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MARK HAIMAN

1. Introduction

The Hilbert scheme of points in the plane Hn = Hilbn(C2) is an algebraic variety
which parametrizes finite subschemes S of length n inC2. To each such subscheme S
corresponds an n-element multiset, or unordered n-tuple with possible repetitions,
σ(S) = [[P1, . . . , Pn]] of points in C2, where the Pi are the points of S, repeated with
appropriate multiplicities. There is a varietyXn, finite overHn, whose fiber over the
point of Hn corresponding to S consists of all ordered n-tuples (P1, . . . , Pn) ∈ (C2)n

whose underlying multiset is σ(S). We call Xn the isospectral Hilbert scheme.
By a theorem of Fogarty [14], the Hilbert scheme Hn is irreducible and non-

singular. The geometry of Xn is more complicated, but also very special. Our
main geometric result, Theorem 3.1, is that Xn is normal, Cohen-Macaulay and
Gorenstein.

Earlier investigations by the author [24] unearthed indications of a far-reaching
correspondence between the geometry and sheaf cohomology of Hn and Xn on the
one hand, and the theory of Macdonald polynomials on the other. The Macdonald
polynomials

(1) Pµ(x; q, t)

are a basis of the algebra of symmetric functions in variables x = x1, x2, . . . , with
coefficients in the field Q(q, t) of rational functions in two parameters q and t.
They were introduced in 1988 by Macdonald [39] to unify the two well-known one-
parameter bases of the algebra of symmetric functions, namely, the Hall-Littlewood
polynomials and the Jack polynomials (for a thorough treatment see [40]). It
promptly became clear that the discovery of Macdonald polynomials was funda-
mental and sure to have many ramifications. Developments in the years since have
borne this out, notably, Cherednik’s proof of the Macdonald constant-term iden-
tities [9] and other discoveries relating Macdonald polynomials to representation
theory of quantum groups [13] and affine Hecke algebras [32, 33, 41], the Calogero–
Sutherland model in particle physics [35], and combinatorial conjectures on diagonal
harmonics [3, 16, 22].
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The link between Macdonald polynomials and Hilbert schemes comes from work
by Garsia and the author on the Macdonald positivity conjecture. The Schur func-
tion expansions of Macdonald polynomials lead to transition coefficients Kλµ(q, t),
known as Kostka-Macdonald coefficients. As defined, they are rational functions of
q and t, but conjecturally they are polynomials in q and t with nonnegative integer
coefficients:

(2) Kλµ(q, t) ∈ N[q, t].

The positivity conjecture has remained open since Macdonald formulated it at the
time of his original discovery. For q = 0 it reduces to the positivity theorem
for t-Kostka coefficients, which has important algebraic, geometric and combina-
torial interpretations [7, 10, 17, 27, 31, 34, 36, 37, 38, 45]. Only recently have
several authors independently shown that the Kostka-Macdonald coefficients are
polynomials, Kλµ(q, t) ∈ Z[q, t], but these results do not establish the positivity
[18, 19, 32, 33, 44].

In [15], Garsia and the author conjectured an interpretation of the Kostka-
Macdonald coefficients Kλµ(q, t) as graded character multiplicities for certain dou-
bly graded Sn-modules Dµ. The module Dµ is the space of polynomials in 2n vari-
ables spanned by all derivatives of a certain simple determinant (see §2.2 for the
precise definition). The conjectured interpretation implies the Macdonald positiv-
ity conjecture. It also implies, in consequence of known properties of the Kλµ(q, t),
that for each partition µ of n, the dimension of Dµ is equal to n!. This seemingly
elementary assertion has come to be known as the n! conjecture.

It develops that these conjectures are closely tied to the geometry of the isospec-
tral Hilbert scheme. Specifically, in [24] we were able show that the Cohen-
Macaulay property of Xn is equivalent to the n! conjecture. We further showed
that the Cohen-Macaulay property of Xn implies the stronger conjecture interpret-
ing Kλµ(q, t) as a graded character multiplicity for Dµ. Thus the geometric results
in the present article complete the proof of the Macdonald positivity conjecture.

Another consequence of our results, equivalent in fact to our main theorem,
is that the Hilbert scheme Hn is equal to the G-Hilbert scheme V //G of Ito and
Nakamura [28], for the case V = (C2)n, G = Sn. The G-Hilbert scheme is of
interest in connection with the generalized McKay correspondence, which says that
if V is a complex vector space, G is a finite subgroup of SL(V ) and Y → V/G is a
so-called crepant resolution of singularities, then the sum of the Betti numbers of
Y equals the number of conjugacy classes of G. In many interesting cases [6, 42],
the G-Hilbert scheme turns out to be a crepant resolution and an instance of the
McKay correspondence. By our main theorem, this holds for G = Sn, V = (C2)n.

We wish to say a little at this point about how the discoveries presented here
came about. It has long been known [27, 45] that the t-Kostka coefficients Kλµ(t) =
Kλµ(0, t) are graded character multiplicities for the cohomology rings of Springer
fibers. Garsia and Procesi [17] found a new proof of this result, deriving it directly
from an elementary description of the rings in question. In doing so, they hoped
to reformulate the result for Kλµ(t) in a way that might generalize to the two-
parameter case. Shortly after that, Garsia and the author began their collaboration
and soon found the desired generalization, in the form of the n! conjecture. Based
on Garsia and Procesi’s experience, we initially expected that the n! conjecture
itself would be easy to prove and that the difficulties would lie in the identification
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of Kλµ(q, t) as the graded character multiplicity. To our surprise, however, the n!
conjecture stubbornly resisted elementary attack.

In the spring of 1992, we discussed our efforts on the n! conjecture with Procesi,
along with another related conjecture we had stumbled upon in the course of our
work. The modules involved in the n! conjecture are quotients of the ring Rn of
coinvariants for the action of Sn on the polynomial ring in 2n variables. This ringRn
is isomorphic to the space of diagonal harmonics. Computations suggested that its
dimension should be (n + 1)n−1 and that its graded character should be related to
certain well-known combinatorial enumerations (this conjecture is discussed briefly
in §5.3 and at length in [16, 22]). Procesi suggested that the Hilbert scheme Hn

and what we now call the isospectral Hilbert scheme Xn should be relevant to the
determination of the dimension and character of Rn. Specifically, he observed that
there is a natural map from Rn to the ring of global functions on the scheme-
theoretic fiber in Xn over the origin in SnC2. With luck, this map might be an
isomorphism, and—as we are now able to confirm—Xn might be flat over Hn, so
that its structure sheaf would push down to a vector bundle on Hn. Then Rn would
coincide with the space of global sections of this vector bundle over the zero-fiber
in Hn, and it might be possible to compute its character using the Atiyah–Bott
Lefschetz formula.

The connection between Xn and the n! conjecture became clear when the author
sought to carry out the computation Procesi had suggested, assuming the validity
of some needed but unproven geometric hypotheses. More precisely, it became
clear that the spaces in the n! conjecture should be the fibers of Procesi’s vector
bundle at distinguished torus-fixed points in Hn, a fact which we prove in §3.7.
These considerations ultimately led to a conjectured formula for the character of
Rn in terms of Macdonald polynomials. This formula turned out to be correct up
to the limit of practical computation (n ≤ 7). Furthermore, Garsia and the author
were able to show in [16] that the series of combinatorial conjectures in [22] would
all follow from the conjectured master formula. Thus we had strong indications
that Procesi’s proposed picture was indeed valid, and that a geometric study of Xn
should ultimately lead to a proof of the n! and Macdonald positivity conjectures, as
is borne out here. By now the reader should expect the geometric study of Xn also
to yield a proof of the character formula for diagonal harmonics and the (n + 1)n−1

conjecture. This subject will be taken up in a separate article.
The remainder of the paper is organized as follows. In Section 2 we give the

relevant definitions concerning Macdonald polynomials and state the positivity, n!
and graded character conjectures. Hilbert scheme definitions and the statement
and proof of the main theorem are in Section 3, along with the equivalence of the
main theorem to the n! conjecture. In §3.9 we review the proof from [24] that the
main theorem implies the conjecture of Garsia and the author on the character of
the space Dµ, and hence implies the Macdonald positivity conjecture.

The proof of the main theorem uses a technical result, Theorem 4.1, that the
coordinate ring of a certain type of subspace arrangement we call a polygraph is a
free module over the polynomial ring generated by some of the coordinates. Section
4 contains the definition and study of polygraphs, culminating in the proof of
Theorem 4.1. At the end, in Section 5, we discuss other implications of our results,
including the connection with G-Hilbert schemes, along with related conjectures
and open problems.
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2. The n! and Macdonald positivity conjectures

2.1. Macdonald polynomials. We work with the transformed integral forms
H̃µ(x; q, t) of the Macdonald polynomials, indexed by integer partitions µ, and
homogeneous of degree n = |µ|. These are defined as in [24], eq. (2.18) to be

(3) H̃µ(x; q, t) = tn(µ)Jµ[X/(1− t−1); q, t−1],

where Jµ denotes Macdonald’s integral form as in [40], VI, eq. (8.3), and n(µ) is
the partition statistic

(4) n(µ) =
∑
i

(i− 1)µi

(not to be confused with n = |µ|).
The square brackets in (3) stand for plethystic substitution. We pause briefly to

review the definition of this operation (see [24] for a fuller discussion). Let F[[x]]
be the algebra of formal series over the coefficient field F = Q(q, t), in variables
x = x1, x2, . . . . For any A ∈ F[[x]], we denote by pk[A] the result of replacing each
indeterminate in A by its k-th power. This includes the indeterminates q and t as
well as the variables xi. The algebra of symmetric functions ΛF is freely generated
as an F-algebra by the power-sums

(5) pk(x) = xk1 + xk2 + · · · .
Hence there is a unique F-algebra homomorphism

(6) evA : ΛF → F[[x]] defined by pk(x) 7→ pk[A].

