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Abstract. We study the coordinate rings k[Cµ ∩ t] of scheme-theoretic inter-

sections of nilpotent orbit closures with the diagonal matrices. Here µ′ gives
the Jordan block structure of the nilpotent matrix. de Concini and Procesi

[5] proved a conjecture of Kraft [12] that these rings are isomorphic to the
cohomology rings of the varieties constructed by Springer [22, 23]. The fa-

mous q-Kostka polynomial K̃λµ(q) is the Hilbert series for the multiplicity
of the irreducible symmetric group representation indexed by λ in the ring
k[Cµ ∩ t]. Lascoux and Schützenberger [15, 13] gave combinatorially a de-

composition of K̃λµ(q) as a sum of “atomic” polynomials with non-negative
integer coefficients, and Lascoux proposed a corresponding decomposition in

the cohomology model.
Our work provides a geometric interpretation of the atomic decomposi-

tion. The Frobenius-splitting results of Mehta and van der Kallen [19] imply a

direct-sum decomposition of the ideals of nilpotent orbit closures, arising from
the inclusions of the corresponding sets. We carry out the restriction to the
diagonal using a recent theorem of Broer [3]. This gives a direct-sum decom-

position of the ideals yielding the k[Cµ ∩ t], and a new proof of the atomic

decomposition of the q-Kostka polynomials.

1. Introduction

The q-Kostka polynomials Kλµ(q), also called Kostka-Foulkes or Foulkes-Green
polynomials, have been central to numerous developments over the last two decades
at the crossroads of combinatorics, algebra, and geometry. Defined [18] through the
expansion

(1.1) sλ(x) =
∑

µ

Kλµ(q)Pµ(x; q)

expressing the Schur function sλ(x) as a linear combination of Hall-Littlewood
polynomials Pµ(x; q), they are polynomials in q which specialize upon setting q = 1
to the ordinary Kostka numbers Kλµ. Here λ and µ are partitions of some positive
integer n; we write λ ` n.
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µ
6 51 42 411 33 321

6 1 1 1 1 1 1
51 q q q + q2 q q + q2

42 q2 q2 q2 q2 + q3

λ
411 q3 0 q3

33 q3 q3

321 q4

µ
6 51 42 411 33 321

6 1 0 0 0 0 0
51 q 0 q2 0 0
42 q2 0 0 q3

λ
411 q3 0 0
33 q3 0

321 q4

Table 1. K̃λµ(q) and Rλµ(q), respectively, for λ, µ ≥ (321).

Lascoux and Schützenberger [20] proved a conjecture of Foulkes [6] by expressing
Kλµ(q) as a sum

(1.2) Kλµ(q) =
∑

T∈CS(λ,µ)

qc(T ),

in which T varies over the set CS(λ, µ) of column-strict (also called semi-standard)
tableaux of shape λ containing µ1 ones, µ2 twos, etc., and c(T ), the charge of T ,
is an intricate combinatorial statistic. Our topic, the atomic decomposition of the
q-Kostka polynomials, comes from their subsequent work [14, 15, 13], which reveals
the remarkable combinatorial structures underlying the q-Kostka polynomials. To
be precise, they write the variant polynomial

(1.3) K̃λµ(q) = qn(µ)Kλµ(1/q) =
∑

T∈CS(λ,µ)

qĉ(T ),

where n(µ) =
∑

i(i− 1)µi and ĉ(T ) = n(µ)− c(T ), as

(1.4) K̃λµ(q) =
∑
ν≥µ

Rλν(q),

in which the atom polynomials Rλν(q) themselves have non-negative coefficients.
Example 1.1. Table 1 gives K̃λµ(q) and Rλµ(q) for the partitions λ, µ ≥ (321). Note
that the only incomparable pair in this set is (411, 33).

Several other algebraic and geometric interpretations of K̃λµ(q) have been given.
Hotta and Springer [9], using a result of Spaltenstein [21], identified K̃λµ(q) as the
Poincaré series for the multiplicities of the irreducible symmetric group representa-
tion Vλ in the cohomology groups of an algebraic variety Xµ defined by Springer [22].
Lusztig [16, 17] described K̃λµ(q) as the local intersection homology Poincaré se-
ries of a nilpotent orbit variety, as an affine Kazhdan-Lusztig polynomial, and as a
q-analog of weight multiplicities. Our concern here will be with one further inter-
pretation, introduced by Kraft and de Concini-Procesi [12, 5], and recently given a
simple and purely elementary treatment by Garsia and Procesi [7], which we now
pause to describe.

