Math 110-Linear Algebra
 Fall 2009, Haiman
 Problem Set 2

Due Monday, Sept. 14 at the beginning of lecture.

1. Section 1.5, Exercise 3.
2. Let S be the subset

$$
\left\{\sin ^{2}(x), \sin (2 x), \cos (2 x), 1\right\}
$$

of the vector space $\mathcal{F}(\mathbb{R}, \mathbb{R})$. Which subsets of S are linearly dependent and which are linearly independent?
3. Prove that if $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a finite, linearly independent set of vectors in a vector space V, then every vector $w \in \operatorname{Span}(S)$ has a unique expression as a linear combination

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

4. Find a basis of the subspace of symmetric matrices in $M_{3 \times 3}(\mathbb{R})$. What is the dimension of this subspace?
5. Prove that if V is a vector space over \mathbb{F}_{2} with finite dimension n, then V is a finite set. How many elements does it have?