In general we write f [A] for evA(f), for any f ∈ ΛF. With this notation goes the
convention that X stands for the sum X = x1 +x2 + · · · of the variables, so we have
pk[X] = pk(x) and hence f [X] = f(x) for all f . Note that a plethystic substitution
like f 7→ f [X/(1− t−1)], such as we have on the right-hand side in (3), yields again
a symmetric function.

There is a simple direct characterization of the transformed Macdonald polyno-
mials H̃µ.

Proposition 2.1.1 ([24], Proposition 2.6). The H̃µ(x; q, t) satisfy
(1) H̃µ(x; q, t) ∈ Q(q, t){sλ[X/(1− q)] : λ ≥ µ},
(2) H̃µ(x; q, t) ∈ Q(q, t){sλ[X/(1− t)] : λ ≥ µ′}, and
(3) H̃µ[1; q, t] = 1,

where sλ(x) denotes a Schur function, µ′ is the partition conjugate to µ, and the
ordering is the dominance partial order on partitions of n = |µ|. These conditions
characterize H̃µ(x; q, t) uniquely.

We set K̃λµ(q, t) = tn(µ)Kλµ(q, t−1), where Kλµ(q, t) is the Kostka-Macdonald
coefficient defined in [40], VI, eq. (8.11). This is then related to the transformed
Macdonald polynomials by

(7) H̃µ(x; q, t) =
∑
λ

K̃λµ(q, t)sλ(x).

It is known that Kλµ(q, t) has degree at most n(µ) in t, so the positivity conjecture
(2) from the introduction can be equivalently formulated in terms of K̃λµ.

Conjecture 2.1.2 (Macdonald positivity conjecture). We have K̃λµ(q, t) ∈ N[q, t].
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2.2. The n! and graded character conjectures. Let C[x,y] = C[x1, y1, . . . ,
xn, yn] be the polynomial ring in 2n variables. To each n-element subset D ⊆ N×N,
we associate a polynomial ∆D ∈ C[x,y] as follows. Let (p1, q1), . . . , (pn, qn) be the
elements of D listed in some fixed order. Then we define

(8) ∆D = det
(
x
pj
i y

qj
i

)
1≤i,j≤n .

If µ is a partition of n, its diagram is the set

(9) D(µ) = {(i, j) : j < µi+1} ⊆ N ×N.
(Note that in our definition the rows and columns of the diagram D(µ) are indexed
starting with zero.) In the case where D = D(µ) is the diagram of a partition, we
abbreviate

(10) ∆µ = ∆D(µ).

The polynomial ∆µ(x,y) is a kind of bivariate analog of the Vandermonde deter-
minant ∆(x), which occurs as the special case µ = (1n).

Given a partition µ of n, we denote by

(11) Dµ = C[∂x, ∂y]∆µ

the space spanned by all the iterated partial derivatives of ∆µ. In [15], Garsia and
the author proposed the following conjecture, which we will prove as a consequence
of Proposition 3.7.3 and Theorem 3.1.

Conjecture 2.2.1 (n! conjecture). The dimension of Dµ is equal to n!.

The n! conjecture arose as part of a stronger conjecture relating the Kostka-
Macdonald coefficients to the character of Dµ as a doubly graded Sn-module. The
symmetric group Sn acts by C-algebra automorphisms of C[x,y] permuting the
variables:

(12) wxi = xw(i), wyi = yw(i) for w ∈ Sn.
The ring C[x,y] =

⊕
r,s C[x,y]r,s is doubly graded, by degree in the x and y

variables respectively, and the Sn action respects the grading. Clearly ∆µ is Sn-
alternating, i.e., we have w∆µ = ε(w)∆µ for all w ∈ Sn, where ε is the sign
character. Note that ∆µ is also doubly homogeneous, of x-degree n(µ) and y-degree
n(µ′). It follows that the space Dµ is Sn-invariant and has a double grading

(13) Dµ =
⊕
r,s

(Dµ)r,s

by Sn-invariant subspaces (Dµ)r,s = Dµ ∩ C[x,y]r,s.
We write ch V for the character of an Sn-module V , and denote the irreducible

Sn characters by χλ, with the usual indexing by partitions λ of n. The following
conjecture implies the Macdonald positivity conjecture.

Conjecture 2.2.2 ([15]). We have

(14) K̃λµ(q, t) =
∑
r,s

trqs〈χλ, ch(Dµ)r,s〉.

Macdonald had shown that Kλµ(1, 1) is equal to χλ(1), the degree of the irre-
ducible Sn character χλ, or the number of standard Young tableaux of shape λ.
Conjecture 2.2.2 therefore implies that Dµ affords the regular representation of Sn.
In particular, it implies the n! conjecture.
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In [24] the author showed that Conjecture 2.2.2 would follow from the Cohen-
Macaulay property of Xn. We summarize the argument proving Conjecture 2.2.2
in §3.9, after the relevant geometric results have been established.

3. The isospectral Hilbert scheme

3.1. Preliminaries. In this section we define the isospectral Hilbert scheme Xn,
and deduce our main theorem, Theorem 3.1 (§3.8). We also define the the Hilbert
schemeHn and the nested Hilbert scheme Hn−1,n, and develop some basic properties
of these various schemes in preparation for the proof of the main theorem.

The main technical device used in the proof of Theorem 3.1 is a theorem on
certain subspace arrangements called polygraphs, Theorem 4.1. The proof of the
latter theorem is lengthy and logically distinct from the geometric reasoning leading
from there to Theorem 3.1. For these reasons we have deferred Theorem 4.1 and
its proof to the separate Section 4.

Throughout this section we work in the category of schemes of finite type over
the field of complex numbers, C. All the specific schemes we consider are quasipro-
jective over C. We use classical geometric language, describing open and closed
subsets of schemes, and morphisms between reduced schemes, in terms of closed
points. A variety is a reduced and irreducible scheme.

Every locally free coherent sheaf B of rank n on a scheme X of finite type over
C is isomorphic to the sheaf of sections of an algebraic vector bundle of rank n over
X. For notational purposes, we identify the vector bundle with the sheaf B and
write B(x) for the fiber of B at a closed point x ∈ X. In sheaf-theoretic terms, the
fiber is given by B(x) = B ⊗OX (OX,x/x).

A scheme X is Cohen-Macaulay or Gorenstein, respectively, if its local ring OX,x
at every point is a Cohen-Macaulay or Gorenstein local ring. For either condition
it suffices that it hold at closed points x. At the end of the section, in §3.10, we
provide a brief summary of the facts we need from duality theory and the theory
of Cohen-Macaulay and Gorenstein schemes.

3.2. The schemesHn and Xn. Let R = C[x, y] be the coordinate ring of the affine
planeC2. By definition, closed subschemes S ⊆ C2 are in one-to-one correspondence
with ideals I ⊆ R. The subscheme S = V (I) is finite if and only if R/I has Krull
dimension zero, or finite dimension as a vector space over C. In this case, the length
of S is defined to be dimCR/I.

The Hilbert scheme Hn = Hilbn(C2) parametrizes finite closed subschemes
S ⊆ C2 of length n. The scheme structure of Hn and the precise sense in which it
parametrizes the subschemes S are defined by a universal property, which charac-
terizes Hn up to unique isomorphism. The universal property is actually a property
of Hn together with a closed subscheme F ⊆ Hn ×C2, called the universal family.

Proposition 3.2.1. There exist schemes Hn = Hilbn(C2) and F ⊆ Hn × C2 en-
joying the following properties, which characterize them up to unique isomorphism:

(1) F is flat and finite of degree n over Hn, and
(2) if Y ⊆ T×C2 is a closed subscheme, flat and finite of degree n over a scheme

T , then there is a unique morphism φ : T → Hn giving a commutative fiber
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product diagram

Y −−−−→ T ×C2 −−−−→ Ty y φ

y
F −−−−→ Hn × C2 −−−−→ Hn,

that is, the flat family Y over T is the pullback through φ of the universal
family F .

Proof. The Hilbert scheme Ĥ = Hilbn(P2) of points in the projective plane exists
as a special case of Grothendieck’s construction in [21], with a universal family F̂
having the analogous universal property. We identify C2 as usual with an open
subset of P2, the complement of the projective line Z “at infinity.”

The projection of F̂ ∩ (Ĥ × Z) onto Ĥ is a closed subset of Ĥ. Its complement
Hn ⊆ Ĥ is clearly the largest subset such that the restriction F of F̂ to Hn is
contained in Hn × C2. The required universal property of Hn and F now follows
immediately from that of Ĥ and F̂ . �

To see how Hn parametrizes finite closed subschemes S ⊆ C2 of length n, note
that the latter are exactly the families Y in Proposition 3.2.1 for T = SpecC. By
the universal property they correspond one-to-one with the closed points of Hn, in
such a way that the fiber of the universal family F over the point corresponding
to S is S itself. For notational purposes we will identify the closed points of Hn

with ideals I ⊆ R satisfying dimCR/I = n, rather than with the corresponding
subschemes S = V (I).

We have the following fundamental theorem of Fogarty [14].

Proposition 3.2.2. The Hilbert scheme Hn is a nonsingular, irreducible variety
over C of dimension 2n.