In brief, the Kraft-de Concini-Procesi approach forms rings giving the q-Kostka
polynomials—and isomorphic to the cohomology rings of Springer’s varieties—from
the scheme-theoretic intersections of nilpotent orbit varieties with the diagonal
matrices t. Here we work over the field k = C; the nilpotent orbit variety Cµ is
the Zariski closure of Cµ, the conjugacy class of nilpotent matrices having Jordan
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block sizes µ′1, µ′2, . . . , µ′n, with µ ` n. The geometric relation

(1.5) Cµ =
⋃
ν≥µ

Cν

will be fundamental to this work. Denoting by k[X] the ring of polynomial func-
tions on an algebraic variety X, and by I(X) the ideal of X, the scheme-theoretic
intersection Cµ ∩ t may be defined by its ring of functions

(1.6) k[Cµ ∩ t] = k[gln]/(I(Cµ) + I(t)).

(We note that [5] and [25] gave generators for I(Cµ)+I(t), while [26] gave generators
for I(Cµ).) We view k[N ∩ t] as an Sn-module by restricting to the permutation
matrices the GLn(k) conjugation action on gln(k), and write

(1.7) K̃λµ(q) =
∑

d

mult(χλ, (k[Cµ ∩ t])d)qd;

here (k[Cµ∩ t])d denotes the homogeneous component of degree d, and mult(χλ, V )
denotes the multiplicity of the irreducible character χλ in the character of an Sn

module V . This identification first arose as a consequence of the work of Kraft,
de Concini, Procesi, Spaltenstein, Springer, and Hotta and Springer [12, 5, 21, 22,
23, 9], while Garsia and Procesi [7] gave an elementary proof. Other important
papers discussing aspects of this construction include Kostant [10], Steinberg [24],
Bergeron and Garsia [2], and Carrell [4].

In this paper we interpret the atomic decomposition (1.4) in the Kraft-de Concini-
Procesi setting, thus proving anew the non-negativity of the atom polynomials Rλν .
Our proof departs from the purely elementary spirit of Garsia and Procesi, rely-
ing fairly heavily upon algebraic geometry. Using a Frobenius-splitting result of
Mehta and van der Kallen we deduce that there is a direct-sum decomposition of
the coordinate rings of the nullcone, N ,

(1.8) k[N ] =
⊕
ν`n

Âν

compatible with the ideals of the nilpotent orbit varieties:

(1.9) I(Cµ) =
⊕
ν 6≥µ

Âν for all µ ` n.

This decomposition holds in prime characteristics (Corollary 4.2) and hence also
in characteristic zero (Theorem 5.7). Then, a recent result of Broer (intended by
him for quite different purposes) enables us to carry the decomposition down to the
diagonal matrices. More precisely, we show that there is a direct-sum decomposition

(1.10) k[N ∩ t] =
⊕

ν

Aν

of graded Sn-modules, such that for all µ,

(1.11) I(Cµ ∩ t)/I(N ∩ t) =
⊕
ν 6≥µ

Aν .

From this it is immediate that (1.4) holds with

(1.12) Rλν(q) =
∑

d

mult(χλ, (Aν)d)qd.



4 WILLIAM BROCKMAN AND MARK HAIMAN

Lascoux [13, Thm 6.5] anticipated our result by stating, without proof, a similar
algebraic version of the atomic decomposition, in the setting of the cohomology
ring of the flag variety.

1.1. Acknowledgments. The first author thanks Bram Broer, Adriano Garsia,
and Mark Shimozono for valuable conversations. He is also grateful to Jim Carrell,
Alain Lascoux, Bruce Sagan, and the reviewer for very helpful comments which
have significantly improved this paper.

2. Main theorems

We will state our results using the terminology of lattice theory. For k a field of
characteristic 0, the homogeneous GLn-submodules of the ring k[N ], because each
graded component is finite-dimensional, by complete reducibility form a comple-
mented modular lattice under the operations of ∩ and +. We denote L({I1, . . . , Ir})
the sublattice generated by the ideals {I1, . . . , Ir}. A lattice L is distributive—a
stronger property than modular—if

(2.1) I ∩ (J + K) = (I ∩ J) + (I ∩K) for all I, J,K ∈ L.

