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ABSTRACT. We introduce a rational function Cn(q, t) and conjecture that it always
evaluates to a polynomial in q, t with non-negative integer coefficients summing to the
familiar Catalan number 1

n+1

(2n
n

)
. We give supporting evidence by computing the spe-

cializations Dn(q) = Cn(q, 1/q) q(
n
2) and Cn(q) = Cn(q, 1) = Cn(1, q). We show that,

in fact, Dn(q) q-counts Dyck words by the major index and Cn(q) q-counts Dyck paths
by area. We also show that Cn(q, t) is the coefficient of the elementary symmetric
function en in a symmetric polynomial DHn(x; q, t) which is the conjectured Frobenius

characteristic of the module of diagonal harmonic polynomials. On the validity of cer-
tain conjectures this yields that Cn(q, t) is the Hilbert series of the diagonal harmonic

alternants. It develops that the specialization DHn(x; q, 1) yields a novel and combi-
natorial way of expressing the solution of the q-Lagrange inversion problem studied

by Andrews [2], Garsia [5] and Gessel [11]. Our proofs involve manipulations with
the Macdonald basis {Pµ(x; q, t)}µ which are best dealt with in Λ-ring notation. In

particular we derive here the Λ-ring version of several symmetric function identities.

Introduction

Our q, t-Catalan sequence is defined by setting

Cn(q, t) =
∑

µ`n

t2Σlq2Σa (1 − t)(1− q) ∏0,0 (1− qa′tl′) ∑ qa
′
tl
′

∏
(qa − tl+1)(tl − qa+1)

I.1

where the sum is over all partitions of n. All products and sums in the µth summand are
over the cells of µ and the parameters l, l′, a, a′ denote the leg, coleg, arm and coarm of a
given cell. That is, for a given cell s, when µ is depicted by the French convention (see the
figure below) l, l′, a, a′ give the number of cells that are strictly north, south, east and west of
s in µ. The symbol

∏0,0 is to express that this product omits the corner cell with l′ = a′ = 0.

1Work carried out under NSF grant support.
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On the surface, I.1 appears to define only a rational function of q and t. Neverthe-
less, computer data and representation theoretical considerations lead us to conjecture that
Cn(q, t) evaluates for all n to a polynomial with non-negative integer coefficients and to-

tal degree
(
n
2

)
. In fact, a perusal of the tables in the appendix quickly reveals that the

coefficients of the resulting polynomial always add up to the familiar Catalan number

Cn =
1

n+ 1

(
2n

n

)
. I.2

To support our conjecture we shall show here that the specializations

Dn(q) = Cn(q, 1/q) q(
n
2) and Cn(q) = Cn(q, 1) = Cn(1, q) I.3

are themselves familiar q-analogues of the Catalan number. More precisely we show that

Dn(q) =
1

[n+ 1]q

[
2n

n

]

q
I.4

and that Cn(q) satisfies the recurrence

Cn(q) =
n∑

k=1

qk−1Ck−1(q) Cn−k(q) (with C0 = 1) I.5

The proof of these identities is obtained by computations involving bases of symmetric
polynomials, which are best expressed in Λ-ring notation, a device which we pause to explain
very briefly, referring the reader to [3] or [8] for a fuller account. We represent an alphabet
of variables by a formal sum, usually denoted with a capital letter, as for instance

X = x1 + x2 + · · ·+ xn.
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More generally, alphabets are allowed contain monomials as well as variables, so that mul-
tiplication of alphabets makes sense. Now, given a symmetric function f , the plethystic
substitution of X into f , denoted f [X], is merely

f [X] = f(x1, x2, . . . , xn).

One extends this to alphabets involving negative letters by writing f (uniquely) as a poly-
nomial in the power sums pk and setting

pk[X − Y ] = pk[X]− pk[Y ].

This is well-defined and also yields

pk[XY ] = pk[X]pk[Y ].

More generally, there is no difficulty in extending the notion to infinite alphabets, so that
we may consider such expressions as

f [ X
1−q ] = f [X + qX + q2X + · · ·];

note that the replacement f [X] 7→ f [ X
1−q ] is inverse to f [X] 7→ f [X(1 − q)], as we would

expect.

It develops that the proof of I.5 is intimately related to the q-Lagrange inversion problem
studied by Andrews [2], Garsia [5] and Gessel [11]. To see how this comes about we need to
review some material concerning the Macdonald bases {Pµ(x; q, t)}µ, {Qµ(x; q, t)}µ defined
in [19]. Recall that {Pµ(x; q, t)}µ is the unique family of polynomials which is triangularly
related (in dominance order) to the Schur function basis and satisfies a Cauchy identity
which, in Λ-ring notation, can be written in the form

hn[XY 1−t
1−q ] =

∑

µ`n
Qµ(x; q, t) Pµ(y; q, t), I.6

with

Qµ(x; q, t) =

∏
(1− qatl+1)

∏
(1− qa+1tl)

Pµ(x; q, t), I.7

where both products run over all the cells of µ and the parameters l, a are respectively the
leg and the arm of the cell as defined above. Macdonald also sets

Jµ(x; q, t) =
∏

(1− qatl+1) Pµ(x; q, t) =
∏

(1− qa+1tl) Qµ(x; q, t), I.8

and conjectures that Jµ(x; q, t) has an expansion of the form

Jµ(x; q, t) =
∑

λ`n
Sλ[X(1− t)] Kλµ(q, t) I.9

where Sλ(x) is the customary Schur function, and Kλµ(q, t) is a polynomial with non-negative
integer coefficients. Here we shall have to deal with the two bases

Hµ(x; q, t) = Jµ[ X
1−t ; q, t] =

∑

λ`n
Sλ(x) Kλµ(q, t) I.10
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and
H̃µ(x; q, t) = Hµ(x; q, 1/t) tn(µ) =

∑

λ`n
Sλ(x) K̃λµ(q, t) I.11

where as in [19] we set

n(µ) =
∑

l =
∑

l′ =
∑

(i− 1)µi =
∑(

µ′i
2

)
. I.12

In fact, to simplify our notation let us also set

∑
qa
′
tl
′

= Bµ(q, t)∏0,0 (1 − qa′tl′) = Πµ(q, t)∏
(1− qatl+1) = hµ(q, t)∏
(1− tlqa+1) = h′µ(q, t)∏
(qa − tl+1) = h̃µ(q, t)∏
(tl − qa+1) = h̃′µ(q, t).

I.13

This given we may simply write

Cn(q, t) =
∑

µ`n

t2n(µ)q2n(µ′) (1 − t)(1− q) Πµ(q, t) Bµ(q, t)

h̃µ(q, t) h̃′µ(q, t)
. I.14

Now it develops that this expression is none other than the coefficient of the familiar elemen-
tary symmetric function en(x) in the Schur function expansion of the symmetric polynomial

DHn(x; q, t) =
∑

µ`n

H̃µ(x; q, t) tn(µ)qn(µ′) (1− t)(1− q) Πµ(q, t) Bµ(q, t)

h̃µ(q, t) h̃′µ(q, t)
. I.15

In fact, it can be shown (see Theorem 2.2 below) that

H̃µ(x; q, t) |S1n
= K̃1n,µ(q, t) = tn(µ)qn(µ′), I.16

where the vertical bar denotes extraction of a coefficient—in this case the coefficient of
S1n—in the Schur function expansion of the symmetric function H̃µ(x; q, t). Equation I.16
yields

Cn(q, t) = DHn(x; q, t)|S1n
. I.17

Given this expression for Cn(q, t) in terms of DHn(x; q, t), we shall show that equations I.4
and I.5 follow from the more general specializations

DHn(x; q, 1/q) q(
n
2) =

1

[n+ 1]q
en[X 1−qn+1

1−q ] I.18

and

DHn(x; q, 1) =
∑

µ`n

( ∏

i

q(
µi
2 )hµi[

X
1−q ]

)
fµ[1− q], I.19

where fµ denotes the so-called forgotten basis element indexed by µ.
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The connection with q-Lagrange inversion derives from the fact that if for convenience
we set

kn(x; q) = kn(q) = DHn(x; q, 1) I.20

then the formal series
f(z) = z

∑

n≥0

kn(q) qnzn I.21

is the q-Lagrange inverse of the series

F (z) =
∑

n≥1

Fn z
n =

z

E(z)
where E(z) =

∑

n≥0

en(x) zn. I.22

More precisely we show that

∑

n≥1

Fn f(z)f(zq) · · · f(zqn−1) = z. I.23

The contents of this paper are divided into four sections. In the first we review the
q-Lagrange inversion results of [5] and recast them in Λ-ring notation. As a byproduct
we also obtain a novel and combinatorial way of expressing the solution of the Andrews-
Garsia-Gessel q-Lagrange inversion problem. In the second section we prove the identities
I.18 and I.19 and derive from them I.4 and I.5. In the third section we briefly review the
representation theoretical background that underlies all our computations. We refer the
reader to [7],[8], and [19] for further information covering this material. The main object
of this section is to show that all the conjectures given in [12] concerning the module of
diagonal harmonic polynomials can be replaced by the single statement that DHn(x; q, t)
is the bivariate Frobenius characteristic of this module. Recent results [13] by the second
author have also brought forward a 2-parameter family C (m)

n (q, t) of rational expressions
which reduce to Cn(q, t) for m = 1. Computer data leads to the conjecture that C (m)

n (q, t) is

(for m,n ≥ 1) a polynomial with non-negative coefficients adding up to
(
mn+n
n

)
/(1+nm). In

the fourth section we present some evidence supporting this conjecture by extending some of
the methods and results of Sections 1 and 2. We conclude by presenting some further open
problems and conjectures which arise in the study of this new family.

Acknowledgement

We are indebted here to A. Lascoux who more than decade ago showed the first author
how to recast the solution of the classical Lagrange inversion problem as a symmetric function
identity.

1. q-Lagrange inversion in Λ-ring notation

The general q-Lagrange inversion problem we are concerned with may be stated as follows.
We are given a formal power series

F (z) =
∑

k≥1

Fk z
k (F1 = 1) 1.1
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and we are seeking a formal power series

f(z) =
∑

k≥1

fk z
k (f1 = 1) 1.2

which satisfies the equation
∑

k≥1

Fk f(z)f(zq) · · · f(zqk−1) = z. 1.3

Note that equating the coefficients of zn we obtain the sequence of identities

fn = −
n∑

k=2

Fk f(z)f(zq) · · · f(zqk−1) |zn (n ≥ 2) 1.4

which recursively determine all the coefficients of f(z). Thus the solution of 1.3 exists and
is unique. Our task is to show that a very useful form of the solution may be obtained by
rewriting one of the basic identities given in [5] in Λ-ring notation. To this end we need to
recall some of the contents of [5].

We begin with the following fundamental fact:

Proposition 1.1
For any two sequences {θn}n and {φn}n we have

∑

n≥0

θn f(z)f(zq) · · · f(zqn−1) =
∑

n≥0

φn z
n 1.5

if and only if ∑

n≥0

θn z
n =

∑

n≥0

φn F (z)F (z/q) · · ·F (z/qn−1). 1.6

See [5], Theorem 1.1 for the proof of this result.

In what follows we work with the collection FP(q) of all formal power series

θ(z) =
∑

n≥0

θn(q) zn 1.7

whose coefficients θn(q) are rational functions of q. This collection is closed under all stan-
dard operations on formal power series including taking logarithms, exponentials, functional
composition and q-Lagrange inversion. For instance, given the equation

∑

n≥0

θn z
n = exp

∑

k≥1

pk
k
zk, ( θ0 = 1) 1.8

one can compute the pk ’s from the θn ’s or vice versa by means of the Newton formulas

pk(θ) = det




θ1 1 0 · · · · · · 0

2θ2 θ1 1 · · · · · · 0

3θ3 θ2 θ1 1 · · · 0

...
...

...
. . .

. . . 0

· · · · · · · · · · · · θ1 1

kθk θk−1 · · · · · · θ2 θ1




1.9
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and

θk(p) = det




p1 −1 0 · · · · · · 0

p2 p1 −2 · · · · · · 0

p3 p2 p1 −3 · · · 0

...
...

...
. . .

. . . 0

· · · · · · · · · · · · p1 −k+1

pk pk−1 · · · · · · p2 p1




1.10

which are easily derived by differentiating 1.8, equating coefficients of equal powers of z, and
applying Cramer’s rule.