The generic examples of finite closed subschemes S ⊆ C2 of length n are the
reduced subschemes consisting of n distinct points. They form an open subset of
Hn, and the irreducibility aspect of Fogarty’s theorem means that this open set is
dense.

The most special closed subschemes in a certain sense are those defined by mono-
mial ideals. If I ⊆ R is a monomial ideal then the standard monomials xpyq 6∈ I
form a basis of R/I. If dimCR/I = n, the exponents (p, q) of the standard mono-
mials form the diagram D(µ) of a partition µ of n, and conversely. We use the
partition µ to index the corresponding monomial ideal, denoting it by Iµ. Note
that

√
Iµ = (x, y) for all µ, so the subscheme V (Iµ) is concentrated at the origin

(0, 0) ∈ C2, and owes its length entirely to its non-reduced scheme structure.
The algebraic torus

(15) T2 = (C∗)2

acts on C2 as the group of invertible diagonal 2× 2 matrices. The monomial ideals
Iµ are the torus invariant ideals, and thus they are the fixed points of the induced
action of T2 on the Hilbert scheme. Every ideal I ∈ Hn has a monomial ideal in
the closure of its T2-orbit ([23], Lemma 2.3).

We write xi, yi for the coordinates on the i-th factor in the Cartesian prod-
uct (C2)n, so we have (C2)n = SpecC[x,y], where C[x,y] = C[x1, y1, . . . , xn, yn].
The symmetric group Sn acts on (C2)n by permuting the factors. In coordinates,



8 MARK HAIMAN

this corresponds to the action of Sn on C[x,y] given in (12). We can identify
SpecC[x,y]Sn with the variety

(16) SnC2 = (C2)n/Sn

of unordered n-tuples, or n-element multisets, of points in C2.

Proposition 3.2.3 ([23], Proposition 2.2). For I ∈ Hn, let σ(I) be the multiset
of points of V (I), counting each point P with multiplicity equal to the length of the
local ring (R/I)P . Then the map σ : Hn → SnC2 is a projective morphism (called
the Chow morphism).

Definition 3.2.4. The isospectral Hilbert scheme Xn is the reduced fiber product

(17)

Xn
f−−−−→ (C2)n

ρ

y y
Hn

σ−−−−→ SnC2,

that is, the reduced closed subscheme of Hn × (C2)n whose closed points are the
tuples (I, P1, . . . , Pn) satisfying σ(I) = [[P1, . . . , Pn]].

We will continue to refer to the morphisms ρ, σ and f in diagram (17) by those
names in what follows.

For each I ∈ Hn, the operators x, y of multiplication by x, y are commut-
ing endomorphisms of the n-dimensional vector space R/I. As such, they have a
well-defined joint spectrum, a multiset of pairs of eigenvalues (x1, y1), . . . , (xn, yn)
determined by the identity

(18) detR/I (1 + αx+ βy) =
n∏
i=1

(1 + αxi + βyi).

On the local ring (R/I)P at a point P = (x0, y0), the operators x, y have the sole
joint eigenvalue (x0, y0), with multiplicity equal to the length of (R/I)P . Hence
σ(I) is equal as a multiset to the joint spectrum of x and y. This is the motivation
for the term isospectral.

The action of Sn on (C2)n induces a compatible action of Sn on Xn by au-
tomorphisms of Xn as a scheme over Hn. Explicitly, for w ∈ Sn we have
w(I, P1, . . . , Pn) = (I, Pw−1(1), . . . , Pw−1(n)).

We caution the reader that the scheme-theoretic fiber product in (17) is not
reduced, even for n = 2. For every invariant polynomial g ∈ C[x,y]Sn, the global
regular function

(19) g(x1, y1, . . . , xn, yn) − σ∗g

on Hn × (C2)n vanishes on Xn. By definition these equations generate the ideal
sheaf of the scheme-theoretic fiber product. They cut out Xn set-theoretically, but
not as a reduced subscheme. The full ideal sheaf defining Xn as a reduced scheme
must necessarily have a complicated local description, since it is a consequence of
Theorem 3.1 and Proposition 3.7.3, below, that generators for all the ideals Jµ in
§3.7, eq. (35) are implicit in the local ideals of Xn at the distinguished points Qµ
lying over the torus-fixed points Iµ ∈ Hn.
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3.3. Elementary properties of Xn. We now develop some elementary facts
about the isospectral Hilbert scheme Xn. The first of these is its product structure,
which allows us to reduce local questions on Xn to questions about Xk for k < n,
in a neighborhood of any point whose corresponding multiset [[P1, . . . , Pn]] is not of
the form [[n · P ]].

Lemma 3.3.1. Let k and l be positive integers with k+ l = n. Suppose U ⊆ (C2)n

is an open set consisting of points (P1, . . . , Pk, Q1, . . . , Ql) where no Pi coincides
with any Qj . Then, identifying (C2)n with (C2)k × (C2)l, the preimage f−1(U) of
U in Xn is isomorphic as a scheme over (C2)n to the preimage (fk × fl)−1(U) of
U in Xk ×Xl.

Proof. Let Y = (ρ×1C2)−1(F ) ⊆ Xn×C2 be the universal family overXn. The fiber
V (I) of Y over a point (I, P1, . . . , Pk, Q1, . . . , Ql) ∈ f−1(U) is the disjoint union
of closed subschemes V (Ik) and V (Il) in C2 of lengths k and l, respectively, with
σ(Ik) = [[P1, . . . , Pk]] and σ(Il) = [[Q1, . . . , Ql]]. Hence over f−1(U), Y is the disjoint
union of flat families Yk, Yl of degrees k and l. By the universal property, we get
induced morphisms φk : f−1(U) → Hk, φl : f−1(U) → Hl and φk × φl : f−1(U) →
Hk × Hl. The equations σ(Ik) = [[P1, . . . , Pk]], σ(Il) = [[Q1, . . . , Ql]] imply that
φk × φl factors through a morphism α : f−1(U)→ Xk ×Xl of schemes over (C2)n.

Conversely, on (fk × fl)−1(U) ⊆ Xk ×Xl, the pullbacks of the universal families
from Xk and Xl are disjoint and their union is a flat family of degree n. By the
universal property there is an induced morphism ψ : (fk × fl)−1(U) → Hn, which
factors through a morphism β : (fk × fl)−1(U)→ Xn of schemes over (C2)n.

By construction, the universal families on f−1(U) and (fk×fl)−1(U) pull back to
themselves via β ◦α and α◦β, respectively. This implies that β ◦α is a morphism of
schemes overHn and α◦β is a morphism of schemes overHk×Hl. Since they are also
morphisms of schemes over (C2)n, we have β◦α = 1f−1(U) and α◦β = 1(fk×fl)−1(U).
Hence α and β induce mutually inverse isomorphisms f−1(U) ∼= (fk×fl)−1(U). �

Proposition 3.3.2. The isospectral Hilbert scheme Xn is irreducible, of dimension
2n.

Proof. Let U be the preimage in Xn of the open set W ⊆ (C2)n consisting of
points (P1, . . . , Pn) where the Pi are all distinct. It follows from Lemma 3.3.1 that
f restricts to an isomorphism f : U →W , so U is irreducible. We are to show that
U is dense in Xn.

Let Q be a closed point of Xn, which we want to show belongs to the closure
U of U . If f(Q) = (P1, . . . , Pn) with the Pi not all equal, then by Lemma 3.3.1
there is a neighborhood of Q in Xn isomorphic to an open set in Xk ×Xl for some
k, l < n. The result then follows by induction, since we may assume Xk and Xl
irreducible. If all the Pi are equal, then Q is the unique point of Xn lying over
I = ρ(Q) ∈ Hn. Since ρ is finite, ρ(U ) ⊆ Hn is closed. But ρ(U) is dense in Hn, so
ρ(U) = Hn. Therefore U contains a point lying over I, which must be Q. �

Proposition 3.3.3. The closed subset V (y1, . . . , yn) in Xn has dimension n.

Proof. It follows from the cell decomposition of Ellingsrud and Strømme [11] that
the closed locus Z in Hn consisting of points I with V (I) supported on the x-axis
V (y) in C2 is the union of locally closed affine cells of dimension n. The subset
V (y) ⊆ Xn is equal to ρ−1(Z) and ρ is finite. �
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The product structure of Xn is inherited in a certain sense by Hn, but its de-
scription in terms of Xn is more transparent. As a consequence, passage to Xn
is sometimes handy for proving results purely about Hn. The following lemma is
an example of this. We remark that one can show by a more careful analysis that
locus Gr in the lemma is in fact irreducible.

Lemma 3.3.4. Let Gr be the closed subset of Hn consisting of ideals I for which
σ(I) contains some point with multiplicity at least r. Then Gr has codimension
r − 1, and has a unique irreducible component of maximal dimension.

Proof. By symmetry among the points Pi of σ(I) we see that Gr = ρ(Vr), where Vr
is the locus in Xn defined by the equations P1 = · · · = Pr. It follows from Lemma
3.3.1 that Vr \ ρ−1(Gr+1) is isomorphic to an open set in Wr ×Xn−r , where Wr is
the closed subset P1 = · · · = Pr in Xr . As a reduced subscheme of Xr , the latter
is isomorphic to C2 × Zr , where Zr = σ−1(0) is the zero fiber in Hr, the factor C2

accounting for the choice of P = P1 = · · · = Pr.
By a theorem of Briançon [5], Zr is irreducible of dimension r − 1, so Vr \

ρ−1(Gr+1) is irreducible of dimension 2(n − r) + r + 1 = 2n − (r − 1). Since
Gr \ Gr+1 = ρ(Vr \ ρ−1(Gr+1)) and ρ is finite, the result follows by descending
induction on r, starting with Gn+1 = ∅. �

3.4. Blowup construction of Hn and Xn. Let A = C[x,y]ε be the space of Sn-
alternating elements, that is, polynomials g such that wg = ε(w)g for all w ∈ Sn,
where ε is the sign character. To describe A more precisely, we note that A is the
image of the alternation operator

(20) Θεg =
∑
w∈Sn

ε(w)wg.