For example, a set of subvarieties {X1, . . . , Xr} ofN generates a distributive lattice,
denoted L({X1, . . . , Xr}), under ∩ and ∪. The map I sends such a lattice to a
collection of radical ideals, which do not necessarily themselves form a lattice.
Remark 2.1. In particular, for any n, the underlying set of L({Cµ : µ ` n}) is the
set of all unions of the nilpotent orbit varieties Cµ. This follows from (1.5), which
yields Cµ ∩Cν = Cµ∨ν , where ∨ represents the least upper bound operation in the
lattice Pn of partitions of n under the dominance order (see [18, p. 11]).

Finally, a bijection ϕ : A → B between the underlying sets of two lattices A,B
is a (lattice) isomorphism if for all x, y ∈ A we have x ≤ y iff ϕ(x) ≤ ϕ(y), and a
(lattice) anti-isomorphism if x ≤ y iff ϕ(x) ≥ ϕ(y). We are now in a position to
state our main results.
Theorem 2.2. Let k be an algebraically closed field, and fix n > 0. Then

(1) the map I induces a lattice anti-isomorphism

(2.2) L({Cµ : µ ` n}) → L({I(Cµ) : µ ` n}).

If char k = 0, then
(2) L({I(Cµ) : µ ` n} ∪ I(t)) is distributive, and
(3) the map Cµ 7→ I(Cµ ∩ t)/I(N ∩ t) induces a lattice anti-isomorphism

(2.3) L({Cµ : µ ` n}) → L({I(Cµ ∩ t)/I(N ∩ t) : µ ` n}).

Geometrically, the first property means that any intersection of nilpotent orbit
varieties is scheme-theoretically reduced : that

(2.4) I(Cµ) + I(Cν) = I(Cµ∨ν).

The second property implies that the projection k[N ] � k[N ∩ t] induces a lattice
isomorphism, and thus, together with the first, implies the third property. In
Section 3 we prove that the desired results (1.8)–(1.9) and (1.10)–(1.11) follow
from Theorem 2.2. We should point out that the direct-sum decompositions are
not canonical; see the general construction in the proof of Proposition 3.1 for the
choices involved.
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Before proceeding to the full details, we sketch the proofs here. We identify the
lattice generated by {I(Cµ) : µ ` n} by showing, in section 4, that every element
of the lattice is radical. This fact is a consequence of a recent geometric result:
Theorem 2.3 (Mehta–van der Kallen [19]). Let k be an algebraically closed field
of positive characteristic. There is a Frobenius splitting φ of gln such that every
nilpotent orbit variety Cµ is compatibly Frobenius split.

Since the distributivity is proved in positive characteristic, we must make a
standard technical argument to extend the result to characteristic 0 (section 5).
This proves Theorem 2.2 (1). Finally, in section 6, we address the intersection with
the diagonal, showing that the lattice generated by the I(Cµ) together with I(t) is
still distributive, even though its elements are no longer radical.

This argument relies on a result of Broer, who in [3] extends Chevalley’s restric-
tion theorem to modules of covariants. His theorem holds in great generality, but
we will need it only for the Lie group GLn and Lie algebra gln. Let T ⊂ GLn

be the subgroup of invertible diagonal matrices, and t ⊂ gln its Lie algebra. Any
GLn-module M has a representation of the Weyl group Sn on the fixed-point set
MT of the T -action. Broer’s theorem applies to small GLn-modules: those which
do not have the T -weight 2φ, where φ is the highest root of GLn.
Theorem 2.4 (Broer [3]). Let k be an algebraically closed field of characteristic
zero, and let M be a small GLn-module. For any nilpotent orbit variety Cµ, the
map

(2.5) HomGLn(M,k[Cµ]) → HomSn(MT , k[Cµ ∩ t])

induced from the restriction k[Cµ] → k[Cµ ∩ t] is an isomorphism of graded vector
spaces.