In particular, the starring operations of [5]

θ(z) → θ∗(z) = exp
∑
k≥1

pk(θ)
k

zk

1−qk ,

θ(z) → ∗θ(z) = exp
∑
k≥1

pk(θ)
k

zk

1−(1/q)k

1.11

send an element θ(z) ∈ FP(q) with θ0 = 1 into another such element. It is easy to verify
from 1.11 that we have (when θ0 = 1)

θ(z)θ(zq) · · · θ(zqn−1) =
θ∗(z)

θ∗(zqn)
and θ(z)θ(z/q) · · · θ(z/qn−1) =

∗θ(z)
∗θ(z/qn)

. 1.12

Two other basic operators on FP(q) introduced in [5] are roofing and unroofing, respec-
tively defined by setting

∧θ(z) =
∑

n≥0

θn q
−(n2) zn and ∨θ(z) =

∑

n≥0

θn q
(n2) zn. 1.13

Un-roofing was introduced in [5] to untangle q-products of the form

A ⊗q B (z) =
∑

h≥0

Ah z
h B(z/qh) 1.14

More precisely, we have
∨ ( A ⊗q B) (z) = (∨A)(z) (∨B)(z), 1.15

as can be easily verified by equating coefficients of zn and using the simple identity
(
h+k

2

)
=
(
h
2

)
+
(
k
2

)
+ h k.

It is standard practice in the classical Lagrange inversion theory to write the given formal
series F (z) in the form

F (z) =
z

E(z)
=

z
∑
n≥0 En zn

(E0 = 1). 1.16

This given, one of the expressions for the solution of 1.3 given in [5] may be written in the
form

f(z) = z
∨∗E(zq)
∨∗E(z)

, 1.17

7



a result we will shortly re-derive in proving Theorem 1.1 below.

The main difficulty we encounter in applying formula 1.17 consists in the problem of
inverting the formal series ∨∗E(z). It develops that this inversion can be easily carried out
by recasting 1.17 as a symmetric function identity. To see how this comes about we need to
make a slight change of notation. Because of the algebraic independence of the elementary
symmetric functions en(x), there is no loss in assuming that the coefficientsEn can be written
in the form

En = en(x1, x2, x3, . . .) = en(x),

for a suitable infinite alphabet x = {x1, x2, x3, . . .}. This point of view enables us to derive
from 1.17 a remarkable expression for the coefficients of the solution of 1.3. To state the
result in a form convenient for our applications we rewrite our unknown series in the form

f(z) = z K(zq) = z
∑

n≥0

kn(q) zn qn. 1.18

This simply amounts to setting
fn = kn−1(q)qn−1. 1.19

This given we can show that 1.17 is equivalent to the following sequence of identities:

Theorem 1.1
For n = 1, 2, . . . we have

kn(q) =
∑

µ`n

( ∏

i

q(
µi
2 ) hµi [

X
1−q ]

)
fµ[1− q], 1.20

where fµ is the ‘forgotten’ basis element indexed by µ.

Proof
Proposition 1.1 gives that 1.3 is equivalent to

∑

k≥1

fk F (z)F (z/q) · · ·F (z/qk−1) = z. 1.21

Rewriting F (z) according to 1.16, this becomes

∑

k≥1

fk
zkq−(k2)

E(z)E(z/q) · · ·E(z/qk−1)
= z.

Multiplying both sides by ∗E(z) and using the second equation in 1.12 with θ replaced by
E gives ∑

k≥1

fk z
kq−(k2)∗E(z/qk) = z ∗E(z).

By 1.15, unroofing both sides untangles this q-product into the equation

f(z) ∨∗E(z) = ∨ (z ∗E(z)) = z ∨∗E(zq).
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This establishes 1.17. Substituting the expression in 1.18 for f(z) and replacing z by z/q
yields the identity

K(z) =
∨∗E(z)
∨∗E(z/q)

. 1.22

To invert the series ∨∗E(z/q) we start by writing ∗E(z/q) in exponential form and use Λ-ring
notation. This yields the following sequence of equalities:

∗E(z/q) = exp
∑
k≥1

pk(x)
k

(−1)k−1(z/q)k

1−(1/q)k

= exp
∑
k≥1

pk(x)
k

(−1)kzk

1−qk

= exp
∑
k≥1

pk [ X
1−q ]

k
(−z)k

=
∑
m≥0 hm[ X

1−q ] (−z)m

where in the present context pk(x) and hm(x) simply denote the power sum and complete
homogeneous symmetric functions in the alphabet x = {x1, x2, . . .}. This yields us the
expression

∨∗E(z/q) =
∑

m≥0

hm[ X
1−q ] q

(m2 )(−z)m. 1.23

The same reasoning that allowed us to write 1.16 yields that we shall have

q(
m
2 ) hm[ X

1−q ] = hm[A] 1.24

for some suitable infinite alphabet A. Substituting in 1.23 we get

∨∗E(z/q) =
∑
m≥0 hm[A] (−z)m

= exp
(∑

k≥1
pk [A]
k

(−z)k
)
,

1.25

where again, pk[A] denotes the power sum in the alphabet A. In this form ∨∗E(z/q) is easily
inverted. Namely, we have

1
∨∗E(z/q)

= exp
(
−∑k≥1

pk[A]
k

(−z)k
)
.

Multiplying this by 1.25 with z replaced by zq and using 1.22 gives

K(z) = exp
(∑

k≥1
pk [A]
k

(−1)k (qk − 1) zk
)

= exp
(∑

k≥1
pk [A]
k

(−1)k−1 (1 − qk) zk
)

= exp
(∑

k≥1
pk [A(1−q)]

k
(−1)k−1 zk

)

=
∑
m≥0 em[A(1− q)] zm

In particular, equating coefficients of zn we derive that

kn(q) = en[A(1− q)]. 1.26
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On the other hand, a simple argument based on the fact that the elementary and forgotten
bases are dual with respect to the Hall inner product (see [20]) yields us the identity

en[A(1− q)] =
∑

µ`n
hµ[A] fµ[1− q]. 1.27

and 1.20 follows then immediately from the definition 1.24 of the alphabet A.

Remark 1.1
We should point out that 1.24 and our referring to A as an alphabet is only a device to

guide us into the proper use of matrices relating the various bases of symmetric functions.
For instance, if {cn}n is any sequence whatsoever, writing it in the form cn = hn[A] allows
us to denote by en[A] the sequence {dn}n which is related to cn in the same manner the
sequence {en(x)}n of elementary symmetric functions is related to the sequence {hn(x)}n of
homogeneous symmetric functions. In particular, since in any alphabet x with more than 2
letters e2(x) = h2

1(x)− h2(x), then e2[A] is only a convenient way to refer to the polynomial
d2 = c2

1 − c2.

Our next task is to show that the coefficient kn(q) in the solution 1.20 of our q-Lagrange
inversion problem has also a remarkable combinatorial interpretation. To do this we need
some notation. We recall that the points of the x, y-plane with integral coordinates are called
lattice points and the squares with lattice vertices are usually referred to as lattice squares.
The lattice squares with unit side will be referred to here simply as cells. The cells with
vertices (i, i), (i + 1, i + 1) will be called diagonal cells. The lattice square with vertices
(0, 0), (n, n) will be denoted by SQ[n]. The collection of all diagonal cells in SQ[n] will be
referred to as the diagonal of SQ[n]. This given, we let Dn denote the collection of all lattice
paths from (0, 0) to (n, n) which proceed by NORTH and EAST steps and constantly remain
weakly above the diagonal of SQ[n]. Paths in Dn are referred to as Dyck paths; it is well

known that Dn has cardinality equal to the Catalan number Cn = 1
n+1

(
2n
n

)
. Given D ∈ Dn

we let a(D) denote the number of cells below D and strictly above the diagonal. We may
interpret a(D) as the area between D and the diagonal of SQ[n]. The figure below shows an
element of D9, the diagonal of SQ[9] (dark shading) and the area between (light shading).
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To each path D ∈ Dn we associate a vector I(D) = (i1 ≤ i2 ≤ · · · ≤ in), where ik is the
x-coordinate of the unique NORTH edge (ik, k − 1) → (ik, k) in the path. It is easy to see
that a vector I = (i1 ≤ i2 ≤ · · · ≤ in) comes from a path of Dn if and only if its coordinates
satisfy the conditions

ik ≤ k − 1 (k = 1, 2, . . . , n− 1).

For instance in the example above

I(D) = (0, 0, 0, 0, 2, 2, 2, 5, 5).

It is also easy to see that the quantity

i1 + i2 + · · ·+ in

gives the number of cells of SQ[n] that are weakly above D. This immediately gives the
identity

a(D) =
(
n
2

)
− i1 − i2 − · · · − in. 1.28

We can also represent the vector I(D) in the form 0α01α1 · · · (n − 1)αn−1 where αi = αi(D)
gives the number of NORTH steps of D along the line x = i. In our example this would be
α0 = 4, α2 = 3, α5 = 2, all other αi = 0.

It develops that the coefficient kn(q) can be obtained by an appropriate q-counting of the
elements of Dn. This connection is a simple consequence of a factorization of the paths of
Dn. More precisely, given D ∈ Dn and given that α0(D) = k we can break D up (see figure
below) into a vertical step of length k followed by a sequence of paths

Dm1 ,Dm2 , . . . ,Dmk

11



each preceded by an EAST step, with Dmi ∈ Dmi and

m1 +m2 + · · ·+mk = n− k (mi ≥ 0) 1.29

Of course, if one of the summands here is 0 the corresponding path must be assumed to be
consisting of a single lattice point and all we see is the EAST step that precedes it. Moreover,
we require that the path Dmi has its first and last vertices on the line x = i+ y− k. A look
at the figure below should give a clear idea on how this factorization should be carried out.

Symbolically, we can represent this factorization by writing

D = Vk +
k∑

i=1

(Ei +Dmi) 1.30

where Vk denotes the initial vertical portion of D consisting of the first k NORTH steps, and
the symbol Ei represents the EAST step that precedes Dmi . Note that the number of cells
weakly east of Dmi and strictly west of the diagonal of SQ[n] is given by a(Dmi) + (k− i)mi,
thus the factorization in 1.30 yields us the identity

a(D) =
(
k
2

)
+

k∑

i=1

( a(Dmi) + (k − i)mi ) , 1.31

where the
(
k
2

)
is contributed by the cells weakly east of Vk. This given, we can state our

combinatorial interpretation of kn(q) in the following form.

Theorem 1.2

kn(q) =
∑

D∈Dn
qa(D)

n−1∏

i=0

eαi(D)(x) 1.32
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Proof
Denote for a moment the right-hand side of 1.32 by φn(q). The factorization 1.30 and

the identity 1.31 imply that we must have

φn(q) =
n∑

k=1

q(
k
2) ek(x)

∑

m1+···+mk=n−k

k∏

i=1

∑

Dmi∈Dmi
qa(Dmi)+(k−i)mi

mi−1∏

j=0

eαj(Dmi)(x)

From this we immediately derive that φn(q) satisfies the recursion

φn(q) =
n∑

k=1

q(
k
2) ek(x)

∑

m1+···+mk=n−k

k∏

i=1

q(k−i)mi φmi(q), 1.33

where we must adopt the convention that φ0(q) = 1. This given, to complete our argument
we need only show that kn(q) itself satisfies the same recursion. Our point of departure is
equation 1.21, which after multiplying both sides by E(z) and using 1.16 becomes

∑

n≥1

fn z F (z/q) · · ·F (z/qn−1) = z E(z).

Canceling the common factor z and making the replacement z → zq we obtain

∑

n≥0

fn+1 F (z) · · ·F (z/qn−1) = E(zq).

We can use Proposition 1.1 once more and get

∑

n≥0

fn+1 z
n =

∑

n≥0

en(x) qn f(z)f(zq) · · · f(zqn−1). 1.34

But now 1.18 and 1.19 allow us to rewrite 1.34 in the form

∑

n≥0

kn(q) qn zn =
∑

n≥0

en(x) qn q(
n
2) zn K(zq)K(zq2) · · ·K(zqn).

Making the replacement z → z/q we finally obtain

∑

n≥0

kn(q) zn =
∑

n≥0

en(x) q(
n
2) zn K(z)K(zq) · · ·K(zqn−1).

Equating coefficients of zn yields the recursion

kn(q) =
n∑

k=1

ek(x) q(
k
2)

∑

m1+···+mk=n−k

k∏

i=1

q(i−1)mikmi(q)

which is plainly equivalent to the one in 1.33. This completes our proof.