If D = {(p1, q1), . . . , (pn, qn)} is an n-element subset of N×N, then the determinant
∆D defined in (8) can also be written

(21) ∆D = Θε(xpyq),

where xpyq = xp1
1 y

q1
1 · · ·xpnn yqnn . For a monomial xpyq whose exponent pairs (pi, qi)

are not all distinct, we have Θε(xpyq) = 0. From this it is easy to see that the set
of all elements ∆D is a basis of A. Another way to see this is to identify A with the
n-th exterior power ∧nC[x, y] of the polynomial ring in two variables x, y. Then the
basis elements ∆D are identified with the wedge products of monomials in C[x, y].

For d > 0, let Ad be the space spanned by all products of d elements of A. We
set A0 = C[x,y]Sn . Note that A and hence every Ad is a C[x,y]Sn-submodule of
C[x,y], so we have AiAj = Ai+j for all i, j, including i = 0 or j = 0.

Proposition 3.4.1 ([23], Proposition 2.6). The Hilbert scheme Hn is isomorphic
as a scheme projective over SnC2 to ProjT , where T is the graded C[x,y]Sn-algebra
T =

⊕
d≥0 A

d.

Proposition 3.4.2. The isospectral Hilbert scheme Xn is isomorphic as a scheme
over (C2)n to the blowup of (C2)n at the ideal J = C[x,y]A generated by the
alternating polynomials.

Proof. Set S = C[x,y]. By definition the blowup of (C2)n at J is Z = ProjS[tJ ],
where S[tJ ] ∼=

⊕
d≥0 J

d is the Rees algebra. The ring T is a homogeneous subring
of S[tJ ] in an obvious way, and since Ad generates Jd as a C[x,y]-module, we
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have S · T = S[tJ ], that is, S[tJ ] ∼= (C[x,y] ⊗A0 T )/I for some homogeneous
ideal I. In geometric terms, using Proposition 3.4.1 and the fact that SnC2 =
SpecA0, this says that Z is a closed subscheme of the scheme-theoretic fiber product
Hn×SnC2 (C2)n. Since Z is reduced, it follows that Z is a closed subscheme of Xn.
By Proposition 3.3.2, Xn is irreducible, and since both Z and Xn have dimension
2n, it follows that Z = Xn. �

In the context of either Hn or Xn we will always write O(k) for the k-th tensor
power of the ample line bundle O(1) induced by the representation of Hn as ProjT
or Xn as ProjS[tJ ]. It is immediate from the proof of Proposition 3.4.2 that
OXn(k) = ρ∗OHn(k).

In full analogy to the situation for the Plücker embedding of a Grassmann va-
riety, there is an intrinsic description of O(1) as the highest exterior power of the
tautological vector bundle whose fiber at a point I ∈ Hn is R/I. Let

(22) π : F → Hn

be the projection of the universal family on the Hilbert scheme. Since π is an affine
morphism, we have F = SpecB, where B is the sheaf of OHn -algebras

(23) B = π∗OF .
The fact that F is flat and finite of degree n over Hn means that B is a locally free
sheaf of OHn -modules of rank n. Its associated vector bundle is the tautological
bundle.

Proposition 3.4.3 ([23], Proposition 2.12). We have an isomorphism ∧nB ∼= O(1)
of line bundles on Hn.

3.5. Nested Hilbert schemes. The proof of our main theorem will be by induc-
tion on n. For the inductive step we interpolate between Hn−1 and Hn using the
nested Hilbert scheme.

Definition 3.5.1. The nested Hilbert scheme Hn−1,n is the reduced closed sub-
scheme

(24) Hn−1,n = {(In−1, In) : In ⊆ In−1} ⊆ Hn−1 ×Hn.

The analog of Fogarty’s theorem (Proposition 3.2.2) for the nested Hilbert
scheme is the following result of Tikhomirov, whose proof can be found in [8].

Proposition 3.5.2. The nested Hilbert scheme Hn−1,n is nonsingular and irre-
ducible, of dimension 2n.

As with Hn, the nested Hilbert scheme is an open set in a projective nested
Hilbert scheme Hilbn−1,n(P2). Clearly, Hn−1,n is the preimage of Hn under the
projection Hilbn−1,n(P2) → Hilbn(P2). Hence the projection Hn−1,n → Hn is a
projective morphism.

If (In−1, In) is a point of Hn−1,n then σ(In−1) is an n− 1 element sub-multiset
of σ(In). In symbols, if σ(In−1) = [[P1, . . . , Pn−1]], then σ(In) = [[P1, . . . , Pn−1, Pn]]
for a distinguished last point Pn. The Sn−1-invariant polynomials in the coordi-
nates x1, y1, . . . , xn−1, yn−1 of the points P1, . . . , Pn−1 are global regular functions
on Hn−1,n, pulled back via the projection on Hn−1. Similarly, the Sn-invariant
polynomials in x1, y1, . . . , xn, yn are regular functions pulled back from Hn. It fol-
lows that the coordinates of the distinguished point Pn are regular functions, since
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xn = (x1 + · · · + xn) − (x1 + · · · + xn−1), and similarly for yn. Thus we have a
morphism

(25) σ : Hn−1,n→ Sn−1C2 × C2 = (C2)n/Sn−1,

such that both the maps Hn−1,n → Sn−1C2 and Hn−1,n → SnC2 induced by the
Chow morphisms composed with the projections on Hn−1 and Hn factor through
σ.

The distinguished point Pn belongs to V (In), and given In, every point of V (In)
occurs as Pn for some choice of In−1. Therefore the image of the morphism

(26) α : Hn−1,n→ Hn ×C2

sending (In−1, In) to (In, Pn) is precisely the universal familyF overHn. For clarity,
let us point out that by the definition of F , we have F = {(I, P ) ∈ Hn × C2 : P ∈
V (I)}, at least set-theoretically. In fact, F is reduced and hence coincides as a
reduced closed subscheme with this subset of Hn × C2. This is true because F is
flat over the variety Hn and generically reduced (see also the proof of Proposition
3.7.2 below).

The following proposition, in conjunction with Lemma 3.3.4, provides dimension
estimates needed for the calculation of the canonical line bundle on Hn−1,n in §3.6
and the proof of the main theorem in §3.8.

Proposition 3.5.3. Let d be the dimension of the fiber of the morphism α in (26)
over a point (I, P ) ∈ F , and let r be the multiplicity of P in σ(I). Then d and r
satisfy the inequality

(27) r ≥
(
d+ 2

2

)
.

Proof. Recall that the socle of an Artin local ring A is the ideal consisting of
elements annihilated by the maximal ideal m. If A is an algebra over a field k,
with A/m ∼= k, then every linear subspace of the socle is an ideal, and conversely
every ideal in A of length 1 is a one-dimensional subspace of the socle. The possible
ideals In−1 for the given (In, Pn) = (I, P ) are the length 1 ideals in the Artin local
C-algebra (R/I)P , where R = C[x, y]. The fiber of α is therefore the projective
space P(soc(R/I)P ), and we have d+ 1 = dim soc(R/I)P .

First consider the maximum possible dimension of any fiber of α. Since both
Hn−1,n and F are projective over Hn, the morphism α is projective and its fiber
dimension is upper semicontinuous. Since every point of Hn has a monomial ideal
Iµ in the closure of its T2-orbit, and since F is finite over Hn, every point of F
must have a pair (Iµ, 0) ∈ F in the closure of its orbit. The fiber dimension is
therefore maximized at some such point. The socle of R/Iµ has dimension equal
to the number of corners of the diagram of µ. If this number is s, we clearly have
n ≥

(
s+1

2

)
. This implies that for every Artin local C-algebra R/I generated by two

elements, the socle dimension s and the length n of R/I satisfy n ≥
(
s+1

2

)
.

Returning to the original problem, (R/I)P is an Artin local C-algebra of length
r generated by two elements, with socle dimension d+ 1, so (27) follows. �

We now introduce the nested version of the isospectral Hilbert scheme. It literally
plays a pivotal role in the proof of the main theorem by induction on n: we transfer
the Gorenstein property from Xn−1 to the nested scheme Xn−1,n by pulling back,
and from there to Xn by pushing forward.
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Definition 3.5.4. The nested isospectral Hilbert scheme Xn−1,n is the reduced
fiber product Hn−1,n ×Hn−1 Xn−1.

There is an alternative formulation of the definition, which is useful to keep in
mind for the next two results. Namely, Xn−1,n can be identified with the reduced
fiber product in the diagram

(28)

Xn−1,n −−−−→ (C2)ny y
Hn−1,n

σ−−−−→ Sn−1C2 ×C2,

that is, the reduced closed subscheme of Hn−1,n × (C2)n consisting of tuples
(In−1, In, P1, . . . , Pn) such that σ(In) = [[P1, . . . , Pn]] and Pn is the distinguished
point. To see that this agrees with the definition, note that a point of Hn−1,n×Hn−1

Xn−1 is given by the data (In−1, In, P1, . . . , Pn−1), and that these data determine
the distinguished point Pn. We obtain the alternative description by identifying
Xn−1,n with the graph in Xn−1,n × C2 of the morphism Xn−1,n → C2 sending
(In−1, In, P1, . . . , Pn−1) to Pn.