We note as well that the identification (1.7) combined with Broer’s theorem gives

(2.6)
∑
d≥0

dim Hom(Mλ, (k[Cµ])d) = K̃λµ(q),

where the representations Mλ are defined in Section 6; and hence the atomic de-
composition (1.4) of the q-Kostka polynomials follows directly from the direct-sum
decomposition (1.8)–(1.9) of k[N ]. We have chosen the slightly less direct route of
obtaining the decomposition inside the intersection with the diagonal, (1.10)–(1.11),
because of the important role of the latter in the previous work of Springer [22],
Kraft [12], De Concini-Procesi [5], Garsia-Procesi [7], and others.
Example 2.5. Using Macaulay 2 [1], we found bases of the spaces Aν ⊂ k[N ∩ t]
whose characters are described by the atomic polynomials Rλν of example 1.1. In
Table 2 we give one vector in each irreducible Sn-representation. This example is
somewhat trivial, since there are only two incomparable partitions, and thus the
corresponding lattice is automatically distributive; in addition, the graded compo-
nents of the atoms are multiplicity-free. The example would have to be significantly
larger (n = 10) to exhibit greater complexity.

3. Distributive lattices

We begin our proof with a general statement on the connection between dis-
tributive lattices and direct sums. The cases which occur may be treated together
as follows. Let G be a reductive group, and M a graded G-module. (We assume
each component of a graded module to be finite-dimensional.) Then the graded
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Aν(q)
6 51 42 411 33 321

6 1
51 x6 x2

6

42 x5x6 e3(x3, x4, x5, x6)λ
411 x5x

2
6

33 x4x5x6

321 x4x5x
2
6

Table 2. Generators of irreducibles of type λ in Aν(q), for ν ≥ (321).

submodules of M form a modular lattice under ∩ and +, with least element {0}
and greatest element M , which by complete reducibility is a complemented modular
lattice.

In the following proposition, 0̂ and 1̂ are the generic symbols for the least and
greatest elements of a lattice when they exist. We use ∩ and + for the meet and
join operations in the lattice. We also use

⊕
i∈A Ii, analogous to a direct sum of

modules, to mean
∑

i∈A Ii with the condition that Ij ∩
∑

i∈(A−{j}) Ii = 0̂ for every
j ∈ A.
Proposition 3.1. Let L̂ be a complemented modular lattice with 0̂ and 1̂. Let L be
the sub-lattice of L̂ generated by I1, I2, . . . , Ir. Then the following statements are
equivalent:

(1) There exists a family {Vi}i∈A of elements of L̂, and subsets AL ⊂ A for
each L ∈ L, such that I1 + · · ·+ Ir =

⊕
i∈A Vi and

(3.1) L =
⊕

i∈AL

Vi for all L ∈ L.

(2) The lattice L is distributive.

Proof. Because the {Vi}i∈A generate a Boolean algebra containing L, (1) implies
(2). Now assume (2). We may write any element of L as a sum of intersections by
distributing intersections over sums. Let L0 be the subposet of L consisting of all
intersections of the Ij ’s. For (1) it suffices to find a direct-sum decomposition of
I1 + · · ·+Ir such that every element of L0 is a direct sum of some of the summands.
Index the intersections by subsets of {1, 2, . . . , r}, so that I{i1,i2,...,is} = Ii1 ∩ Ii2 ∩
· · · ∩ Iis

. Let I∅ = I1 + · · · + Ir. Then associate to each IS a complement KS of∑
T%S IT in IS ; in particular, K∅ = 0̂. Distributivity gives, for any S ⊂ {1, . . . , n},

(3.2) IS ∩
∑
T 6=S

KT =
∑
T 6=S

(IS ∩KT ) ⊆
∑
T%S

IT ,

since if T $ S then IS ∩ KT = 0̂ by definition, and otherwise IS ∩ KT ⊆ IS∪T .
Because KS ∩

∑
T%S IT = 0̂, we have shown

⊕
S KS is a direct sum; and clearly

this equals I∅ = I1 + · · ·+ Ir. Induction then gives IS =
⊕

T⊇S KT for all S. �

Applying the proposition to the lattice L of graded GLn-submodules of k[gln],
we have:
Corollary 3.2. Theorem 2.2 (1) is equivalent to (1.8)–(1.9).
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Proof. Assuming first that Theorem 2.2 (1) holds, we apply Proposition 3.1 to the
lattice of graded submodules of k[N ] and the sublattice L{I(Cµ) : µ ∈ Pn}. From
the proof of the proposition, the decomposition may be written

(3.3) k[N ] =
⊕

S⊆Pn

AS ,

with

(3.4) I(Cµ) =
⊕
S3µ

AS .