2. Specializations and further identities
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To proceed with our developments we need to review some further material from the
theory of Macdonald polynomials. We recall that in [19] Macdonald introduces an operator
on the space Λn of symmetric polynomials in the variables {x1, x2, . . . , xn} by setting for
P ∈ Λn

δ1 P (x) =
n∑

i=1

Ai(x) T (i)
q P (x) 2.1

with

Ai(x) =
∏

j 6=i

txi − xj
xi − xj

2.2

and
T (i)
q P (x) = P (x1, . . . , xi−1, qxi, xi+1, . . . , xn). 2.3

It is shown there that the eigenvalues of δ1 are given by the sums

γµ =
∑

i=1

tn−i qµi (µ ` n). 2.4

We can see, that as long as q and t are generic, the γµ
′s are all distinct. This allows

Macdonald to construct Pµ(x; q, t) as the unique polynomial satisfying the conditions

a) δ1Pµ(x; q, t) = γµPµ(x; q, t)
b) Pµ(x; q, t) |Sµ(x) = 1

2.5

The polynomials H̃µ(x; q, t) which enter in our formula I.15 have a similar characteriza-
tion. It will be convenient here to express this characterization in Λ-ring notation. A first
step in this direction is provided by the following basic identity.

Theorem 2.1
For any symmetric polynomial P (x) we have

δ1 P (x) =
1

1− tP (x) +
tn

t− 1
P [X + q−1

tz
]Ω[z(t− 1)X] |z0 2.6

where

Ω[z(t− 1)X] =
∏

i

1− zxi
1 − ztxi

. 2.7

Proof
Before we proceed with our argument we must recall that all Λ-ring identities may be

deduced from the single basic principle that the operation pk[·] is a ring homomorphism:

pk[X + Y ] = pk[X] + pk[Y ] and pk[XY ] = pk[X]pk[Y ].

Thus if we define

Ω(x) =
∏

i

1

1− xi
= exp


∑

k≥1

pk(x)

k


 2.8
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then 2.7 becomes a simple consequence of the identity

pk[z(t− 1)X] = zk (tk − 1)
∑

i

xki . 2.9

This given, to show 2.6 it is best to verify it on the power symmetric function basis. Note
that since we may write for any integer m ≥ 1

T (i)
q pm(x) = pm[X + (q − 1)xi] = pm[X] + pm[q − 1]xmi ,

we see that for any partition µ = (µ1 ≥ µ2 ≥ · · · ≥ µk ≥ 1) we have (from 2.1)

δ1 pµ(x) =
∑n
i=1 Ai(x)

∏k
r=1 ( pµr [X] + pµr [q − 1] xµri )

=
∑
S⊆[1,k]

∏
r/∈S pµr [X]

∏
r∈S pµr [q − 1]

∑n
i=1 Ai(x) x

∑
r∈S µr

i .
2.10

Note next that the kernel in 2.7 has the z-partial fraction expansion

Ω[z(t− 1)X] =
1

tn
+
t− 1

tn

n∑

i=1

Ai(x)

1− tzxi
.

which gives that for an integer m we have

n∑

i=1

Ai(x) xmi =

{ tn−1
t−1

if m = 0
tn

t−1
1

(tz)m
Ω[zX(t− 1)] |z0 if m ≥ 1.

Using this identity for m =
∑
r∈S µr we can rewrite 2.10 in the form

δ1 pµ(x) = 1
1−t pµ(x) + tn

t−1

∑
S⊆[1,k]

∏
r/∈S pµr [X]

∏
r∈S

pµr [q−1]
(tz)µr

Ω[zX(t− 1)] |z0

= 1
1−t pµ(x) + tn

t−1

∏n
r=1

(
pµr [X] + pµr [

q−1
tz

]
)

Ω[zX(t− 1)] |z0

which reduces to 2.6 by the additivity of the power symmetric function.

Macdonald in [19] derives a number of specializations for his polynomial Pµ(x; q, t). One
of them plays an important role here. In Λ-ring notation it can be stated as follows.

Proposition 2.1

Pµ[1−u
1−t ; q, t] =

∏
(tl
′ − qa′ u)

∏
(1− qatl+1)

2.11

This yields the following specialization for our polynomial H̃µ(x; q, t).

Corollary 2.1
H̃µ[1− u; q, t] =

∏
(1− qa′tl′ u) 2.12

In particular we must have

n−1∑

r=0

ur K̃(1r ,n−r),µ(q, t) =
∏

0,0 (1 + qa
′
tl
′
u) 2.13
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Proof
Multiplying both sides of 2.11 by hµ(q, t) and using I.10 and I.8 gives

Hµ[1− u; q, t] = Jµ[1−u
1−t ; q, t] =

∏
(tl
′ − qa′ u).

Replacing t by 1/t and multiplying by tn(µ) we get from I.11

H̃µ[1− u; q, t] = tn(µ)
∏

(t−l
′ − qa′ u) =

∏
(1− tl′qa′ u),

as desired. Now, using I.11 again, this may be rewritten as

∑

λ

Sλ[1− u] K̃λµ(q, t) =
∏

(1− tl′qa′ u). 2.14

However, it is well known and easy to show that

Sλ[1− u] =
{

(−u)r (1 − u) if λ = (1r, n− r)
0 otherwise.

2.15

Thus 2.14 reduces to

n−1∑

r=0

(−u)r(1− u) K(1r ,n−r),µ(q, t) =
∏

(1 − tl′qa′ u)

and 2.13 follows upon division by 1 − u and changing the sign of u.

We are now in a position to derive our Λ-ring characterization of the polynomial
H̃µ(x; q, t). To this end let us set for any symmetric polynomial P (x)

∆1 P (x) = P [X]− P [X + (1−q)(1−t)
z

] Ω[−zX] |z0 . 2.16

This given we have

Theorem 2.2

a) ∆1 H̃µ(x; q, t) = (1 − t)(1− q)Bµ(q, t) H̃µ(x; q, t)

b) H̃µ(x; q, t) |en(x) = qn(µ′)tn(µ).
2.17

Proof
Using Theorem 2.1 we we can rewrite a) of 2.5 in the form

1

1 − t Pµ(x; q, t) +
tn

t− 1
Pµ[X + q−1

tz
; q, t] Ω[zX(t− 1)] |z0 = γµ Pµ(x; q, t).

Making the replacement X → X
1−t , multiplying both sides by hµ(q, t) and using I.8 we get

1

1− t Jµ[ X
1−t; q, t] +

tn

t− 1
Jµ[X−(1−q)(1−t)/tz

1−t ; q, t] Ω[−zX] |z0 = γµ Jµ[ X
1−t; q, t],
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which is converted by I.10 and 2.4 into

1

1 − t Hµ[X; q, t] +
tn

t− 1
Hµ[X − (1−q)(1−t)

tz
; q, t] Ω[−zX] |z0 =

(
n∑

i=1

tn−i qµi
)
Hµ[X; q, t].

Making the replacement t → 1/t, multiplying by tn(µ)+n−1 and using I.11 gives

tn

t−1
H̃µ(x; q, t) + 1

1−t H̃µ[X + (1−q)(1−t)
z

; q, t] Ω[−zX] |z0 =

(
n∑

i=1

ti−1 qµi
)
H̃µ[X; q, t]. 2.18

Now note that for a partition µ = (µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0) we have from I.13

(1 − q) Bµ(q, t) =
n∑

i=1

ti−1(1 − qµi) = tn−1
t−1
−

n∑

i=1

ti−1qµi

or better
n∑

i=1

ti−1qµi = tn−1
t−1
− (1− q)Bµ(q, t).

Substituting this in 2.18 we finally obtain

tn

t−1
H̃µ[X; q, t]+ 1

1−t H̃µ[X + (1−q)(1−t)
z

; q, t] Ω[−zX] |z0 =
(
tn−1
t−1
− (1 − q)Bµ(q, t)

)
H̃µ[X; q, t]

which is easily reduced to 2.17 a). Finally, equating coefficients of un−1 in both sides of 2.13
we get that the coefficient of the Schur function S1n(x) = en(x) is precisely as asserted in
2.17 b). This completes our proof.

Note that since the polynomials Bµ(q, t) are all distinct, 2.17 a) fixes H̃µ(x; q, t) up to
a multiplicative constant. Clearly, this freedom is removed by the knowledge of any one of
the coefficients in the Schur function expansion I.11. Thus we see that 2.17 a) together with
2.17 b) uniquely determine H̃µ(x; q, t). In particular we must have

Corollary 2.2

H̃µ(x; t, q) = H̃µ′(x; q, t) 2.19

Proof
The definition 2.16 makes the operator ∆1 symmetric in t and q. Thus from 2.16 a) we

get
∆1 H̃µ(x; t, q) = (1− t)(1− q)Bµ(t, q)H̃µ(x; t, q).

On the other hand 2.17 b) becomes

H̃µ(x; t, q) |en(x) = tn(µ′)qn(µ).

However, since Bµ(t, q) = Bµ′(q, t) we see that the polynomial H̃µ(x; t, q) satisfies precisely
the conditions which characterize H̃µ′(x; q, t). Thus 2.19 must hold true as asserted.
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We are now in a position to establish our specializations I.18 and I.19. Both of them
have straighforward but tedious verifications. However, we will follow here a more indirect
path to them since in the process we will collect some rather remarkable identities. We start
by noting that our polynomials {H̃µ(x; q, t)}µ satisfy the following Cauchy formula :

Theorem 2.3

en[ X Y
(1−t)(1−q)] =

∑

µ

H̃µ(x; q, t) H̃µ(y; q, t)

h̃µ(q, t) h̃′µ(q, t)
2.20

Proof
Making the replacements X → X

1−t and Y → Y
(1−t) in I.6 and using I.8 and I.10 we get

hn[ X Y
(1−t)(1−q)] =

∑

µ

Hµ(x; q, t) Hµ(y; q, t)

hµ(q, t) h′µ(q, t)
2.21

Making the replacement t→ 1/t and using I.11 gives

hn[ −tX Y
(1−t)(1−q)] =

∑

µ

H̃µ(x; q, t) H̃µ(y; q, t)

hµ(q, 1/t) h′µ(q, 1/t)
t−n(µ) t−n(µ). 2.22

Now note that

hµ(q, 1/t) =
∏

(1 − qat−l−1) = (−1)nt−n(µ)−nh̃µ(q, t),

h′µ(q, 1/t) =
∏

(1 − qa+1t−l) = t−n(µ)h̃′µ(q, t).

Thus, since for any alphabet A we have hn[−tA] = (−t)nen[A], we easily see that 2.20 follows
from 2.22 upon cancelling the factor (−t)n from both sides.

Formula 2.20 has the following immediate specialization:

Corollary 2.3

en[ X(1−u)
(1−t)(1−q)] =

∑

µ

H̃µ(x; q, t)
∏

(1− qa′tl′u)

h̃µ(q, t)h̃′µ(q, t)
. 2.23

Proof
Just make the replacement Y → (1 − u) and use 2.12.

A further specialization is obtained by eliminating the presence of u in 2.23. This gives

Corollary 2.4

(−1)n−1 pn[ X
(1−t)(1−q)] =

∑

µ

H̃µ(x; q, t)Πµ(q, t)

h̃µ(q, t)h̃′µ(q, t)
2.24

Proof
Note that each summand of 2.23 has the factor (1− u) in the numerator and reduces to

the corresponding summand in 2.24 (see I.13) if we divide this factor out and set u = 1. On
the other hand, we have

en[ X(1−u)
(1−t)(1−q)] = (−1)n−1 pn[ X

(1−t)(1−q)]
1−un
n

+O[(1 − u)2] 2.25
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where the symbol O[(1−u)2] is to indicate that the remainder is a sum of terms all divisible
by (1−u)2 at the very least. This is simply due to the fact that the expansion of en in terms
of power sums can be written in the form

en(x) =
1

n!

∑

σ∈Sn
sign(σ)

n∏

i=1

pi(x)mi(σ)

where mi(σ) is the number of cycles of length i in σ. Thus the first term in the right hand
side of 2.25 represents the contribution of the full cycles of Sn and the rest comes from the
remaining permutations. This given, we see that we can divide both sides of 2.23 by (1−u),
set u = 1, and obtain 2.24 as desired.

We can easily see from 2.17 that the ∆1 image of 2.24 produces a right hand side that
is remarkably close to the right hand side of defining formula I.15. It turns out that this
calculation yields the following beautiful identity:

Theorem 2.4

en(x) =
∑

µ

H̃µ(x; q, t) (1 − t)(1− q)Πµ(q, t)Bµ(q, t)

h̃µ(q, t)h̃′µ(q, t)
. 2.26

Proof
As we already observed, in view of 2.17, the right hand side of 2.26 is the result of

applying ∆1 to the right hand side of 2.24. Thus we only have to compute the image of
the left hand side. However, due to the linearity of the power symmetric function under
plethysm we immediately get from 2.16:

∆1pn[ X
(1−t)(1−q)] = pn[ X

(1−t)(1−q)]−
(
pn[ X

(1−t)(1−q)] + pn[ (1−t)(1−q)/z
(1−t)(1−q) ]

)
Ω[−zX] |z0

= − pn[1
z
] Ω[−zX] |z0 = − 1

zn
Ω[−zX] |z0 = (−1)n−1en(x)

which gives 2.26.