We have the following nested analogs of Lemma 3.3.1 and Proposition 3.3.3.
The analog of Proposition 3.3.2 also holds, i.e., Xn−1,n is irreducible. We do not
prove this here, as it will follow automatically as part of our induction: see the
observations following diagram (51) in §3.8.

Lemma 3.5.5. Let k + l = n and U ⊆ (C2)n be as in Lemma 3.3.1. Then the
preimage of U in Xn−1,n is isomorphic as a scheme over (C2)n to the preimage of
U in Xk ×Xl−1,l.

Proof. Lemma 3.3.1 gives us isomorphisms on the preimage of U between Xn and
Xk ×Xl, and between Xn−1 and Xk ×Xl−1.

We can identify Xn−1,n with the closed subset of Xn−1×Xn consisting of points
where P1, . . . , Pn−1 are the same in both factors, and In−1 contains In. On the
preimage of U , under the isomorphisms above, this corresponds to the closed subset
of (Xk ×Xl−1)× (Xk ×Xl) where P1, . . . , Pk, Q1, . . . , Ql−1 and Ik are the same in
both factors and Il−1 contains Il. The latter can be identified with Xk×Xl−1,l. �
Proposition 3.5.6. The closed subset V (y1, . . . , yn) in Xn−1,n has dimension n.

Proof. We have the corresponding result for Xn in Proposition 3.3.3. We can
assume by induction that the result for the nested scheme holds for smaller values
of n (for the base case note that X0,1

∼= X1
∼= C2). Locally on a neighborhood of

any point where P1, . . . , Pn are not all equal, the result then follows from Lemma
3.5.5.

The locus where all the Pi are equal is isomorphic to C1×Z where Z = σ−1(0) ⊆
Hn−1,n is the zero fiber in the nested Hilbert scheme, the factor C1 accounting for
the choice of the common point P = P1 = · · · = Pn on the x-axis V (y) ⊆ C2. By a
theorem of Cheah ([8], Theorem 3.3.3, part (5)) we have dimZ = n− 1. �
3.6. Calculation of canonical line bundles. We will need to know the canonical
sheaves ω on the smooth schemes Hn and Hn−1,n. To compute them we make use
of the fact that invertible sheaves on a normal variety are isomorphic if they have
isomorphic restrictions to an open set whose complement has codimension at least
2.
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Definition 3.6.1. Let z = ax+by be a linear form in the variables x, y. We denote
by Uz the open subset of Hn consisting of ideals I for which z generates R/I as
an algebra over C. We also denote by Uz the preimage of Uz under the projection
Hn−1,n→ Hn.

Note that z generates R/I if and only if the set {1, z, . . . , zn−1} is linearly inde-
pendent, and thus a basis, in R/I. That given sections of a vector bundle determine
linearly independent elements in its fiber at a point I is an open condition on I,
so Uz is indeed an open subset of Hn. The ring R/I can be generated by a single
linear form z if and only if the scheme V (I) is a subscheme of a smooth curve in
C2. For this reason the union of all the open sets Uz is called the curvilinear locus.

Lemma 3.6.2. The complement of Ux ∪Uy in has codimension 2, both in Hn and
in Hn−1,n.

Proof. Let Z = Hn \ (Ux∪Uy). Let W be the generic locus, that is, the open set of
ideals I ∈ Hn for which σ(I) = {P1, . . . , Pn} is a set of n distinct points. The Chow
morphism σ induces an isomorphism of W onto its image in SnC2, and Z ∩W is
the locus where some two of the Pi have the same x-coordinate, and another two
have the same y-coordinate. This locus has codimension 2. The complement of W
is the closed subset G2 in Lemma 3.3.4, which has one irreducible component of
dimension 2n−1. An open set in this component consists of those I for which σ(I)
has one point Pi of multiplicity 2 and the rest are distinct. This open set is not
contained in Z, so Z ∩G2 has codimension at least 2. This takes care of Hn.

If I is curvilinear, then the socle of (R/I)P has length 1 for all P ∈ V (I). Hence
the morphism α : Hn−1,n → F in (26) restricts to a bijection on the curvilinear
locus. If the complement of Ux ∪ Uy in Hn−1,n had a codimension 1 component,
it would therefore have to be contained in the complement of the curvilinear locus,
by the result for Hn.

By Proposition 3.5.3, α has fibers of dimension d only over Gr for r ≥
(
d+2

2

)
,

and it follows from Lemma 3.3.4 that the union of these fibers has codimension at
least

(
d+2

2

)
− 1 − d =

(
d+1

2

)
. For d > 1 this exceeds 2. The fibers of dimension 1

over G3 occur only over non-curvilinear points. However, by Lemma 3.3.4, there
is a unique codimension 2 component of G3. This component contains all I such
that σ(I) has one point of multiplicity 3 and the rest distinct, and such an I can
be curvilinear. Hence the non-curvilinear locus in G3 has codimension at least 3
and its preimage in Hn−1,n has codimension at least 2. �

The following proposition is well-known; it holds for the Hilbert scheme of points
on any smooth surface with trivial canonical sheaf. We give an elementary proof
for Hn, since we need it as a starting point for the proof of the corresponding result
for Hn−1,n.

Proposition 3.6.3. The canonical sheaf ωHn on the Hilbert scheme is trivial, i.e.,
ωHn

∼= OHn.

Proof. The 2n-form dx dy = dx1∧· · ·∧dxn∧dy1∧· · ·∧dyn is Sn-invariant and thus
defines a 2n-form on the smooth locus in SnC2 and therefore a rational 2n-form on
Hn.

If I is a point of Ux, then I is generated as an ideal in R by two polynomials,

(29) xn − e1x
n−1 + e2x

n−2 − · · ·+ (−1)nen
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and

(30) y − (an−1x
n−1 + an−2x

n−2 + · · ·+ a0),

where the complex numbers e1, . . . , en, a0, . . . , an−1 are regular functions of I. This
is so because the tautological sheaf B is free with basis 1, x, . . . , xn−1 on Ux, and
the sections xn and y must be unique linear combinations of the basis sections
with regular coefficients. Conversely, for any choice of the parameters e, a, the
polynomials in (29) and (30) generate an ideal I ∈ Ux. Hence Ux is an affine
2n-cell with coordinates e, a.

On the open set where σ(I) consists of points Pi with distinct x coordinates,
the polynomial in (29) is

∏n
i=1(x−xi). This implies that ek coincides as a rational

function (and as a global regular function) with the k-th elementary symmetric
function ek(x). Likewise, ak is given as a rational function of x and y by the coef-
ficient of xk in the unique interpolating polynomial φa(x) of degree n−1 satisfying
φa(xi) = yi for i = 1, . . . , n.

The equations φa(xi) = yi can be expressed as a matrix identity (y1, . . . , yn) =
(a0, . . . , an−1)M , where M is the Vandermonde matrix in the x variables. Modulo
terms involving the dxi, this yields the identity of rational n-forms on Hn,

(31) da = ∆(x)−1 dy,

where ∆(x) is the Vandermonde determinant. For the elementary symmetric func-
tions ek = ek(x) we have the well-known identity

(32) de = ∆(x) dx.

Together these show that dx dy = da de is a nowhere vanishing regular section of
ω on Ux. By symmetry, the same holds on Uy . This shows that we have ω ∼= O on
Ux ∪ Uy and hence everywhere, by Lemma 3.6.2. �

On Hn−1,n we have two groups of twisting sheaves, On−1(k) and On(l), pulled
back from Hn−1 and Hn respectively. We abbreviate O(k, l) = On−1(k) ⊗On(l).

Proposition 3.6.4. The canonical sheaf ωHn−1,n on the nested Hilbert scheme
Hn−1,n is given by O(1,−1) in the above notation.

Proof. We have tautological sheaves Bn−1 and Bn pulled back from Hn−1 and Hn.
The kernel L of the canonical surjection Bn → Bn−1 is the line bundle with fiber
In−1/In at the point (In−1, In). From Proposition 3.4.3 we have L = O(−1, 1).
On the generic locus, the fiber In−1/In can be identified with the one-dimensional
space of functions on V (In) that vanish except at Pn. Thus the ratio of two sections
of L is determined by evaluation at x = xn, y = yn.

Regarding the polynomials in (29) and (30) as regular functions on Ux×C2, they
are the defining equations of the universal family Fx = π−1(Ux) over Ux ⊆ Hn,
as a closed subscheme of the affine scheme Ux × C2. We can use these defining
equations to eliminate en and y, showing that Fx is an affine cell with coordinates
x, e1, . . . , en−1, a0, . . . , an−1.

Over the curvilinear locus, the morphism α : Hn−1,n → F in (26) restricts
to a bijective morphism of smooth schemes, hence an isomorphism. Under this
isomorphism x corresponds to the x-coordinate xn of the distinguished point,
and modulo xn we can replace the elementary symmetric functions ek(x) with
e′k = ek(x1, . . . , xn−1), for k = 1, . . . , n − 1. As in the proof of Proposition 3.6.3,
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we now calculate that a nowhere vanishing regular section of ω on Ux ⊆ Hn−1,n is
given by

(33) tx = dxn de′ da =
1∏n−1

i=1 (xn − xi)
dx dy.

