Math 110-Linear Algebra
 Fall 2009, Haiman
 Problem Set 6

Due Monday, Oct. 12 at the beginning of lecture.

1. Section 2.4, Exercise 9.
2. Section 2.4, Exercise 16.
3. Prove or disprove the following statement: the set of invertible linear transformations from V to W is a subspace of $\mathcal{L}(V, W)$.
4. Let R be the rotation in \mathbb{R}^{3} about the x-axis, by $\pi / 4$ in the direction from the y-axis towards the z-axis. Let S be the rotation in \mathbb{R}^{3} about the z-axis, by $\pi / 4$ in the direction from the x-axis toward the y-axis.
(a) Find the matrices with respect to the standard basis in \mathbb{R}^{3} of R, S and $R S$.
(b) Assuming that $R S$ is also a rotation (in fact, it is true that the composite of any two rotations is a rotation), find a vector in the direction of the axis of rotation for $R S$. Hint: such a vector v satisfies the equation $R S(v)=v$.
5. Let A and B be the matrices of the rotations R and S in Problem 2. Find a change of coordinate matrix Q such that $B=Q^{-1} A Q$.
6. Let V be a finite dimensional vector space. Let α, β, γ and δ be ordered bases of V.
(a) If the change of coordinate matrices $[I]_{\alpha}^{\beta}$ and $[I]_{\gamma}^{\delta}$ are equal, does it follow that $\alpha=\gamma$ and $\beta=\delta$?
(b) If $[I]_{\alpha}^{\beta}=[I]_{\alpha}^{\gamma}$, does it follow that $\beta=\gamma$?

Justify your answers.