It develops that both I.18 and I.19 can now be established by placing information ex-
tracted from 2.26 back into I.15.

Theorem 2.5

DHn(x; q, 1/q) q(
n
2) =

1

[n+ 1]q
en[X 1−qn+1

1−q ] 2.27

Proof
From I.8 and I.10 we get that

H̃µ(x; q, 1/q) = Hµ(x; q, q)q−n(µ) = hµ(q, q) q−n(µ) Pµ[ X
1−q ; q, q]

Now, Macdonald showed [19] that the polynomial Pµ(x; q, t) reduces to the ordinary Schur
function when t = q. This gives

H̃µ(x; q, 1/q) = hµ(q, q) q−n(µ) Sµ[ X
1−q ].
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Thus the specialization t = 1/q reduces 2.26 and I.15 to the form

en(x) =
∑
µ Sµ[ X

1−q ] Aµ(q),

DHn(x; q, 1/q) =
∑
µ Sµ[ X

1−q ] q
−n(µ)+n(µ′) Aµ(q).

2.28

Here the rational functionAµ(q) can be identified without computation from the dual Cauchy
formula

en(x) = en[ X
1−q (1− q)] =

∑

µ

Sµ[ X
1−q ] Sµ′[1− q].

This gives that

DHn(x; q, 1/q) q(
n
2) =

∑

µ

Sµ[ X
1−q ] q

(n2)−n(µ)+n(µ′) Sµ′[1− q].

In particular, from 2.15 we derive that this sum need only be carried out over hook shapes.
A simple calculation gives that when µ′ = (1r, n− r),

(
n
2

)
− n(µ) + n(µ′) = n r

and using 2.15 with u = q we get

DHn(x; q, 1/q) q(
n
2) =

∑

µ′=(1r ,n−r)
Sµ[ X

1−q ] (−1)rqnr+r(1− q) . 2.29

On the other hand, 2.15 again with u = qn+1 and µ′ = (1r, n− r) gives

Sµ′ [1− qn+1] = (−1)rqnr+r(1− qn+1).

This permits us to write 2.29 in the form

DHn(x; q, 1/q) q(
n
2) =

∑

µ

Sµ[ X
1−q ] Sµ′[1− qn+1] 1−q

1−qn+1 ,

and 2.27 is now a consequence of the dual Cauchy formula

en[X 1−qn+1

1−q ] =
∑

µ

Sµ[ X
1−q ] Sµ′ [1− qn+1]. 2.30

This result yields more than I.4. More precisely we have:

Corollary 2.5
For any partition λ

DHn(x; q, 1/q) q(
n
2) |Sλ(x) =

1

[n+ 1]q
Sλ′[

1−qn+1

1−q ]. 2.31

In particular

Cn(q, 1/q) q(
n
2) =

1

[n+ 1]q
Sn[1−qn+1

1−q ] =
1

[n+ 1]q

[
2n

n

]

q
. 2.32
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Proof
By splitting X from the rest of the argument of en in 2.30 we obtain yet another dual

Cauchy formula. Namely

en[X 1−qn+1

1−q ] =
∑

µ

Sµ[X] Sµ′ [
1−qn+1

1−q ],

and 2.31 is obtained by substituting this in 2.27 and equating coefficients of Sλ(x). To
prove 2.32 we note that the first equality follows from 2.31 because, as we have already
observed, 2.17 b) gives Cn(q, t) = DHn(x; q, t) |en(x). But then the second equality is a
simple consequence of the q-binomial expansion

Ω[x1−qn+1

1−q ] =
∑

m

[
m+ n

n

]

q
xm

and the corresponding Cauchy identity.

Theorem 2.6

DHn(x; q, 1) =
∑

µ`n

( ∏

i

q(
µi
2 )hµi[

X
1−q ]

)
fµ[1− q], 2.33

Proof
In [19] Macdonald gives the specialization

Pµ(x; 1, t) =
h∏

i=1

eµ′i(x)

where µ′ = (µ′1, µ
′
2, . . . , µ

′
h) denotes the partition conjugate to µ. From this, using I.8 and

I.10, we derive

Hµ(x; 1, t) =
h∏

i=1

(t)µ′i eµ′i[
X

1−t], 2.34

where as is customary, for any integer m and any parameter t we set

(t)m = (1 − t)(1− t2) · · · (1 − tm).

Making the replacement t→ 1/t in 2.34, and using I.11 gives

H̃µ(x; 1, t) = tn(µ′)
n∏

i=1

(1/t)µ′i eµ′i[
−t X
1−t ] = (−1)nt−n

n∏

i=1

(t)µ′i eµ′i[
−t X
1−t ].

Since as we have observed, for any alphabet A we have en[−tA] = (−t)n hn[A], we are led
to the specialization

H̃µ(x; 1, t) =
n∏

i=1

(t)µ′i hµ′i [
X

1−t].

But now the symmetry expressed by Corollary 2.2 yields us also the other specialization

H̃µ(x; q, 1) =
n∏

i=1

(q)µi hµi[
X

1−q ]. 2.35
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This given, we are in a position to let t→ 1 in 2.26 and I.15. To this end we note that the
coefficient of H̃µ(x; q, t) in 2.26 may be rewritten in the form

Aµ(q, t) =
(1− t)(t)k−1

∏a′ 6=0 (1− tl′qa′) ∑k
i=1 ti−1(1 − qµi)

∏s
i=1 (t)αi

∏a6=0 (qa − tl+1)
∏

(tl − qa+1)

where k denotes the number of parts of µ and α1, α2, . . . , αs denote the lengths of the
successive vertical segments of the east boundary of the diagram of µ. Since both numerator
and denominator of Aµ(q, t) have the factor (1 − t)k as a common divisor, we can cancel it
out and set t = 1 to get

Aµ(q, 1) =
(k − 1)!

∏k
i=1 (q)µi−1

∑k
i=1 (1 − qµi)

∏s
i=1 αi! (−1)n−k

∏k
i=1 (q)µi−1

∏
(q)µi

.

Substituting 2.35 and this into 2.26 and making the appropriate cancellations we are finally
led to the expansion

en(x) =
∑

µ

n∏

i=1

hµi [
X

1−q ](−1)n−k
(k − 1)!

∑k
i=1 (1− qµi)

∏s
i=1 αi!

. 2.36

On the other hand since for any two alphabets A and B we have the dual Cauchy formula

en[A B] =
∑

µ

hµ[A] fµ[B]

with fµ[B] denoting the forgotten basis element, we can use it with A = X
1−q and B = 1 − q

and get that

en(x) =
∑

µ

k∏

i=1

hµi [
X

1−q ]fµ[1− q].

Comparing with 2.36 we are led to the conclusion that

fµ[1− q] = (−1)n−k
(k − 1)!

∑k
i=1 (1− qµi)

∏s
i=1 αi!

.

Since the coefficients of H̃µ(x; q, t) in 2.26 and I.15 only differ by the factor tn(µ)qn(µ′) we can
pass to the limit as t→ 1 in I.15 and derive the specialization

DHn(x; q, 1) =
∑

µ

qn(µ′)
k∏

i=1

hµi [
X

1−q ]fµ[1− q]

which is just another way of writing 2.33. This completes our proof.

Remark 2.1
This theorem establishes the claim we made in the introduction that the formal series

f(z) defined by I.20 and I.21 is indeed the solution of the q-Lagrange equation in I.23. In
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particular, equating coefficients of en(x) in 1.32, we deduce that the specialization Cn(q) =
Cn(q, 1) may be given the combinatorial interpretation

Cn(q) =
∑

D∈Dn
qa(D),

from which the recursion in I.5 can be easily derived.

We close this section by establishing a number of identities closely related to our q, t-
Catalan which are also of independent interest. To do this we need to extract some further
information from the theory of Macdonald polynomials.

Theorem 2.7

H̃µ(x; q, t) = ωH̃µ(x; 1/q, 1/t) qn(µ′)tn(µ) 2.37

where ω is the involution that interchanges the elementary and the homogeneous symmetric
function bases. In particular, we have

K̃λ,µ(q, t) = K̃λ′ ,µ(1/q, 1/t) qn(µ′)tn(µ) 2.38

Proof
We recall that in [19] Macdonald proved that

ω Pµ(x; q, t) = Qµ′(x; t, q).

Making the substitution x → X
1−t , multiplying both sides by hµ(q, t) and noting that

hµ(q, t) = hµ′(t, q), formulas I.8 and I.10 give

ω Hµ(x; q, t) = Hµ′(x; t, q).

This is converted by I.11 into

ω H̃µ(x; q, 1/t) tn(µ) = H̃µ′(x; t, 1/q) qn(µ′).

Using 2.19 we get
ω H̃µ(x; q, 1/t) tn(µ) = H̃µ(x; 1/q, t) qn(µ′),

and 2.37 follows upon replacing q by 1/q. The identity in 2.38 is then obtained by equating
the coefficients of Sλ(x).

Theorem 2.8
a) en[ X

(1−t)(1−q)] =
∑
µ

H̃µ(x;q,t)

h̃µ(q,t) h̃′µ(q,t)

b) hn[ X
(1−t)(1−q)] =

∑
µ

qn(µ′)tn(µ)H̃µ(x;q,t)

h̃µ(q,t) h̃′µ(q,t)

2.39

Proof
Formula a) is an immediate consequence of 2.20. In fact, when the alphabet Y reduces

to a single letter z, the left hand side of 2.20 becomes

zn en[ X
(1−t)(1−q)].
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To evaluate the right hand side we note that, when Y = {z}, I.11 reduces to

H̃µ(z; q, t) = zn K̃(n),µ(q, t).

On the other hand since 2.17 b) essentially states that

K̃1n,µ(q, t) = qn(µ′) tn(µ)

then 2.38 for λ = (n) gives

K̃(n),µ(q, t) = q−n(µ′)t−n(µ)qn(µ′) tn(µ) = 1 2.40

Thus
H̃µ(z; q, t) = zn

and we see that in this case 2.20 is none other than 2.39 a) multiplied by zn.
It develops that after making the substitutions t→ 1/t, q → 1/q formula 2.39 a) becomes

2.39 b). Indeed, if we do this we get

tn qn en[ X
(1−t)(1−q)] =

∑

µ

H̃µ(x; 1/q, 1/t)

h̃µ(q, t) t−n(µ)−nq−n(µ′)h̃′µ(q, t) t−n(µ)q−n(µ′)−n .

Cancelling the common factor tn qn and using 2.37 we get

en[ X
(1−t)(1−q)] =

∑

µ

ωH̃µ(x; q, t) qn(µ′) tn(µ)

h̃µ(q, t) h̃′µ(q, t)
.

and 2.39 b) follows by applying the involution ω to both sides of this relation.

Theorem 2.9

a) ∆1 en[ X
(1−t)(1−q)] = e1[X] en−1[ X

(1−t)(1−q)]

b) ∆1 hn[ X
(1−t)(1−q)] =

∑n−1
k=0 (−1)n−1−k hk[

X
(1−t)(1−q)] en−k[X]

2.41

Proof
Note that for any two alphabets A,B we have the addition formulas

a) en[A+B] =
∑n
k=0 ek[A] en−k[B]

b) hn[A+B] =
∑n
k=0 hk[A] hn−k[B]

2.42

Using 2.42 a) with A = X
(1−t)(1−q) and B = 1/z, from the definition 2.16 we immediately

obtain

∆1 en[ X
(1−t)(1−q)] = en[ X

(1−t)(1−q)]−
n∑

k=0

ek[
X

(1−t)(1−q)] en−k[1/z] Ω[−X
z

] |z0 . 2.43

However, since

en−k[1/z] =





1 for n − k = 0,
1/z for n − k = 1,
0 for n − k ≥ 2,
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2.43 reduces to
∆1 en[ X

(1−t)(1−q)] = − en−1[ X
(1−t)(1−q)] Ω[−X

z
] |z

= en−1[ X
(1−t)(1−q)] e1[X]

as desired. Using 2.42 b) in an analogous manner we get

∆1 hn[ X
(1−t)(1−q)] = hn[ X

(1−t)(1−q)]−
n∑

k=0

hk[
X

(1−t)(1−q)] hn−k [1/z] Ω[−X
z

] |z0

which reduces to 2.41 b) since here hn−k [1/z] = (1/z)n−k and

Ω[−X
z

] |zn−k = (−1)n−k en−k[X].