By symmetry, ty =
(

1/
∏n−1
i=1 (yn − yi)

)
dx dy is a nowhere vanishing regular section

of ω on Uy.
Now, at every point of Ux, the ideal In−1 is generated modulo In by

(34) xn−1 − e′1xn−2 + · · ·+ (−1)n−1e′n−1 =
n−1∏
i=1

(x− xi),

so this expression represents a nowhere vanishing section sx of L on Ux. Sim-
ilarly,

∏n−1
i=1 (y − yi) represents a nowhere vanishing section sy of L on Uy. By

the observations in the first paragraph of the proof, the ratio sx/sy is the rational
function

∏n−1
i=1 (xn−xi)/

∏n−1
i=1 (yn− yi) on Hn−1,n. Since we have nowhere vanish-

ing sections tx, ty of ω on Ux and Uy with ty/tx = sx/sy it follows that we have
ω ∼= L−1 = O(1,−1) on Ux ∩ Uy and hence everywhere, by Lemma 3.6.2. �

3.7. Geometry of Xn and the n! conjecture. Recall that the n! conjecture,
Conjecture 2.2.1, concerns the space Dµ spanned by all derivatives of the polynomial
∆µ in §2.2, eq. (10). Let

(35) Jµ = {p ∈ C[x,y] : p(∂x, ∂y)∆µ = 0}
be the ideal of polynomials whose associated partial differential operators annihilate
∆µ, and set

(36) Rµ = C[x,y]/Jµ.

ClearlyDµ andRµ have the same dimension as vector spaces. The ideal Jµ is doubly
homogeneous and Sn-invariant, so Rµ is a doubly graded ring with an action of Sn
which respects the grading.

We have the following useful characterization of the ideal Jµ.

Proposition 3.7.1 ([24], Proposition 3.3). The ideal Jµ in (35) is equal to the set
of polynomials p ∈ C[x,y] such that the coefficient of ∆µ in Θε(gp) is zero for all
g ∈ C[x,y].

Note that it makes sense to speak of the coefficient of ∆µ in an alternating
polynomial, since the polynomials ∆D form a basis of C[x,y]ε.

It seems infeasible to describe explicitly the ideal sheaf of Xn as a closed sub-
scheme of Hn× (C2)n, but we can give an implicit description of this ideal sheaf by
regarding Xn as a closed subscheme of F n. Here F n denotes the relative product
of n copies of the universal family F , as a scheme over Hn. Like Xn, F n is a closed
subscheme of Hn×(C2)n. Its fiber over a point I = I(S) is Sn, so the closed points
of F n are the tuples (I, P1, . . . , Pn) satisfying Pi ∈ V (I) for all i. In particular F n

contains Xn. Being a closed subscheme of F n, Xn can be defined as a scheme over
Hn by

(37) Xn = SpecB⊗n/J
for some sheaf of ideals J in the sheaf of OHn -algebras B⊗n.
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Proposition 3.7.2. Let

(38) B⊗n ⊗ B⊗n → B⊗n → ∧nB

be the map of OHn -module sheaves given by multiplication, followed by the alterna-
tion operator Θε. Then the ideal sheaf J of Xn as a subscheme of F n is the kernel
of the map

(39) φ : B⊗n → (B⊗n)∗ ⊗ ∧nB

induced by (38).

Proof. Let U ⊆ Hn be the generic locus, the open set consisting of ideals I ∈
Hn for which S = V (I) consists of n distinct, reduced points. Note that F n is
clearly reduced over U , and since F n is flat over Hn and U is dense, F n is reduced
everywhere. (For this argument we do not have to assume that F n is irreducible,
and indeed for n > 1 it is not: Xn is one of its irreducible components.) Sections
of B⊗n can be identified with regular functions on suitable open subsets of F n.
Since Xn is reduced and irreducible (Proposition 3.3.2), the open set W = ρ−1(U)
is dense in Xn, and J consists of those sections of B⊗n whose restrictions to U
define regular functions vanishing on W .

Let s be a section of J . For any section g of B⊗n, the section Θε(gs) also belongs
to J . Since it is alternating, Θε(gs) vanishes at every point (I, P1, . . . , Pn) ∈ F n
for which two of the Pi coincide. In particular Θε(gs) vanishes on F n \ Xn and
hence on F n, that is, Θε(gs) = 0. This is precisely the condition for s to belong to
the kernel of φ.

Conversely, if s does not vanish on W there is a point Q = (I, P1, . . . , Pn), with
all Pi distinct, where the regular function represented by s is non-zero. Multiplying
s by a suitable g, we can arrange that gs vanishes at every point in the Sn orbit of
Q, except for Q. Then Θε(gs) 6= 0, so s is not in the kernel of φ. �

Proposition 3.7.3. Let Qµ be the unique point of Xn lying over Iµ ∈ Hn. The
following are equivalent:

(1) Xn is locally Cohen-Macaulay and Gorenstein at Qµ;
(2) the n! conjecture holds for the partition µ.

When these conditions hold, moreover, the ideal of the scheme-theoretic fiber
ρ−1(Iµ) ⊆ Xµ as a closed subscheme of (C2)n coincides with the ideal Jµ in (35).

Proof. Since B⊗n and (B⊗n)∗ ⊗∧nB are locally free sheaves, the sheaf homomor-
phism φ in (39) can be identified with a linear homomorphism of vector bundles
over Hn. Let

(40) φ(I) : B⊗n(I) → B⊗n(I)∗ ⊗ ∧nB(I)

denote the induced map on the fiber at I. The rank rkφ(I) of the fiber map is a
lower semicontinuous function, that is, the set {I : rkφ(I) ≥ r} is open for all r. If
rkφ(I) is constant on an open set U , then the cokernel of φ is locally free on U , and
conversely. When this holds, imφ is also locally free, of rank equal to the constant
value of rkφ(I). By Proposition 3.7.2, we have imφ = ρ∗OXn . The fiber of Xn
over a point I in the generic locus consists of n! reduced points, so the generic rank
of φ is n!.
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The fiber B(I) of the tautological bundle at I is R/I. Identifying R⊗n with
C[x,y], we have a linear map

(41) η : C[x,y]→ B⊗n(I)∗ ⊗ ∧nB(I)

given by composing φ(I) with the canonical map C[x,y] → (R/I)⊗n. It follows
from the definition of φ that η(p) = 0 if and only if λΘε(gp) = 0 for all g ∈ C[x,y],
where

(42) λ : A→ ∧n(R/I) ∼= C

is the restriction of the canonical map C[x,y] → (R/I)⊗n to Sn-alternating ele-
ments. In particular, for I = Iµ, we have λ(∆D) = 0 for all D 6= D(µ), and λ(∆µ)
spans ∧n(R/I). Hence, by Proposition 3.7.1, the kernel of η is exactly the ideal Jµ
in this case.

Suppose the n! conjecture holds for µ. Then since η and φ(I) have the same
image, we have rk φ(Iµ) = n!. By lower semicontinuity, since n! is also the generic
rank of φ, rkφ(I) is locally constant and equal to n! on a neighborhood of Iµ. Hence
cokerφ and imφ = ρ∗OXn are locally free there. The local freeness of ρ∗OXn shows
that Xn is locally Cohen-Macaulay at Qµ.

Let M be the the maximal ideal of the regular local ring OHn,Iµ. Since Xn
is finite over Hn, the ideal N = MOXn,Qµ is a parameter ideal. Assuming the
n! conjecture holds for µ, the Cohen-Macaulay ring OXn,Qµ is Gorenstein if and
only if OXn,Qµ/N is Gorenstein. We have OXn,Qµ/N ∼= (imφ) ⊗OHn OHn,Iµ/M .
Factoring φ : B⊗n → (B⊗n)∗ ⊗∧nB through imφ, then tensoring with OHn,Iµ/M ,
we see that the fiber map φ(Iµ) factors as

(43) φ(Iµ) : B⊗n(Iµ)→ OXn,Qµ/N → B⊗n(Iµ)∗ ⊗∧nB(Iµ).

The first homomorphism above is surjective, and, since coker φ is locally free, the
second homomorphism is injective. Hence OXn,Qµ/N is isomorphic to the image
imφ(Iµ) = im η ∼= C[x,y]/Jµ. This last ring is Gorenstein by [12], Proposition 4.

Conversely, suppose Xn is locally Gorenstein at Qµ. Then OXn,Qµ/N is a
Gorenstein Artin local ring isomorphic to C[x,y]/J for some ideal J . Since
ρ∗OXn is locally free on a neighborhood of Iµ, necessarily of rank n!, we have
dimCC[x,y]/J = n!. The locally free sheaf ρ∗OXn is the sheaf of sections of a
vector bundle, which is actually a bundle of Sn modules, since Sn acts on Xn as a
scheme over Hn. The isotypic components of such a bundle are direct summands of
it and hence locally free themselves, so the character of Sn on the fibers in constant.
In our case, the generic fibers are the coordinate rings of the Sn orbits of points
(P1, . . . , Pn) ∈ (C2)n with all Pi distinct. Therefore every fiber affords the regular
representation of Sn.

The socle of C[x,y]/J is one-dimensional, by the Gorenstein property, and
Sn-invariant. Since C[x,y]/J affords the regular representation, its only one-
dimensional invariant subspaces are (C[x,y]/J)Sn, which consists of the constants,
and (C[x,y]/J)ε. The socle must therefore be the latter space. The factorization
of φ(Iµ) in (43) implies that J ⊆ Jµ = ker η. If Jµ/J 6= 0 then we must have
soc(C[x,y]/J) ⊆ Jµ/J , as the socle is contained in every non-zero ideal. But this
would imply (C[x,y]/Jµ)ε = 0 and hence ∆µ ∈ Jµ, which is absurd. �

Proposition 3.7.4. If the n! conjecture holds for all partitions µ of a given n, then
Xn is Gorenstein with canonical line bundle ωXn = O(−1).
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Proof. The set U of points I ∈ Hn such that rkφ(I) = n! is open and T2-invariant.
From the proof of Proposition 3.7.3 we see that the n! conjecture implies that U
contains all the monomial ideals Iµ. Since every I ∈ Hn has a monomial ideal in
the closure of its orbit, this implies U = Hn, so ρ : Xn → Hn is flat, Xn is Cohen-
Macaulay, and P = ρ∗OXn is a locally free sheaf of rank n!. By Proposition 3.7.2,
the map in (38) induces a pairing

(44) P ⊗ P → ∧nB = O(1)

and φ factors through the induced homomorphism

(45) φ̃ : P → P ∗ ⊗O(1) ∼= Hom(P,O(1)).