Now the equation (2.4) implies

(3.5)
⊕

S3µ or S3ν

AS =
⊕

S3µ∨ν

AS ;

hence if µ ∨ ν ∈ S but µ 6∈ S and ν 6∈ S then AS = (0). Equivalently, if we write
S = Pn − S, then we have AS = (0) whenever µ ∈ S, and ν ∈ S, but µ ∨ ν 6∈ S;
that is, we may take S to be closed under ∨. Furthermore, since ν ≥ µ implies
I(Cν) ⊇ I(Cµ), we have AS = (0) unless S is an upper order ideal. Combining the
two conditions, S may be taken to be a principal lower order ideal. So we re-index,
writing Âν for A{µ:µ≤ν}; now (1.8)–(1.9) follows, since we have

(3.6) I(Cµ) =
⊕
S3µ

AS =
⊕
ν�µ

Âν .

The converse is immediate. �

Similarly, (1.10)–(1.11) is equivalent to Theorem 2.2 (3).

4. Characteristic p

In this section, let k be an algebraically closed field of characteristic p > 0, and
use the same notation for nilpotent orbit varieties as in the Introduction. We use
the method of Frobenius splitting to prove Theorem 2.2 (1) over k. Let A be a
commutative k-algebra. The Frobenius map F : A → A is F (a) = ap. Let A′ be A
considered as an A-module under F .
Definition 4.1. A is Frobenius split if there exists an A-module homomorphism
φ : A′ → A such that φ ◦ F = idA. (Equivalently, such that φ(1) = 1.)

If A is Frobenius split, A is necessarily reduced: this will be our application
of the Frobenius splitting. For I ⊂ A an ideal, F (I) ⊆ I, hence I ⊆ φ(I). If
φ(I) = I, then A/I is Frobenius-split by the map induced from φ, and indeed all
of the objects I, A/I, and Spec A/I are said to be compatibly Frobenius split by φ.

Mehta and van der Kallen proved (Theorem 2.3) that there is a splitting of gln(k)
such that the nilpotent orbit varieties are compatibly Frobenius split. Since this
property is preserved by sums and intersections, as a corollary we have that every
element of the lattice generated by the I(Cµ) is compatibly Frobenius split, and
therefore radical. Using the order-reversing map I of Hilbert’s Nullstellensatz, we
write more precisely:
Corollary 4.2 (to Theorem 2.3). Theorem 2.2 (1) holds for k algebraically closed
of positive characteristic.
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5. Characteristic 0

We must now prove that the lattice L({I(Cµ)}) is distributive when k is an
algebraically closed field of characteristic zero. We begin by defining an ideal I(Cµ)
in any commutative ring R; the definition will coincide with the original for R an
algebraically closed field. (Note that we do not concern ourselves with the set
Cµ over R, though it may be defined as before.) Let X be the n by n matrix of
indeterminates {x11, x12, . . . , xnn}, so that R[X] is the coordinate ring of gln(R),
and R[GLn] = R[X][ 1

detX ] is the coordinate ring of GLn(R).
Definition 5.1. For R a commutative ring, let the ideal I(Cµ(R)) ⊂ R[X] be the
kernel of the map R[X] → R[GLn] that is derived from the map GLn → gln taking
g 7→ gNµg−1, where Nµ is the standard nilpotent matrix of Jordan block structure
µ′.

We must compare these ideals with the result of a simpler “extension of scalars”
from Z to R:
Definition 5.2. Consider an ideal I in a commutative ring A. For any commutative
ring R, denote by R · I the image of the map I ⊗Z R → A⊗Z R.
Lemma 5.3. Let R be a commutative ring which is torsion-free as a Z-module.
Then I(Cµ(R)) = R · I(Cµ(Z)).

Proof. From Definition 5.1 we have the exact sequence

(5.1) 0 → I(Cµ(Z)) → Z[X] → Z[GLn].

Since R is torsion-free, it is a flat Z-module, and the functor ⊗ZR is exact. Further,
Z[X] ⊗Z R = R[X] and Z[GLn] ⊗Z R = R[GLn], so tensoring the sequence (5.1)
over Z with R we obtain

(5.2) 0 → I(Cµ(Z))⊗Z R → R[X] → R[GLn].

By definition, R·I(Cµ(Z)) is the image of I(Cµ(Z))⊗ZR in R[X], so comparing (5.2)
with Definition 5.1 yields the result. �

Lemma 5.4. Fix a partition µ, and let k be a field. The truth of the statement

(5.3) I(Cµ(k)) = k · I(Cµ(Z))

depends only on char k; furthermore, (5.3) holds for all but finitely many primes
char k.