The machinery we have put together allows us to derive an interesting collection of
identities. Remarkably, it develops that many of the sums that can be obtained by deleting
some of the factors in the q, t-Catalan summand evaluate to familiar expressions. We give
below a representative sample.

Theorem 2.10

a)
∑

µ`n

tn(µ) qn(µ′) (1− t)(1− q)Bµ(q, t) Πµ(q, t)

h̃µ(q, t)h̃′µ(q, t)
= 1

b)
∑

µ`n

tn(µ) qn(µ′) Πµ(q, t)

h̃µ(q, t)h̃′µ(q, t)
=

1

(1− tn)(1− qn)

c)
∑

µ`n

(1 − t)(1− q)Bµ(q, t)

h̃µ(q, t)h̃′µ(q, t)
=

∑

ν`n−1

tn(ν) qn(ν′)

hν(t)hν(q)

d)
∑

µ`n

tn(µ) qn(µ′) (1 − t)(1− q)Bµ(q, t)

h̃µ(q, t)h̃′µ(q, t)
=

∑

ν`n−1

tn(ν) qn(ν)

hν(t)hν(q)

e)
∑

µ`n

tn(µ) qn(µ′)

h̃µ(q, t)h̃′µ(q, t)
=

∑

µ`n

tn(µ) qn(µ)

hµ(t)hµ(q)

f)
∑

µ`n

1

h̃µ(q, t)h̃′µ(q, t)
=

∑

µ`n

tn(µ) qn(µ′)

hµ(t)hµ(q)

g)
∑

µ`n

t2n(µ) q2n(µ′)

h̃µ(q, t)h̃′µ(q, t)
=

∑

µ`n

tn(µ) qn(µ′)

hµ(t)hµ(q)

h)
∑

µ`n

t2n(µ) q2n(µ′) (1 − t)(1− q)Bµ(q, t)

h̃µ(q, t)h̃′µ(q, t)
=

n−1∑

k=0

(−1)n−1−k ek[
1

(1−t)(1−q)]

2.44

where hµ(t) and hµ(q) denote the standard hook products, for instance

hµ(t) = hµ(t, t) = Π(1− ta+l+1).

Proof
a) Just equate the coefficients of en(x) in both sides of 2.26 and use 2.17 b).
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b) The Schur function expansion of the power symmetric function pn(x) may be written
in the form

pn(X) =
∑

λ`n
χλ(n) Sλ(x)

where χλ(n) denotes the value of irreducible character χλ at the n-cycles. In particular this
gives that

pn[ X
(1−t)(1−q)]|en(x) =

1

(1 − tn)(1 − qn)
pn(x) |en(x) =

(−1)n−1

(1 − tn)(1− qn)
.

Thus 2.44 b) follows by equating the coefficients of en(x) in 2.24 and using 2.17 b).

c) Applying ∆1 to 2.39 a) and using 2.17 a) we get

∆1 en[ X
(1−t)(1−q)] =

∑

µ`n

H̃µ(x; q, t) (1− t)(1− q)Bµ(q, t)

h̃µ(q, t)h̃′µ(q, t)
2.45

which gives (using 2.40)

∆1 en[ X
(1−t)(1−q)] |S(n)(x) =

∑

µ`n

(1− t)(1− q)Bµ(q, t)

h̃µ(q, t)h̃′µ(q, t)
. 2.46

which is the left hand side of c). On the other hand we have

e1[X] en−1[ X
(1−t)(1−q)] =

∑

ν`n−1

e1[X]Sν[X] Sν′ [
1

(1−t)(1−q)] 2.47

and since

e1(x) Sν(x) |S(n)(x) =
{

1 if ν = (n− 1) and
0 otherwise,

we derive that
e1[X] en−1[ X

(1−t)(1−q)] |S(n)(x) = en−1[ 1
(1−t)(1−q)], 2.48

and 2.44 c) follows by combining 2.41 a) with 2.46, 2.48 and the dual Cauchy identity

en−1[ 1
(1−t)(1−q)] =

∑

ν`n−1

tn(ν) qn(ν′)

h̃ν(q, t)h̃′ν(q, t)
. 2.49

d) Equating coefficients of en(x) on both sides of 2.45 gives

∆1 en[ X
(1−t)(1−q)] |en(x) =

∑

µ`n

tn(µ) qn(µ′) (1 − t)(1− q)Bµ(q, t)

h̃µ(q, t)h̃′µ(q, t)
, 2.50

which is the left hand side of d). On the other hand since

e1(x) Sν(x) |en(x) =
{

1 if ν = 1n−1 and
0 otherwise,
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2.47 now gives
e1[X] en−1[ X

(1−t)(1−q)] |en(x) = S(n−1)[
1

(1−t)(1−q)], 2.51

and 2.44 d) follows by combining 2.41 a) with 2.50, 2.51 and the Cauchy identity

S(n−1)[
1

(1−t)(1−q)] =
∑

ν`n−1

tn(ν) qn(ν)

h̃ν(q, t)h̃′ν(q, t)
. 2.52

e) Equating coefficients of en(x) in 2.39 a) and using 2.17 b) gives

en[ X
(1−t)(1−q)]|en(x) =

∑

µ`n

tn(µ) qn(µ′)

h̃µ(q, t)h̃′µ(q, t)
.

On the other hand, from the dual Cauchy formula

en[ X
(1−t)(1−q)] =

∑

µ`n
Sµ[X] Sµ′ [

1
(1−t)(1−q)] 2.53

we get
en[ X

(1−t)(1−q)]|en(x) = S(n)[
1

(1−t)(1−q)],

and 2.44 e) follows from the classical identity

S(n)[
1

(1−t)(1−q)] =
∑

µ`n

tn(µ) qn(µ)

hµ(t) hµ(q)
.

Note that the same identity could be obtained by equating coefficients of S(n) (= hn) in 2.39
b).

f) Equating coefficients of S(n) in 2.39 a) and using 2.40 gives

en[ X
(1−t)(1−q)]|en(x) =

∑

µ`n

1

h̃µ(q, t)h̃′µ(q, t)
.

On the other hand, from 2.53 we get

en[ X
(1−t)(1−q)] |S(n)

= en[ 1
(1−t)(1−q)] =

∑

µ`n

tn(µ) qn(µ′)

hµ(t) hµ(q)
. 2.54

This establishes 2.44 f).

g) Equating coefficients of en in 2.39 b) and using 2.17 b) gives

hn[ X
(1−t)(1−q)]|en(x) =

∑

µ`n

t2n(µ) q2n(µ′)

h̃µ(q, t)h̃′µ(q, t)
.
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But then from the standard Cauchy formula

hn[ X
(1−t)(1−q)] =

∑

µ`n
Sµ[X] Sµ[ 1

(1−t)(1−q)] 2.55

we derive that
hn[ X

(1−t)(1−q)]|en(x) = en[ 1
(1−t)(1−q)]

and 2.44 g) follows from the dual Cauchy formula in 2.54.

h) Finally, equating coefficients of en in 2.41 b) we get

∆1 hn[ X
(1−t)(1−q)]|en(x) =

∑
µ`n

t2n(µ) q2n(µ′) (1−t)(1−q)Bµ(q,t)

h̃µ(q,t)h̃′µ(q,t)

=
∑n−1
k=0 (−1)n−1−k hk[

X
(1−t)(1−q)] en−k[X]|en(x).

2.56

But 2.55 rewritten for n = k gives

hk[
X

(1−t)(1−q)] en−k[X]|en(x) =
∑

ν`k
Sν[X] en−k[X]|en(x) Sν[

1
(1−t)(1−q)],

and 2.44 h) immediately follows since for ν ` k

Sν [X] en−k[X]|en(x) =
{

1 if ν = 1k and
0 otherwise

This completes our proof.

3. Diagonal Harmonics

We shall deal here with certain subspaces of the ring Q[X,Y ] of polynomials with rational
coefficients in the two sets of variables X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. For a
given exponent vector p = (p1, p2, · · · , pn) we set

xp = xp1
1 x

p2
2 · · ·xpnn and |p| = p1 + p2 + · · ·+ pn. 3.1

If
P (x, y) =

∑

p,q

cp,q x
p yq 3.2

then we let
πh,k P =

∑

|p|=h,|q|=k
cp,q x

p yq 3.3

and refer to it as the bihomogeneous component of P of bidegree (h, k). A subspace M ⊆
Q[X,Y ] which contains all the bihomogeneous components of each of its elements is said to
be bigraded. If M is bigraded then it has the direct sum decomposition

M =
⊕

h≥0

⊕

k≥0

Hh,k(M), 3.4
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where Hh,k(M) consists of the bihomogeneous elements of M of bidegree (h, k) or, equiva-
lently the space

Hh,k(M) = {πh,kP : P ∈M}. 3.5

We refer to it as the bihomogeneous component of M of bidegree (h, k).

Recall that the diagonal action of the symmetric group Sn on Q[X,Y ] is defined by
setting for σ ∈ Sn and P ∈ Q[X,Y ]

σ P = P (xσ1 , xσ2 . . . , xσn; yσ1, yσ2 . . . , yσn). 3.6

Note that if a bigraded subspace M ⊆ Q[X,Y ] is invariant under this action, then all its
bihomogeneous components are also invariant. In this case we have an associated bigraded
character ΠM(q, t) which is defined as the bivariate generating function of the characters of
the components Hh,k(M). In symbols

ΠM(q, t) =
∑

h≥0

∑

k≥0

th qk char Hh,k(M). 3.7

We also have an associated bigraded Frobenius characteristic CM(x; q, t) which is simply the
image of ΠM(q, t) under the Frobenius map. In symbols

CM(x; q, t) = F ΠM(q, t) =
1

n!

∑

σ∈Sn
ΠM(σ; q, t) pλ(σ)(x), 3.8

where ΠM(σ; q, t) denotes the value of this character at σ and pλ(σ)(x) is the power basis
element indexed by the partition λ(σ) which gives the cycle structure of σ. Since the Schur
function Sλ(x) is the Frobenius image of the irreducible Sn-character χλ we then have the
two parallel expansions

a) ΠM(q, t) =
∑
λ`n χ

λ Cλ,M(q, t)
b) CM(x; q, t) =

∑
λ`n Sλ(x) Cλ,M(q, t)

3.9

where the Cλ,M(q, t) is the bivariate generating function of the multiplicity of χλ in the
various bihomogeneous components of M. In particular, when M is finite dimensional,
Cλ,M(q, t) will necessarily be a polynomial with non-negative integer coefficients.

This circumstance yields a representation theoretical approach to the Macdonald conjec-
ture concerning the coefficients Kλµ(q, t). Note that I.11 and 2.38 yield

Kλµ(q, t) = Kλ′µ(1/q, 1/t) qn(µ′)tn(µ). 3.10

Thus if Kλµ(q, t) is a polynomial it must necessarily be of degree n(µ′) in q and degree
n(µ) in t. This shows that the Macdonald conjecture is equivalent to the statement that
the K̃λµ(q, t) themselves are polynomials with positive integer coefficients. In particular we
may prove the Macdonald conjecture by constructing (for each µ) a bigraded module whose
Frobenius characteristic is given by the polynomial H̃µ(x; q, t). This observation has been
the point of departure in a continuing investigation that has brought forward a number of
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problems that are of interest in their own right. In particular, it ultimately brought us to a
path which led to the q, t-Catalan and the calculations of the present paper. To see how all
this comes about we need some further ingredients.

Let µ = (µ1 ≥ µ2 ≥ · · · ≥ µk > 0) be a partition of n and let

(p1, q1), (p2, q2), . . . , (pn, qn)

be the pairs (l′, a′) of the various cells of the diagram of µ arranged in lexicographic order.
Set

∆µ(x, y) = det ‖xpji yqji ‖. 3.11

This given, we let Mµ[X,Y ] be the space spanned by all the partial derivatives of ∆µ(x, y).
In symbols

Mµ[X,Y ] = L[∂px ∂
q
y ∆µ(x, y) ]. 3.12

Since the polynomial ∆µ(x, y) is bihomogeneous of bidegree (n(µ), n(µ′)) and alternates in
sign under the diagonal action, we can easily deduce from 3.12 that Mµ[X,Y ] is, under this
action, a bigraded Sn-module. We may then write its Frobenius characteristic in the form

CMµ(x; q, t) =
∑

λ

Sλ(x) Cλ,µ(q, t). 3.13

Supported by extensive computer explorations and strong theoretical evidence, in [7] we
conjectured that indeed we have

CMµ(x; q, t) = H̃µ(x; q, t). 3.14

This equality, which we refer to as the C = H̃ conjecture, is one of several that can be found
in [7], where we presented (for each µ) a number of different constructions all of which,
upon the validity of the C = H̃ conjecture, should lead to the same bigraded submodule of
Q[X,Y ].