Note that Hom(P,O(1)) is a sheaf of P -modules, with multiplication by a section
s of P given by (sλ)(h) = λ(sh). By the definition of φ we have φ̃(sg)(h) =
Θε(sgh) = φ̃(g)(sh), so φ̃ is a homomorphism of sheaves of P -modules. Since
rkφ(I) is constant and equal to n!, which is the rank of both P and P ∗ ⊗O(1), φ̃
is an isomorphism.

Now, Xn = SpecP , so by the duality theorem, ωXn is the sheaf of OXn-modules
associated to the sheaf of P -modules ωHn ⊗ P ∗. By Proposition 3.6.3 we have
ωHn

∼= OHn , and we have just shown P ∗ ∼= P ⊗ O(−1). Together these imply
ωXn = OXn(−1). �
3.8. Main theorem.

Theorem 3.1. The isospectral Hilbert scheme Xn is normal, Cohen-Macaulay, and
Gorenstein, with canonical sheaf ωXn ∼= O(−1).

The proof of this theorem will occupy us for the rest of this subsection. In
principle, to show that Xn is Cohen-Macaulay (at a point Q, say), we would like
to exhibit a local regular sequence of length 2n = dimXn. In practice, we are
unable to do this, but we can show that the y coordinates form a regular sequence
of length n wherever they vanish. As it turns out, showing this much is half of the
battle. A geometric induction argument takes care of the other half.

The key geometric property of Xn, which implies that the y coordinates form
a regular sequence, is given by the following pair of results, the first of which is
proven in §4.11.

Proposition 3.8.1. Let J = C[x,y]A be the ideal generated by the space of alter-
nating polynomials A = C[x,y]ε. Then Jd is a free C[y]-module for all d.

Corollary 3.8.2. The projection Xn → Cn = SpecC[y] of Xn on the y coordinates
is flat.

Proof. Let S = C[x,y]. By Proposition 3.4.2, we have Xn = ProjS[tJ ], and
Proposition 3.8.1 implies that S[tJ ] is a free C[y]-module. �

An alternating polynomial g ∈ Amust vanish at every point (P1, . . . , Pn) ∈ (C2)n

where two of the Pi coincide. Hence we have

(46) J ⊆
⋂
i<j

(xi − xj, yi − yj),

and it is natural to conjecture by analogy to the univariate case that equality holds
here. In [24], Proposition 6.2 we proved that the following more general identity
holds once we know that Jd is a free C[y]-module for all n and d.
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Corollary 3.8.3. We have

(47) Jd =
⋂
i<j

(xi − xj, yi − yj)d

for all n and d.

Remarkably, even though this seems like it should be an elementary result, we
know of no proof not using Proposition 3.8.1, even for d = 1. Using Corollary 3.8.3,
we can deal with the normality question.

Proposition 3.8.4. The isospectral Hilbert scheme Xn is arithmetically normal
in its projective embedding over (C2)n as the blowup Xn = Proj S[tJ ], where S =
C[x,y]. In particular Xn is normal.

Proof. By definition arithmetically normal means that S[tJ ] is a normal domain.
Since S itself is a normal domain, this is equivalent to the ideals Jd ⊆ S being
integrally closed ideals for all d. The powers of an ideal generated by a regular
sequence are integrally closed, as is an intersection of integrally closed ideals, so Jd

is integrally closed by Corollary 3.8.3. �

For the Cohen-Macaulay and Gorenstein properties of Xn we use an inductive
argument involving the nested Hilbert scheme, duality, and the following lemma.

Lemma 3.8.5. Let g : Y → X be a proper morphism. Let z1, . . . , zm ∈ OX(X) be
global regular functions on X (and, via g, on Y ). Let Z ⊆ X be the closed subset
Z = V (z1, . . . , zm) and let U = X \ Z be its complement. Suppose the following
conditions hold.

(1) The zi form a regular sequence in the local ring OX,x for all x ∈ Z.
(2) The zi form a regular sequence in the local ring OY,y for all y ∈ g−1(Z).
(3) Every fiber of g has dimension less than m− 1.
(4) The canonical homomorphism OX → Rg∗OY restricts to an isomorphism

on U .
Then Rg∗OY = OX, i.e., the canonical homomorphism is an isomorphism.

Proof. The question is local on X, so without loss of generality we can assume
X = Spec S is affine. Then we are to show that Hi(Y,OY ) = 0 for i > 0 and that
S → H0(Y,OY ) is an isomorphism.

Condition (3) implies that Hi(Y,OY ) = 0 for i ≥ m − 1. Let Z′ = g−1(Z)
and U ′ = g−1(U). Conditions (1) and (2) imply that depthZ OX and depthZ′OY
are both at least m. Hence the local cohomology modules Hi

Z(OX) and Hi
Z′(OY )

vanish for i ≤ m− 1. By the exact sequence of local cohomology [26], we therefore
have

(48) Hi(Y,OY ) ∼= Hi(U ′,OY )

and

(49) Hi(X,OX) ∼= Hi(U,OX)

for all i < m − 1. Condition (4) yields Hi(U ′,OY ) ∼= Hi(U,OX). Thus we have
Hi(Y,OY ) ∼= Hi(X,OX) for all i < m− 1.

Since X is affine, this shows Hi(Y,OY ) = 0 for all i > 0, and S ∼= H0(Y,OY ).
The isomorphism S ∼= H0(Y,OY ) is the canonical homomorphism, since it is de-
termined by its restriction to U . �
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We now prove Theorem 3.1 by induction on n. In the proof of the inductive
step we will assume that n > 3, so we must first dispose of the cases n = 1, 2, 3.
By Proposition 3.7.4, the theorem is equivalent to the n! conjecture, which can be
verified for n ≤ 3 by a simple calculation. Our induction hypothesis will be the
statement of the theorem, plus the assertion that the projection g : Xn−1,n → Xn
satisfies Rg∗OXn−1,n = OXn . Therefore we also need to verify the latter fact for
n ≤ 3.

For n = 1, we have X0,1 = X1 = C2 trivially, and for n = 2, X1,2 = X2

is the blowup of (C2)2 along the diagonal. In these cases g is an isomorphism.
Note that X1 and X2 are actually nonsingular. Up to automorphisms induced by
translations in C2, the scheme X3 has an essentially isolated singularity at the point
Q(2,1) lying over I(2,1) ∈ Hn. We can fix a representative point in each translation
class by restricting attention to the loci X̂2,3 ⊆ X2,3 and X̂3 ⊆ X3 defined by the
vanishing of x3 and y3. Then X2,3

∼= X̂2,3 × C2 and X3
∼= X̂3 × C2, so we only

need to consider the morphism ĝ : X̂2,3 → X̂3. We have dim X̂2,3 = dim X̂3 = 4.
The fiber of ĝ over the unique singular point Q(2,1) ∈ X̂3 is a projective line, and
ĝ is one-to-one on the complement of this fiber. Let z1, z2, z3 be part of a system
of local parameters on X̂3 at Q(2,1), so the locus Z = V (z) ⊆ X̂3 has dimension
1. The locus ĝ−1(Z) ⊆ X̂2,3 is the union of the fiber over Q(2,1) and the preimage
of Z \ {Q(2,1)}. Hence it also has dimension 1. Now X̂3 is Cohen-Macaulay by
Theorem 3.1 for n = 3, and X̂2,3 is Cohen-Macaulay by the theorem for n = 2
and the argument which will be given below for general n. The hypotheses of
Lemma 3.8.5 are satisfied, so we have Rĝ∗OX̂2,3

= OX̂3
.

Assume now by induction that Xn−1 is Cohen-Macaulay and Gorenstein with
ωXn−1 = OXn−1 (−1). Then ρn−1 : Xn−1 → Hn−1 is flat and finite with Gorenstein
fibers. In the scheme-theoretic fiber square

(50)

Y
ρ′−−−−→ Hn−1,ny y

Xn−1
ρ−−−−→ Hn−1,

the morphism ρ′ is therefore also flat and finite with Gorenstein fibers. SinceHn−1,n

is nonsingular, Y is Cohen-Macaulay and Gorenstein. On the generic locus, where
P1, . . . , Pn are all distinct, the above diagram coincides locally with the fiber square

(51)

Y
ρ′−−−−→ Sn−1C2 × C2y y

(C2)n−1 ρ−−−−→ Sn−1C2.

This shows that Y is generically reduced, hence reduced, as well as irreducible and
birational to (C2)n. The reduced fiber product in (50) is Xn−1,n by definition, so
we have Y = Xn−1,n. Thus Xn−1,n is Cohen-Macaulay and Gorenstein. Further-
more, the relative canonical sheaf of Xn−1,n over Hn−1,n is the pullback of that of
Xn−1 over Hn−1. By Proposition 3.6.3 and the induction hypothesis, the latter is
OXn−1(−1) and its pullback to Xn−1,n is O(−1, 0). By Proposition 3.6.4 it follows
that the canonical sheaf on Xn−1,n is ωXn−1,n = O(−1, 0)⊗O(1,−1) = O(0,−1).
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Now consider the projection

(52) g : Y = Xn−1,n → Xn.

