a subspace, we define S⊥ = {λ ∈ V ∗ : λ(v) = 0 for all v ∈ S}. Show
that S⊥ is a subspace of V ∗. When V is finite dimensional, with basis {v1, . . . , vn}, and dual
basis {λ1, . . . , λn} in V ∗, show that if S = Span(v1, . . . , vk), then S⊥ = Span(λk+1, . . . , λn).

(e) Use part (d) to prove that if V is finite-dimensional and S ⊆ V is any subspace, then
dim(S⊥) = dim(V )− dim(S).

(f) Prove that N(T ∗) = R(T )⊥.

(g) Use parts (e) and (f) and the dimension theorem to prove that rank(T ) = rank(T ∗).

(h) Use parts (c) and (g) to prove that the rank of a matrix is equal to the rank of its
transpose.