Clearly, 3.14 is equivalent to the identities

Cλ,Mµ(q, t) = K̃λµ(q, t).

Now it is shown in [9] and [8] that this does hold true for all µ when λ is a hook and for
all λ when µ is a hook, a 2-row or a 2-column partition. Moreover, it has recently also been
verified (by different independent approaches in [1] and [21]) for all partitions of the form
µ = (1k, 2, n− k − 2).

It is a classical construction of the invariant theorists that with every finite matrix group
action on the polynomial ring there is an associated space of harmonic polynomials which
are solutions of all corresponding non-trivial homogeneous invariant polynomial differential
operators. In the case of the diagonal action, the corresponding space of harmonic polyno-
mials, which we shall refer to as Diagonal Harmonics may be simply defined as the solution
space

DHn[X,Y ] = { P (x, y) :
n∑

i=1

∂hxi∂
k
yi
P = 0 ∀ h+ k ≥ 1}. 3.15
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It is easy to see that we have here yet another bigraded subspace of Q[X,Y ] which is also
invariant under the diagonal action.

Its discovery prompted the second author to carry out an extensive computer exploration
of the space DHn[X,Y ]. The resulting data suggested a number of surprising conjectures
concerning various specializations of the bigraded character of DHn[X,Y ]. These conjectures
are described in full detail in [12].

Now very recently, in an algebraic geometrical setting suggested by C. Procesi, the second
author, assuming the C = H̃ conjecture and a number of other desirable algebraic geometri-
cal facts, was led to conjecture that the Frobenius characteristic of DHn[X,Y ] is none other
than the symmetric polynomial defined by I.15. That is, using the present notation, we
should have

CDHn(x; q, t) = DHn(x; q, t). 3.16

Note that in particular, this implies that our q, t-Catalan must necessarily be the Hilbert
series of the alternating part of DHn[X,Y ].

It is precisely this development that led us to the calculations we have presented here.
Indeed, we were thus forced to investigate to what extent the implications of this identity
could be conciliated with the various conjectures ventured in [12]. We shall presently see that
all of the conjectures in [12] are, in fact, only specializations of 3.16 and they may be replaced
by the single identity in 3.16. Since this identity was derived through algebraic geometrical
considerations which are entirely independent of the calculations of the present paper and
the computer explorations that led to the conjectures in [12], this complete agreement may
be viewed as the most remarkable evidence in support of the C = H̃ conjecture. To fully
appreciate what we are asserting here we need to briefly review some of the contents of [12].

The most fascinating discovery advanced in [12] is that the diagonal action of Sn on
DHn[X,Y ] appears to be equivalent to a sign-twisted version of the the action of Sn on
the so called Parking Functions of Konheim and Weiss [15]. In fact, there is even a graded
refinement of this, but to state it we need to know some properties of Parking Functions.

This concept, which also arises in computer science in the theory of hashing [14], can be
defined picturesquely as follows. On a one way street there are n parking spaces, labeled
1, 2, . . . , n in succession. There are n drivers who plan to park on this street. Each of the
drivers has a preferred parking space in mind. Say the ith driver wishes to park in parking
space fi. We call the map i → fi a Preference Function. The cars arrive one at a time.
The ith car proceeds to parking space fi and, if it is free, the driver parks there. However,
this place may already be occupied. If that happens, the driver will proceed (in the legal
direction) to the first available parking space and park there. A Parking Function is simply
a Preference Function under which all cars will be able to park. It is easy to see that not all
Preference Functions are Parking Functions. For instance if less than 4 drivers wish to park
in the first 4 parking spaces then more than n − 4 prefer to park in the last n − 4 parking
spaces and they cannot all park. However, this type of occurrence is the only thing that can
go wrong. More precisely, it can be shown that a Preference Function is a Parking Function

31



if and only if for all k there are at least k drivers who prefer one of the first k places. In
symbols

#{i : fi ≤ k} ≥ k ∀ k = 1, 2, . . . , n− 1 3.17

There is a convenient way to depict a Parking Function, which reveals many of its properties.

1

2

3

4

5
6

7

8

9

In the n×n lattice square SQ[n] of Section 1 we represent the drivers that prefer the kth

place by labeled circles, stacked on the kth column starting at the lattice square at height
equal to one plus the number of drivers who prefer one of the first k− 1 parking places. The
figure above illustrates the Parking Function

f =
(

1 2 3 4 5 6 7 8 9
3 1 6 3 1 1 3 6 1

)

Driver i is represented by a circle labelled i, and we agree to place the labels in increasing
order along each column. This manner of representing a Parking Function brings into evi-
dence that there is a path D ∈ Dn associated to each Parking Function. This is simply the
graph of the function k → #{i : fi ≤ k}. The condition in 3.17 assures that this path
remains weakly above the diagonal. We can reverse the process and construct all Parking
Functions in the following manner. We first choose a path D ∈ Dn. Next we draw circles to
the right of the vertical steps in the path. Finally we choose the labels that are to fall in each
column and place them there in increasing order. Note that if D has s vertical segments of
lengths d1, d2, . . . , ds then there are exactly

(
n

d1 d2 · · · ds

)
3.18

ways of placing the labels in the circles. It will be convenient to denote by Pn the collection of
all parking functions on the one way street with n parking spaces, and by Pn(D) the Parking
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Functions constructed in this manner from the path D. Now there is a natural way to let Sn
act on Pn. For a given σ ∈ Sn we simply replace the label i by σi and rearrange the circles
so that the labels again increase along the columns. In other words we assign the driver of
car σi what used to be the preference of the driver of car i. It is clear from our construction
that under this action Pn breaks up into 1

n+1

(
2n
n

)
orbits, given by the subcollections Pn(D)

as D varies in Dn. This implies that the corresponding Sn-representation contains precisely
1

n+1

(
2n
n

)
occurrences of the trivial representation.

The area a(D) under a Dyck path D corresponding to parking function f will be briefly
referred to as the weight of f . Note that since the corresponding Dyck path does not change
under the Sn action, the weight itself will also remain invariant. This given, the Parking
Function conjecture made in [12] can be expressed as follows

Conjecture
The action of Sn on the diagonal harmonics of DHn[X,Y ] which are homogeneous of

degree k in the Y variables is a sign-twisted version of the action on the collection of parking
functions of weight k.

Now it is not difficult to show (see [12]) that this conjecture is equivalent to the symmetric
function identity

CDHn(x; q, 1) =
∑

D∈Dn
qa(D)

n∏

i=1

eαi(D)(x). 3.19

Putting this together with 1.32, 1.20 and 2.33 we see that the Parking Function conjecture
(Conjecture 2.6.4 of [12]) is thus simply the special case t = 1 of 3.16. Note further that
since the coefficient of en in 3.19 is

Cn(q, 1) =
∑

D∈Dn
qa(D), 3.20

we can deduce that if 3.16 holds then the alternants of DHn have a Hilbert series which
specializes for t = 1 to the q-Catalan number Cn(q) defined by I.5. The conjecture that the
dimension of the alternating part of DHn is given by the Catalan number was also noted in
[12]. Of course, it is also a direct consequence of the ungraded Parking Function conjecture

since if we sign-twist a representation with 1
n+1

(
2n
n

)
occurrences of the trivial we will get a

representation with the 1
n+1

(
2n
n

)
occurrences of the sign representation.

Conjecture 2.5.1 of [12] states that the coefficient of the irreducible character χλ in

Πn(q, 1/q) q(
n
2) is given by the Schur function specialization

Sλ′(1, q, . . . , q
n)

1 + q + · · ·+ qn
. 3.21

Note that it is not even obvious that this rational function simplifies to a polynomial for
general λ, let alone to a polynomial with positive integer coefficients. However, Proposition
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2.5.2 of [12] assures us that this is indeed the case. In Λ-ring notation this conjecture
translates into the symmetric function identity

CDHn(x; q, 1/q) q(
n
2) = DHn(x; q, 1/q) q(

n
2) =

1

[n+ 1]q
en[X 1−qn+1

1−q ]

which, as we have seen, is the content of Corollary 2.5. Thus we see again that this second
conjecture from [12] is another specialization of 3.16.

Using conjecture 3.16 we get complete information about each of the invariant subspaces
Hh,k(DHn). In particular, we can easily calculate for large values of n the bivariate Hilbert
series of DHn. In fact, it is not difficult to see that this Hilbert series is given by the formula

FDHn(q, t) = ∂np1
CDHn(x; q, t), 3.22

where again p1 denotes the first power symmetric function. So assuming 3.16 we obtain that

FDHn(q, t) =
∑

µ`n

Fµ(q, t) tn(µ)qn(µ′) (1− t)(1− q) Πµ(q, t) Bµ(q, t)

h̃µ(q, t) h̃′µ(q, t)
, 3.24

where
Fµ(q, t) = ∂np1

H̃p1(x; q, t). 3.25

Now in [9] (see also [8]) we established a recursion from which Fµ(q, t) is easily computed.
Our computations, carried out for n ≤ 16, exhibit Fµ(q, t) as a beautiful polynomial with
integer coefficients giving further support to the Macdonald conjecture as well as our C = H̃
conjecture, the latter implying that Fµ(q, t) should give the Hilbert series of our modules
Mµ[X,Y ]. In this manner we can also easily evaluate 3.24, the result of course agreeing
perfectly with the tables in [12] of the actual values of FDHn(q, t) for n ≤ 7.

The present work has a closely related extension which leads to further combinatorial
constructs and conjectures. It develops that for each integer m ≥ 0 the two sequences

C(m)
n (q, t) =

∑

µ`n

t(m+1)n(µ)q(m+1)n(µ′) (1 − t)(1− q) Πµ(q, t) Bµ(q, t)

h̃µ(q, t) h̃′µ(q, t)
3.26

and

DH(m)
n (x; q, t) =

∑

µ`n

H̃µ(x; q, t) tmn(µ)qmn(µ′) (1 − t)(1− q) Πµ(q, t) Bµ(q, t)

h̃µ(q, t) h̃′µ(q, t)
3.27

admit a treatment that follows closely our treatment of Cn(q, t) and DHn(x; q, t). To see
how this comes about we need some definitions. Let J = Jn denote the ideal generated by
the polarized power sums

n∑

i=1

xhi y
k
i (h+ k ≥ 1)

and letA = An denote the ideal generated by the polynomials P (x1, x2, . . . , xn; y1, y2, . . . , yn)
which alternate in sign under the diagonal action. For convenience let us set

R(m)[X;Y ] = Am−1/Am−1J .
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and twist its natural Sn-action by the (m − 1)st power of the alternating representation,
so that the generators of this module, which are the minimal generators of Am−1, become
Sn-invariant. It is not hard to show that the Sn-alternating part of R(m)[X;Y ] is naturally
isomorphic (except for a sign twist) to the space spanned by any minimal set of generators
for Am. Let us call this space Γ(m). In symbols

Γ(m)[X,Y ] ∼= Am/MAm where M = (x1, y1, . . . , xn, yn).

Clearly R(m)[X;Y ] is a bigraded Sn-module under the action described and Γ(m)[X;Y ] car-
ries only the sign representation. This given, we let CR(m)(x; q, t) denote the Frobenius
characteristic of R(m)[X;Y ] and let FΓ(m)(q, t) be the Hilbert series of Γ(m)[X;Y ]. From the
preceding remarks, we have

FΓ(m)(q, t) = CR(m)(x; q, t) |en(x). 3.28

Now the same algebraic geometrical considerations which produced 3.16 have led the second
author to conjecture that

CR(m)(x; q, t) = DH(m)
n (x; q, t). 3.29

Combining this with 3.28 and I.16 we deduce the further conjecture that

C(m)
n (q, t) = FΓ(m)(q, t), 3.30

which in particular implies that also C (m)
n (q, t) must be a polynomial with non-negative

integer coefficients. It can be shown (see [12]) that R(m)[X;Y ] for m = 1 reduces to a
bigraded Sn-module Q[X,Y ]/J equivalent to DHn[X,Y ]. Moreover, it is a special case
of the relationship between R(m) and Γ(m) that any basis of diagonal harmonic alternants
minimally generates A. This given, we see that 3.29 and 3.30 are natural extensions of our
conjectures concerning DHn(x; q, t) and Cn(q, t). We should thus suspect that some of our
manipulations in Sections 1 and 2 can be carried out also for an arbitrary m ≥ 1. We should
also expect some interesting combinatorial descriptions for the specializations at t = 1/q
and t = 1 for both DH (m)

n (x; q, t) and C(m)
n (q, t). It develops that this is the case up to a

point. We shall see that an exploration of these two constructs leads to some very interesting
questions.