Proof. We take a computational point of view for simplicity and to indicate the
extreme generality of the arguments used for such results. Reduced Gröbner bases
of I(Cµ(k)) and k · I(Cµ(Z)) may be computed from Definition 5.1, and these
bases suffice to test (5.3). The only operations from k involved in a Gröbner-basis
computation are arithmetic ones: adding, subtracting, multiplying, dividing, and
comparing with 0. Since the map k[X] → k[GLn] is defined over the prime field k0,
the computation will involve only arithmetic in k0, and thus depends only on the
characteristic of k.

Lemma 5.3 implies that (5.3) holds for char k = 0. Only comparing with 0, of
the arithmetic operations, depends on the characteristic. Furthermore, the compu-
tation for k = Q, being finite, involves only a finite number of comparisons with
0. These comparisons are the only points at which the computations in various
characteristics might differ. Thus there are only a finite number of characteristics,
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those dividing the coefficients that are compared with 0, in which (5.3) might be
false. �

We will use the abbreviation “almost all positive characteristics” for “all but
a finite number of positive characteristics.” The argument of Lemma 5.4 easily
adapts to prove:
Lemma 5.5. Let I, J , and K be ideals in Z[X], and let k be a field. The truth of
the statements

(5.4) k · I + k · J = k ·K
and

(5.5) k · I ∩ k · J = k ·K
depends only on the characteristic of k. Furthermore, the truth of (5.4) or (5.5) is
the same in characteristic zero as in almost all positive characteristics.

We thus wish to characterize the condition of Theorem 2.2 (1) in terms of equal-
ities among finitely many intersections and sums of ideals.
Lemma 5.6. Let k be an algebraically closed field. Then the following are equiva-
lent:

(1) the map I induces a lattice isomorphism L({Cµ(k)}) → L({I(Cµ(k))}).
(2) L({I(Cµ(k))}) is distributive, and I(Cµ(k)) + I(Cν(k)) = I(Cµ∨ν(k)) for

every µ, ν ∈ Pn.

Proof. That (1) implies (2) is clear from Remark 2.1 and the fact that L({Cµ(k)})
is distributive. Assuming (2), the distributivity implies that every element of
L({I(Cµ(k))}) may be written as an intersection of sums of I(Cµ)’s. The sum
condition implies that these may be simplified to intersections of I(Cµ)’s; and any
such intersection I(Cµ(1)) ∩ · · · ∩ I(Cµ(l)) is equal to I(Cµ(1) ∪ · · · ∪ Cµ(l)). Hence
the map I induces a bijection, which is readily seen to be a lattice isomorphism, so
(1) follows. �

Thus we obtain Theorem 2.2 (1), in fact for “almost all” fields:
Theorem 5.7. Fix n > 0. The conditions of Lemma 5.6 (2) hold for any field
k (except perhaps for k not algebraically closed and of a finite number of positive
characteristics).

Proof. The distributivity and sum conditions on L({I(Cµ(k))}) constitute a finite
set of equations in the lattice. We know from Corollary 4.2 that these equations
hold in L({I(Cµ(k))}) for k algebraically closed of characteristic p > 0. Lemma 5.4
implies that the equations therefore hold in L({k·I(Cµ(Z))}) for almost all char k >
0. Thus by Lemma 5.5, the equations must hold in L({k ·I(Cµ(Z))}) for char k = 0
as well. Finally, this and Lemma 5.3 imply that the equations hold in L({I(Cµ(k))})
for char k = 0. �

6. Intersecting with the diagonal

In this section we prove Theorem 2.2, parts (2) and (3). We assume throughout
that k is an algebraically closed field of characteristic zero. The ring k[N ∩ t] =
k[X]/(I(N ) + I(t)) is naturally isomorphic to the ring

(6.1) R = k[x1, . . . , xn]/(e1(x), . . . , en(x)),



10 WILLIAM BROCKMAN AND MARK HAIMAN

where ek(x) is the k-th elementary symmetric function of x = {x1, . . . , xn}. We let
the ideal Iµ be the image of I(Cµ)+I(t) in R, and define Rµ = R/Iµ; we will tend
to consider the isomorphism Rµ

∼= k[Cµ ∩ t] an equality. Note also that I(1n) = (0)
and R(1n) = R.

