Math 110-Linear Algebra
 Fall 2009, Haiman
 Problem Set 5

Due Monday, Oct. 5 at the beginning of lecture.

1. Given vector spaces V and W over a field \mathbb{F}, and subspaces $V^{\prime} \subseteq V, W^{\prime} \subseteq W$, show that each of the following sets of linear transformations is a subspace of $\mathcal{L}(V, W)$:
(a) $\left\{T: V \rightarrow W\right.$ such that $\left.V^{\prime} \subseteq N(T)\right\}$
(b) $\left\{T: V \rightarrow W\right.$ such that $\left.R(T) \subseteq W^{\prime}\right\}$
2. Let V be a finite-dimensional vector space and $T: V \rightarrow V$ a linear transformation. Prove that if $T^{2}=0$, then $\operatorname{dim}(R(T)) \leq \operatorname{dim}(V) / 2 \leq \operatorname{dim}(N(T))$.
3. Section 2.3, Exercise 9.
4. Recall that the trace $\operatorname{tr}(A)$ of a square matrix A is defined to be the sum of the diagonal entries $A_{i i}$. Show that for all $A \in M_{m \times n}(\mathbb{F})$ and $B \in M_{n \times m}(\mathbb{F})$, we have

$$
\operatorname{tr}(A B)=\operatorname{tr}(B A)
$$

(Note that $A B$ is $m \times m$ and $B A$ is $n \times n$, so they are square matrices.)
5. Let A be a matrix over \mathbb{F}. Prove that $\operatorname{rank}\left(L_{A}\right)=1$ if and only if there exist a non-zero row vector X and a non-zero column vector Y such that $A=Y X$.