4. The extended family C (m)
n (q, t): Results and problems.

In this section we give a brief overview of what can be proved concerning DH (m)(x; q, t)
and C(m)

n (q, t). For brevity and to avoid repetitions we shall omit some of the details here,
especially when they can be easily filled in by imitating our previous arguments.

To begin with we have an analogue of Theorem 2.5. Namely

Theorem 4.1

DH(m)
n (x; q, 1/q) qm (n2) =

1

[mn+ 1]q
en[X 1−qmn+1

1−q ] 4.1

Proof
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The same calculations that led us to 2.29 now yield

DH(m)
n (x; q, 1/q) qm (n2) =

∑

µ′=(1r ,n−r)
Sµ[ X

1−q ] (−1)r qmnr+r (1− q).

Using 2.15 with u = qmn+1 this can be rewritten in the form

DH(m)
n (x; q, 1/q) qm (n2) =

∑

µ′=(1r ,n−r)
Sµ[ X

1−q ]Sµ′[1− qmn+1]
1 − q

1− qmn+1
,

which easily yields 4.1 by an application of the corresponding dual Cauchy identity.

We thus obtain a complete analogue of Corollary 2.5:

Corollary 4.1
For any partition λ

DH(m)
n (x; q, 1/q) qm (n2)|Sλ(x) =

1

[nm+ 1]q
Sλ′[

1−qmn+1

1−q ]. 4.2

In particular

C(m)
n (q, 1/q) qm (n2) =

1

[mn+ 1]q

[
mn+ n

n

]

q
. 4.3

In the case m = 1, as we have already mentioned, the right hand side of 4.3 q-counts
Dyck words by the major index statistic. However, we don’t know what the extension of
this property might be for arbitrary m. There is at least one clue. The lattice path setting
of Section 1 has a natural extension here. Denote by RE(m)[n] the lattice rectangle with
vertices (0, 0), (mn,n). Proceeding in an analogous manner we shall let D(m)

n denote the
collection of lattice paths that consist of NORTH and EAST steps and constantly remain
above the diagonal joining (0, 0) to (mn,n). Now it easy to show that, for q = 1, the right
hand side of 4.3 gives the cardinality of D(m)

n . Given a path π ∈ D(m)
n let us label each EAST

step by an a and each NORTH step by a b and let w(π) denote the word obtained by reading
these letters out of π from left to right. We might suspect that in general the right hand
side of 4.3 q-counts these words by the major index statistic as it does for m = 1. This is
not so even for m = 2. We must then leave it as an open problem to find the statistic on
words that works in the general case.

Our next task is to derive a combinatorial interpretation for the specializations at t = 1 of
DH(m)(x; q, t) and C(m)

n (q, t). We start with the following identity which can be established
by only minor changes in the proof of Theorem 2.6

Theorem 4.2

DH(m)
n (x; q, 1) =

∑

µ`n

( ∏

i

qm (µi2 )hµi[
X

1−q ]

)
fµ[1− q], 4.4

To conform as closely as possible to the notation of Sections 1 and 2, let us denote the
symmetric function in 4.4 by k(m)

n (q). For a given π ∈ D(m)
n let a(π) denote the number of

lattice squares below π that are above the diagonal of RE(m)(n) and let αi(π) denote, as
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before, the number of NORTH steps of π on the line x = i. This given, we have the following
extension of the identity in 1.32.

Theorem 4.3

k(m)
n (q) =

∑

π∈D(m)
n

qa(π)
mn−1∏

i=0

eαi(π)(x) 4.5

Obvious as this may be to conjecture, given 1.32, its proof turns out to be not entirely
routine. In fact, it will involve some rather surprising uses of our Λ-ring and Lagrange
inversion machinery. For the moment we shall let φ(m)

n (q) denote the right hand side of 4.5
and shall obtain the equality k(m)

n (q) = φ(m)
n (q) as the ultimate consequence of a number

of auxiliary propositions which will progressively change both of them into a common final
expression.

Our basic ingredient here is the formal series

F (z) =
∑

k≥1

Fk z
k =

z

E(z)E(z/q) · · ·E(z/qm−1)
. 4.6

where, as in Section 1,
E(z) =

∑

n≥0

en(x) zn.

Let us also define f(z) =
∑
k≥1 fk z

k as the solution of the Lagrange inversion problem

∑

k≥1

Fk f(z)f(zqm) · · · f(zq(k−1)m) = z. 4.7

Note that by Proposition 1.1 (with q replaced by qm) this is equivalent to setting

∑

k≥1

fk F (z)F (z/qm) · · ·F (z/q(k−1)m) = z. 4.8

Finally, following 1.19 let us also set

gn = k
(m)
n−1(q) qn−1. 4.9

This amounts to setting as in 1.18

g(z) =
∑

n≥1

gn z
n = z K(m)(zq) = z

∑

n≥0

k(m)
n (q) qn zn. 4.10

Now it turns out that f(z) and g(z) are not equal, as we might have been inclined to believe.
Rather we have

Proposition 4.1
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The formal power series g(z) is the solution of the inversion problem

∑

k≥1

gk F (z)F (z/qm) · · ·F (z/q(k−1)m) =
z

E(z)E(z/q) · · ·E(z/qm−2)
. 4.11

Proof
Using the notation of Section 1 we may write F (z) in the form

F (z) = z
∗E(z/qm)
∗E(z)

. 4.12

Substituting this into 4.11 and making the necessary cancelations yields

∑

k≥1

gk z
k q−m(k2)

∗E(z/qkm)
∗E(z)

=
z

E(z)E(z/q) · · ·E(z/qm−2)
,

and a multiplication by ∗E(z) gives

∑

k≥1

gk z
k q−m(k2) ∗E(z/qkm) = z ∗E(z/qm−1). 4.13

Since now qm plays the role of q, the natural unroofing operation we must work with here
should be

∨A(z) =
∑

n≥0

An q
m(n2) zn.

In fact, this untagles qm-products of the form

A ⊗qm B (z) =
∑

k≥0

Ak z
k B(z/qkm).

More precisely, we have

∨ ( A ⊗qm B) (z) = (∨A)(z) (∨B)(z).

This given, unroofing both sides of 4.13 we get

g(z) ∨∗E(z) = z ∨∗Ě(zq).

Using 4.10, cancelling z and making the substitution z → z/q we get

K(m)(z) =
∨∗E(z)
∨∗E(z/q)

.

We can now follow almost verbatim the steps in the proof of 1.20. The only change is that
now the alphabet A must be chosen so that

qm(n2) hn[ X
1−q ] = hn[A] (∀n ≥ 0) 4.14
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We are thus led again to the equation

k(m)
n (q) = en[A(1− q)].

The dual Cauchy formula 1.27 then gives

k(m)
n (q) =

∑

µ`n
hµ[A] fµ[1− q]

which by 4.14 is seen to be equivalent to our original definition 4.4. This completes our
proof.

We shall next examine f(z) and its relation to g(z). To this end it is more convenient to
set

f(z) = z H(zq) = z
∑

k≥0

Hk(q) q
k zk. 4.15

This given, we obtain the following recursion for the coefficients of H(z).

Proposition 4.2

Hn(q) =
n∑

k=1

qm(k2) ek[X
1−qm
1−q ]

∑

n1+···+nk=n−k

k∏

i=1

qm(k−i)ni Hni(q), 4.16

Proof
Multiplying 4.8 by the denominator of F (z) in 4.6, making the replacement z → zqm and

cancelling out z gives
∑

k≥0

fk+1 F (z)F (z/qm) · · ·F (z/q(k−1)m) = E(zq)E(zq2) · · ·E(zqm) =
∑

k≥0

ek[qX
1−qm
1−q ] zk.

Using again Proposition 1.1 we deduce (by 4.15) that this identity is equivalent to

∑

k≥0

qk Hk(q) z
k =

∑

k≥0

ek[qX
1−qm
1−q ] zk qm(k2) H(zq)H(zq1+m) · · ·H(zq1+(k−1)m).

The substitution z → z/q simplifies this to

∑

k≥0

Hk(q) z
k =

∑

k≥0

ek[X
1−qm
1−q ] zk qm(k2) H(z)H(zqm) · · ·H(zq(k−1)m)

and our desired identity 4.16 immediately follows by equating coefficients of zn.

Formula 4.16 reveals that Hn(q) may be also be obtained by appropriately q-counting
ordinary Dyck paths. In fact, note that 4.16 is essentially 1.33 with qm replacing q and
ek[X

1−qm
1−q ] replacing ek(x). This observation immediately yields the following corollary of

Proposition 4.2.

Proposition 4.3

Hn(q) =
∑

D∈Dn
qm a(D)

n−1∏

i=0

eαi(D)[X
1−qm
1−q ] 4.17
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The Λ-ring expression ek[X
1−qm
1−q ] may also be given a lattice path interpretation. To see

this, let Γ(m,k) denote the collection of lattice paths (which proceed by EAST and NORTH

steps) that start at (0, 0) with an EAST step and end at (m,k). For a path γ ∈ Γ(m,k)
we let a(γ) denote the number of lattice squares below γ and let αi(γ) denote as before the
number of NORTH steps of γ on the line x = i. This given, we have

Proposition 4.4

ek[X
1−qm
1−q ] =

∑

γ∈Γ(m,k)

qa(γ) eα1(γ)(x)eα2(γ)(x) · · · eαm(γ)(x). 4.18

Proof
The addition formula for the elementary symmetric function ek gives

ek[X
1−qm
1−q ] =

∑

k0+k1+···+km−1=k

ek0(x) qk1ek1(x) q2k2ek2(x) · · · q(m−1)km−1ekm−1(x). 4.19

Given a choice of k0, k1, . . . , km−1 with k0 +k1 + · · ·+km−1 = k let γ(k0, k1, . . . , km−1) denote
the path of Γ(m,k) which has ki NORTH steps on the line x = m − i. This establishes a
bijection between Γ(m,k) and the summands in 4.19. Now it is easy to see that the number
of lattice squares under γ(k0, k1, . . . , km−1) is given precisely by the sum

k1 + 2k2 + · · ·+ (m− 1)km−1.

Since by construction αi(γ(k0, k1, . . . , km−1)) = km−i we see that 4.18 is just another way of
writing 4.19.

This result allows us to rewrite the right-hand side of 4.5 as a sum over Dn. Namely we
have

Proposition 4.5

φ(m)
n (q) =

∑
π∈D(m)

n
qa(π) ∏mn−1

i=0 eαi(π)(x)

=
∑
D∈Dn qm a(D) eα0(D)(x) eα1(D)[X

1−qm
1−q ] · · · eαn−1(D)[X

1−qm
1−q ]

4.20

Proof
Given a path π ∈ D(m)

n and an integer i ∈ [0, n] let (mi, yi) be the point of π with x-
coordinate mi and highest y-coordinate. It is easy to see that there is a unique path in Dn
which passes through the points

(0, 0), (0, y0), (1, y0), (1, y1), . . . , (i, yi−1), (i, yi), . . . , (n, yn−1), (n, yn).

Let us denote this path by D(π).
For a given D ∈ Dn we can construct all the paths π ∈ D(m)

n for which D(π) = D by
the following procedure. We first take each EAST step of D and replace it by m successive
EAST steps to obtain a path π(D) ∈ D(m)

n which passes through the points

(0, 0), (0, y0), (m, y0), (m, y1), . . . , (i m, yi−1), (i m, yi), . . . , (n m, yn−1), (n m, yn).
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Then between the vertices ((i − 1) m, yi−1) and (i m, yi) of π(D) we insert a subpath that
proceeds by EAST and NORTH steps and starts with an EAST step. Clearly, the area under
the resulting element π ∈ D(m)

n decomposes into the area under the path π(D), which is
equal to ma(D), plus the area between the chosen subpath and π(D) itself. Now it is not
difficult to see that Proposition 4.4 implies that summing over all possible choices of subpaths
produces the identity

∑

π∈D(m)
n

D(π)=D

qa(π)
nm−1∏

i=0

eαi(π)(x) = qm a(D) eα0(D)(x) eα1(D)[X
1−qm
1−q ] · · · eαn−1(D)[X

1−qm
1−q ]. 4.21

But then summing over all D ∈ Dn yields the equality in 4.20 as desired.