We first apply Broer’s result (Theorem 2.4) toN . Consider a family of irreducible
(simple) GLn-modules {Mλ : λ ` n} such that (a) each Mλ is small; (b) the zero-
weight space MT

λ is the irreducible Sn-module with character χλ. (Gutkin [8] and
Kostant [11], and perhaps others, observed that the usual indexing of the GLn-
irreducibles by partitions leads to the required family.) Broer’s theorem implies
that we can construct an Sn-module isomorphic to R inside k[N ] as follows. Let
Pλ be the operator of projection onto the GLn-isotypic component of type Mλ. Let

(6.2) Ř =
⊕
λ`n

(Pλk[N ])T .

Consider mult(χλ, (R)d), the multiplicity in (R)d of an irreducible Sn-character χλ.
This multiplicity, by Schur’s Lemma, is dim HomSn

(MT
λ , (R)d), which by The-

orem 2.4, in the case µ = (1n), is equal to dim HomGLn
(Mλ, (k[N ])d). Thus

Pλ((k[N ])d) ∼= M
mult(χλ,(R)d)
λ as GLn-modules, and

(6.3) (Pλ((k[N ])d))T ∼= (MT
λ )mult(χλ,(R)d) ∼= (R)d

as Sn-modules. Furthermore, the isomorphism in Theorem 2.4 is induced by the
map k[N ] → k[N ∩ t]; thus we have that the restriction of this map to Ř induces
an isomorphism of graded Sn-modules

(6.4) Ř
∼=→ R.

Denote the image of I(t)+I(N ) in k[N ] by L; i.e. L is the ideal in k[N ] generated
by the off-diagonal matrix entries. Similarly, denote the image of I(Cµ) in k[N ] by
Jµ. Then the isomorphism R

∼=→ Ř splits the short exact sequence

(6.5) 0 → L → k[N ] → R → 0,

giving

(6.6) k[N ] = L⊕ Ř.

The functors HomGLn(M, ) and HomSn(MT , ) are exact on the categories
of graded GLn and Sn-modules, respectively. Thus the commutative diagram with
exact rows, and vertical arrows given by reduction modulo L,

(6.7)
0→ Jµ → k[N ]→ k[Cµ]→ 0

↓ ↓ ↓
0→ Iµ → R → Rµ → 0

yields a commutative diagram

(6.8)
0→HomGLn

(M,Jµ)→HomGLn
(M,k[N ])→HomGLn

(M,k[Cµ])→ 0
↓ ↓ ↓

0→ HomSn
(MT , Iµ) → HomSn

(MT , R) → HomSn
(MT , Rµ) → 0

whose rows are again exact. Theorem 2.4 says that the second and third vertical
arrows are isomorphisms; thus by the Five Lemma the first is as well. Note that,
for each µ ` n, the intersection Jµ ∩ Ř is

⊕
λ`n(PλJµ)T . Since the first vertical
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arrow in (6.8) is an isomorphism, it follows by the reasoning used for (6.4) that
Jµ ∩ Ř

∼=→ Iµ. So

(6.9) Jµ = (Jµ ∩ L)⊕ (Jµ ∩ Ř).

Every element I of L({Jµ}) will therefore have the property that I = (I∩L)⊕(I∩Ř).
Since L({Jµ}) is distributive by Theorem 5.7, it follows that L({Jµ} ∪ {L}) is as
well. The sublattice of elements containing L therefore projects isomorphically
modulo L onto L({Iµ}), which completes the proof of Theorem 2.2.

References

[1] D. Bayer and M. Stillman. Macaulay 2: A system for computation in algebraic geometry and
commutative algebra. Computer software, 1996–7. http://www.math.uiuc.edu/Macaulay2/.

[2] N. Bergeron and A. Garsia. On certain spaces of harmonic polynomials. Contemporary Math.,

138:86, 1992.
[3] A. Broer. The sum of generalized exponents and Chevalley’s restriction theorem for modules

of covariants. Indag. Mathem., N.S., 6(4):385–396, 1995.
[4] J. B. Carrell. Orbits of the Weyl group and a theorem of de Concini and Procesi. Compositio

Math., 60(1):45–52, 1986.
[5] C. de Concini and C. Procesi. Symmetric functions, conjugacy classes, and the flag variety.

Invent. Math., 64:203–219, 1981.

[6] H. O. Foulkes. A survey of some combinatorial aspects of symmetric functions. In Permu-
tations: actes du colloque sur les permutations: Paris, Université René Descartes, 10-13
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