Math 110-Linear Algebra
 Fall 2009, Haiman
 Problem Set 4

Due Monday, Sept. 28 at the beginning of lecture.

1. If \mathbb{F} is any field, and n is a non-negative integer, we can define a corresponding element of \mathbb{F} to be the sum $1+1+\cdots+1$ in \mathbb{F} with n terms. (We usually denote this element by n as well, although strictly speaking this is bad notation, since the integer n and the element n of \mathbb{F} are two different things.) For example, in the two-element field $\mathbb{F}_{2}, 0$ stands for 0,1 for 1,2 for $1+1=0,3$ for $2+1=1$, and so on: for n even we will have $n=0$, and for n odd, $n=1$.

Now let $D: P(\mathbb{F}) \rightarrow P(\mathbb{F})$ be the unique linear operator whose values on the basis of monomials are given by $D(1)=0$ and $D\left(x^{n}\right)=n x^{n-1}$ for $n>0$.
(a) Show that for $\mathbb{F}=\mathbb{R}, D$ is differentiation, that is, $D(f(x))=f^{\prime}(x)$ for all $f(x) \in P(\mathbb{R})$.
(b) If $\mathbb{F}=\mathbb{F}_{2}$ is the two-element field, find a simple formula for the "second derivative" $D(D(f(x))$.
(c) Letting \mathbb{F} be arbitrary once again, prove that for all $f(x) \in P(\mathbb{F})$, we have $D(f(x))=$ $g(x, x)$, where $g(x, y)=(f(x)-f(y)) /(x-y)$. You may assume without proof the fact that the polynomial $f(x)-f(y)$ in two variables is always divisible by $(x-y)$, so $g(x, y)$ is a polynomial.
(d) Prove that the product rule $D(f(x) g(x))=f(x) D(g(x))+D(f(x)) g(x)$ holds over any field \mathbb{F}.
2. Section 2.2, Exercise 2, parts (e,f,g).
3. Let $T: V \rightarrow V$ be a linear transformation from a vector space V to itself. A subspace $W \subseteq V$ is called invariant for T if $T(W) \subseteq W$. In this case, the restriction of T to the domain W is a linear transformation from W to itself, denoted $\left.T\right|_{W}: W \rightarrow W$.

Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ be an ordered basis of V, and let $W=\operatorname{Span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)$. Prove that W is invariant for T if and only if the matrix $[T]_{\beta}$ has the block form

$$
\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right),
$$

where A is a $k \times k$ matrix, B is a $k \times(n-k)$ matrix, C is an $(n-k) \times(n-k)$ matrix, and 0 denotes the $(n-k) \times k$ zero matrix.

Also show that $\left[\left.T\right|_{W}\right]_{\left\{v_{1}, \ldots, v_{k}\right\}}=A$.