An immediate corollary of this result is a recursion expressing φ(m)
n (q) in terms of the

coefficients of f(z). This may be stated as follows.

Proposition 4.6

φ(m)
n (q) =

∑
D∈Dn qm a(D) eα0(D)(x) eα1(D)[X

1−qm
1−q ] · · · eαn−1(D)[X

1−qm
1−q ]

=
∑n
k=1 qm(k2) ek(x)

∑
n1+···+nk=n−k

∏k
i=1 q

m(k−i)ni Hni(q),
4.22

Proof
This is yet another consequence of the path factorization. To avoid conflict of symbols,

we shall replace mi by ni in both 1.30 and 1.31, and otherwise use the same conventions we
made in Section 1. Thus we write

D = Vk +
k∑

i=1

(Ei +Dni ) (Dni ∈ Dni), 4.23

and

a(D) =
(
k
2

)
+

k∑

i=1

( a(Dni) + (k − i)ni ) 4.24

The idea is to collect together and sum all terms corresponding to paths D which factorize
as in 4.23 for a fixed choice of k and n1, n2, . . . , nk. We see that in each of these terms the
first vertical segment of a path D ∈ Dn (that is Vk in 4.23) contributes the factor ek(x),
and each of the other vertical segments of D contributes a factor of the form em[X 1−qm

1−q ].

Now we easily see from 4.17 that the sum over Dni ∈ Dni of qm a(Dni) times all the factors
contributed by the vertical segments of Dni must necessarily condense into the coefficient
Hni(q). Taking into account that 4.24 gives

qm a(D) = qm(k2)
k∏

i=1

qm(k−i)ni+m a(Dni)

we see that the sum of all the D-terms which correspond to a fixed choice of k and
n1, n2, . . . , nk will produce the monomial

ek(x) qm(k2)
k∏

i=1

qm(k−i)niHn1(q)Hn2(q) · · ·Hnk (q),
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and 4.22 necessarily follows by summing over all possible choices of k and n1, n2, . . . , nk.

This completes our collection of auxiliary identities and we can proceed to the

Proof of Theorem 4.3
We are left to show that also k(m)

n (q) is equal to the righthand side of 4.22. Our starting
point is the inversion problem in 4.11. Multiplying both sides of 4.11 by the denominator of
F (z) in 4.6 and cancelling out z we get

∑

k≥1

gk F (z/qm) · · ·F (z/q(k−1)m) = E(z/qm−1).

Making the replacement z → zqm and changing the summation variable, we may rewrite
this as ∑

k≥0

gk+1 F (z)F (z/qm) · · ·F (z/q(k−1)m) = E(zq). 4.25

Using the basic inversion result of Proposition 1.1 (with qm replacing q) and the definition
4.7 of f(z) we can convert 4.25 into the identity

∑

k≥0

gk+1 z
k =

∑

k≥0

ek(x) qk f(z)f(zqm) · · · f(zq(k−1)m).

Rewriting g(z) and f(z) by means of 4.10 and 4.15 we are led to

K(m)(zq) =
∑

k≥0

ek(x) qk zk qm(k2) H(zq)H(zq1+m) · · ·H(zq1+(k−1)m).

The substitution z → z/q simplifies this to

K(m)(z) =
∑

k≥0

ek(x) zk qm(k2) H(z)H(zqm) · · ·H(zq(k−1)m),

from which we immediately derive (equating coefficients of zn) that k(m)
n (q) is indeed equal

to the right hand side of 4.22 as desired.

As a corollary of Theorem 4.3 we obtain the following combinatorial interpretation for
the specialization of C (m)

n (q, t) at t = 1.

Theorem 4.4
C(m)
n (q, 1) =

∑

π∈D(m)
n

qa(π). 4.26

Proof
Using 2.17 we see from the definitions 3.26 and 3.27 that C (m)

n (q, t) is equal to the coef-
ficient of en(x) in the Schur function expansion of DH (m)

n (x; q, t). Thus, 4.26 is obtained by
equating coefficients of en(x) in both sides of 4.5.

Tables of C (m)
n (q, 1) may be easily computed through a recurrence which extends I.5.

This recurrence is best expressed in terms of the generating function

Φ(m)(z) = 1 +
∑

n≥1

zn C(m)
n (q, 1), 4.27
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and it may be stated as follows.

Theorem 4.5
Φ(m)(z) = 1 + z Φ(m)(z)Φ(m)(zq) · · ·Φ(m)(zqm). 4.28

Proof
We recall that a k-ary tree is a planar tree all of whose nodes have either 0 or exactly k

children. We shall denote the collection of k-ary trees with n internal nodes by T (k)
n . We see

that T (2)
n is simply the collection of customary binary trees. Thus the cardinality of T (2)

n is
given by the Catalan number. More generally we have

| T (m+1)
n | = 1

1 +mn

(
mn+ n

n

)
4.29

It develops that 4.26 is a q-analogue of 4.29. In fact, the summation in 4.26 can also be
interpreted as a q-counting of T (m+1)

n according to a suitable area statistic. This can be seen
as follows. Given a tree T ∈ T (k)

n , let us label each of its leaves by a and all the other nodes
by b. Reading these labels in the depth-first traversal of T yields a word in the alphabet
{a, b} which we shall refer to as the word of T and denote by w(T ). There is a standard
way to visualize words constructed in this manner from a planar tree. We simply associate
to T a lattice path π(T ) whose steps are governed by the letters of w(T ). The idea is to
replace each b by a raising step given by the vector (1, k − 1) and each a by a down step
given by (1,−1). Then as we read one by one (from left to right) the letters of w(T ) we
progressively construct all the edges of π(T ). It is well known [18] and easy to show that the
resulting lattice path will remain above the x-axis, for all but the last step (which necessarily
corresponds to the last leaf of T in the depth-first order). This condition is necessary and
sufficient for a lattice path π with steps given by (1, k − 1) and (1,−1) to be the path of
a tree T ∈ T (k)

n . The case of interest here is when k = m + 1. In fact, from the remarks
above we can see that there is a natural bijection between T (m+1)

n and D(m)
n . Given a tree

T ∈ T (m+1)
n we simply replace each (1,m)-step of π(T ) by a NORTH step and each (1,−1)

step (except the last) by an EAST step. Clearly, this results in a path π ∈ D(m)
n . Moreover,

it is not difficult to show that the area a(π), as defined to give 4.26, counts also the number
of lattice points (i, j) (j ≥ 0) strictly below those vertices of π(T ) that are starting points
of (1,m)-steps. Denoting the latter number by A(T ) we can thus rewrite 4.26 in the form

C(m)
n (q, 1) =

∑

T∈T (m+1)
n

qA(T ). 4.30

In particular, if we let T (m+1) denote the collection of all (m + 1)-ary trees, we must also
have

Φ(m)(z) =
∑

T∈T (m+1)

zn(T ) qA(T ), 4.31

where n(T ) denotes the number of internal nodes of T . The latter of course is also equal to
the number of (1,m)-steps in π(T ).

The functional equation in 4.28 follows from a factorization of the paths π(T ) which is
best explained in terms of the corresponding factorization of the words w(T ). Note that
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unless a T ∈ T (m+1) consists of a single leaf, its root will have m + 1 children and will
necessarily be labelled by a b. Since the letters of T are derived from a depth-first order
reading, we have, by definition,

w(T ) = b w(T1)w(T2) · · ·w(Tm+1). 4.32

Here w(Ti) denotes the word of the ith subtree of T , the latter being the tree rooted at the ith

child of the root of T . Now when we convert w(T ) into π(T ) the path π(T1) will be attached
at the tip of the vector (1,m). As a result the contribution to A(T ) coming from the letters
of w(T1) is A(T1) +m n(T1). Similarly, it is not difficult to see that the letters of w(Ti) will
contribute A(Ti) + (m+ 1− i)n(Ti) to A(T ). To summarize, 4.32 yields that

A(T ) =
m+1∑

i=1

(A(Ti) + (m+ 1 − i)n(Ti)) . 4.33

Since

n(T ) = 1 +
m+1∑

i=1

n(Ti),

we deduce from 4.32 and 4.33 that

zn(T ) qA(T ) = z
m+1∏

i=1

qA(Ti)
(
z qm+1−i

)n(Ti)
,

and the functional equation in 4.28 is thus obtained by summing over all possible choices of
T1, T2,. . ., Tm+1.

This combinatorial fact brings us to the central problem concerning C (m)
n (q, t) We see

that upon the validity of the conjecture 3.30, there must be for each n and m two statistics,
α(T ), β(T ) on trees in T (m+1)

n , both having the same distribution as A(T ), and such that

C(m)
n (q, t) =

∑

T∈T (m+1)
n

qα(T ) tβ(T ). 4.34

Moreover we see from 4.3 that these statistics must also yield the identity

∑

T∈T (m+1)
n

qα(T ) + m(n2) − β(T ) =
1

[mn+ 1]q

[
mn+ n

n

]

q
.

However, we suspect that the problem of constructing these two statistics might be of an order
of difficulty comparable to the construction of the charge statistic in the work [17] of Lascoux
and Schützenberger. Thus the solution of this problem might require deeper combinatorial
methods than are being used in most of the bijective combinatorics of present day literature.
In particular we view our q, t-Catalan as a considerably more complex construct than any of
the multivariate Catalan polynomials that have been studied so far (see, e.g., [4]).
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As a final remark we should point out that the specialization of DHn(x; q, t) given in 2.27
may be written in the rather suggestive form

DHn(x; q, 1/q) q(
n
2) =

1

[n+ 1]q
E(z)E(zq) · · ·E(zqn)|zn 4.35

where, as in 1.16, we set
E(z) =

∑

m≥0

en(x) zn.

This makes DHn(x; q, 1/q) q(
n
2) appear as yet another q-analogue of the coefficient of zn+1

in the solution f(z) =
∑
n≥1 fn z

n of the Lagrange inversion problem

f(z)

E(f(z))
= z.

Indeed, one form of the classical Lagrange formula would give

fn+1 =
1

n+ 1
E(z)n+1 |zn .

Now, 1.20 and 2.33 gave us that the specialization DHn(x; q, 1) = kn(q) is none other than
1/qn times the coefficient of zn+1 in the solution f(z) of the q-Lagrange inversion problem
1.3. This suggests that the symmetric function DHn(x; q, t) may also appear as a coefficient
in the solution of some q, t-analogue of Lagrange inversion. Given the bivariate symmetry
exhibited by DHn(x; q, t) this q, t-analogue should turn out to be quite remarkable. We
should point out that that none of the q-analogues that have been given in the literature so
far (see the references in [24]) lead to a formula such as in 4.35. Thus the construction of an
inversion problem yielding DHn(x; q, t) should lead to new avenues in Lagrange inversion.
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Appendix: Tables of Cn(q, t).

Displayed below are the polynomials Cn(q, t) for n = 2 through n = 6. For convenience,
we have arranged the coefficients of each polynomial into an array: the coefficient of qhtk

appears in in position (h, k), indexed from (0, 0) at the lower left. For example,

1
1
1 1

1

represents the polynomial q3 + q2t+ qt+ t2 + t3.

C2(q, t)
1

1

C3(q, t)

1
1
1 1

1

C4(q, t)

1
1
1 1
1 1 1

1 1 1
1 1 1

1

C5(q, t)

1
1
1 1
1 1 1
1 2 1 1

1 2 1 1
1 2 2 1 1

1 2 2 1 1
1 1 2 1 1

1 1 1 1
1
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C6(q, t)

1
1
1 1
1 1 1
1 2 1 1
1 2 2 1 1

2 3 2 1 1
1 3 3 2 1 1
1 2 4 3 2 1 1

2 3 4 3 2 1 1
2 3 4 3 2 1 1
1 2 3 4 3 2 1 1

2 2 3 3 2 1 1
1 1 2 2 2 1 1

1 1 1 1 1
1
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scientifica 109 (1981) 129–156.

[17] A. Lascoux and M.P. Schützenberger, Sur une conjecture de H. O. Foulkes, C. R. Acad.
Sci. Paris 286 (1978), 323–324.

[18] M. Lothaire, Combinatorics on words, Encyclopedia of Mathematics and its Applica-
tions, Vol. 17, G.-C. Rota ,ed. (1983) 219–???.

[19] I. G. Macdonald, A new class of symmetric functions, Actes du 20e Séminaire
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