We claim that Rg∗OY = OXn . By the projection formula, since O(0,−1) =
g∗OXn(−1) is pulled back from Xn, this implies also Rg∗O(0,−1) = OXn(−1).
Now O(0,−1)[2n] = ωXn−1,n [2n] is the dualizing complex on Xn−1,n, so by the
duality theorem it follows that O(−1)[2n] is the dualizing complex on Xn. In other
words, Xn is Gorenstein, with canonical sheaf ωXn = O(−1), which is what we
wanted to prove.

For the claim, we verify the conditions of Lemma 3.8.5 with Y = Xn−1,n, X =
Xn, and z1, . . . , zn−1 equal to y1 − y2, . . . , yn−1 − yn. For the zi to form a regular
sequence it suffices that y1, . . . , yn is a regular sequence. Strictly speaking, this
only shows that the zi form a regular sequence where the yi are all equal to zero.
However, since all automorphisms of C2, and translations in the y direction in
particular, act on all schemes under consideration, it follows that the zi form a
regular sequence wherever the yi are all equal to each other, that is, on V (z).

On Y = Xn−1,n the fact that the yi form a regular sequence follows from the
Cohen-Macaulay property of Xn−1,n, together with Proposition 3.5.6, which says
that V (y) is a complete intersection in Y . On X = Xn (this is the crucial step!),
the regular sequence condition follows from Corollary 3.8.2.

On the open set U = Xn \ V (z), the coordinates yi are nowhere all equal. It
follows from Lemmas 3.3.1 and 3.5.5 that U can be covered by open sets on which
the projection g : Xn−1,n → Xn is locally isomorphic to 1 × gl : Xk × Xl−1,l →
Xk × Xl for some k + l = n with l < n. We can assume as part of the induction
that R(gl)∗OXl−1,l = OXl . Hence we have Rg∗OXn−1,n |g−1(U) = OXn |U .

For the fiber dimension condition, note that the fiber of g over a point
(I, P1, . . . , Pn) of Xn is the same as the fiber of the morphism α in (26) over (I, Pn).
By Proposition 3.5.3, its dimension d satisfies the inequality

(
d+2

2

)
≤ n. Since we

are assuming n > 3, this inequality easily implies d < n−2, as required for Lemma
3.8.5 to hold.

3.9. Proof of the graded character conjecture. We now review in outline
the proof from [24] that the n! conjecture and the Cohen-Macaulay property of
Xn imply Conjecture 2.2.2. The proof involves some technical manipulations with
Frobenius series and Macdonald polynomials which it would take us too far afield
to repeat in full here. Conceptually, however, the argument is straightforward. The
main point is the connection between Sn characters and symmetric functions given
by the Frobenius characteristic

(53) Ψ(χ) =
1
n!

∑
w∈Sn

χ(w)pτ(w)(x).

Here pτ (x) denotes a power-sum symmetric function and τ(w) is the partition of n
given by the cycle lengths in the expression for w as a product of disjoint cycles.
The Frobenius characteristics of the irreducible characters are the Schur functions
([40], I, eq. (7.5))

(54) Ψ(χλ) = sλ(x).

Let Jµ be be the ideal of operators annihilating ∆µ, and set Rµ = C[x,y]/Jµ,
as in (35)–(36). It follows from [24], Proposition 3.4, that ch(Rµ)r,s = ch(Dµ)r,s
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for all degrees r, s, so we may replace Dµ with Rµ in the statement of Conjecture
2.2.2.

We define the Frobenius series of Rµ to be

(55) FRµ(x; q, t) =
∑
r,s

trqsΨ(ch(Rµ)r,s).

The Frobenius series is a kind of doubly graded Hilbert series that keeps track of
characters instead of just dimensions. In this notation Conjecture 2.2.2 takes the
form of an identity

(56) FRµ(x; q, t) = H̃µ(x; q, t).

There is a well-defined formal extension of the notion of Frobenius series to
certain local rings with Sn and T2 actions, as explained in [24], Section 5. In
particular, we can define FSµ(x; q, t), where Sµ = OXn,Qµ is the local ring of Xn at
the distinguished point Qµ lying over Iµ.

By Theorem 3.1 and Proposition 3.7.3, the ring Rµ is the coordinate ring of
the scheme-theoretic fiber ρ−1(Iµ) ⊆ Xn. This and the flatness of ρ imply ([24],
eq. (5.3)) that the Frobenius series of Sµ and Rµ are related by a scalar factor,

(57) FSµ(x; q, t) = H(q, t)FRµ(x; q, t),

where H(q, t) is the formal Hilbert series of the local ring OHn,Iµ, as defined in [24],
a rational function of q and t. In fact, it follows from the determination in [23] of
explicit regular local parameters on Hn at Iµ that H(q, t) is the reciprocal of the
polynomial

(58)
∏

x∈D(µ)

(1− q−a(x)t1+l(x)) ·
∏

x∈D(µ)

(1− q1+a(x)t−l(x)),

where a(x), l(x) denote the lengths of the arm and leg of the cell x in the diagram
of µ. It is interesting to note that the two products above are essentially the
normalizing factors introduced in [40], VI, eqs. (8.1–8.1′) to define the integral
form Macdonald polynomials Jµ. This coincidence is typical of the numerological
parallels that already pointed to a link between Macdonald polynomials and the
Hilbert scheme, before the theory presented here was fully developed.

Now, the global regular functions y1, . . . , yn form a regular sequence in the local
ring Sµ, as follows from the proof of Theorem 3.1. By [24], Proposition 5.3, part
(3), this implies that

(59) FSµ/(y)(x; q, t) = FSµ [X(1 − q); q, t].
Furthermore, [24], Proposition 5.3, part (1) implies that if the irreducible character
χλ has multiplicity zero in chRµ/(y), then the coefficient of the Schur function sλ
in FSµ/(y)(x; q, t) is equal to zero.

The ring Rµ/(y), which is simply the y-degree zero part of Rµ, is a well-
understood algebraic entity. By the results of [4, 17], it is isomorphic to the coho-
mology ring of the Springer fiber over a unipotent element of GL(n), as defined in
[45]. Its Frobenius series, which is the q = 0 specialization FRµ(x; 0, t), is given by
the transformed Hall-Littlewood polynomial

(60) FRµ(x; 0, t) = tn(µ)Qµ[X/(1− t−1); t−1],

where Qµ(x; t) is defined as in [40], III, eq. (2.11). We remark that (60) is just the
q = 0 specialization of (56). Equation (60) implies that the only characters χλ that
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occur with non-zero multiplicity in chRµ/(y) are those with λ ≥ µ. Hence by (57)
and (59) we have

(61) FRµ[X(1 − q); q, t] ∈ Q(q, t){sλ(x) : λ ≥ µ}.
This shows that FRµ(x; q, t) satisfies condition (1) of the characterization of
H̃µ(x; q, t) in Proposition 2.1.1. By the symmetry between x and y, FRµ also
satisfies condition (2). Finally, condition (3) for FRµ says that the trivial character
occurs only in degree zero, with multiplicity one. This is obvious, since the only
Sn-invariants in Rµ are the constants. Hence (56) holds.

To summarize, we have the following consequence of Theorem 3.1 and Proposi-
tion 3.7.3.

Theorem 3.2. Conjectures 2.1.2, 2.2.1, and 2.2.2, that is, the Macdonald positivity
conjecture, the n! conjecture, and the graded character interpretation of K̃λµ(q, t),
are all true.

3.10. Appendix: Cohen-Macaulay and Gorenstein schemes and duality
theory. Here we give a synopsis of duality theory as used in this paper. Since we
are chiefly interested in the connection between duality and the theory of Cohen-
Macaulay and Gorenstein singularities, we formulate the theory in terms of dualiz-
ing complexes. The formulation below is valid for schemes X of finite type over a
field k, which is general enough for our purposes.

Let D(X) denote the derived category of complexes of sheaves of OX-modules
with bounded, coherent cohomology. If A is a coherent sheaf, we denote by A[d]
the complex which is A in degree −d and zero in every other degree. If A• is any
complex in D(X) whose only non-zero cohomology sheaf is H−d(A•) ∼= A, then we
have A• ∼= A[d]. We say that such a complex A• reduces to a sheaf.

If a complex ω• ∈ D(X) has finite injective dimension, then the functor Dω• =
RHom(−, ω•) carries D(X) into itself. A dualizing complex on X is a complex
ω• of finite injective dimension such that the canonical natural transformation
1D(X) → Dω• ◦ Dω• is an isomorphism (see [25], V, §2).

There is a preferred choice of dualizing complex ω•X on each scheme X of finite
type over k, defined by ω•X = f !O, where f : X → Spec k is the defining morphism of
X as a scheme over k. The functor f ! here is the one given by [25], VII, Corollary 3.4.
That ω•X is a dualizing complex follows from the definition of f ! given there, together
with the fact that O is a dualizing complex on X = Spec k. With this choice, the
corresponding dualizing functors DX = Dω•X have the following properties.

(1) Duality theorem ([25], VII, Theorem 3.3): if f : Y → X is a proper morphism,
then there is a canonical natural isomorphism DX ◦Rf∗ ∼= Rf∗ ◦ DY .

(2) If f : Y → X is smooth of relative dimension d then ω•Y = ωY/X [d]⊗ f∗ω•X ,
where ωY/X is the relative canonical line bundle, that is, the sheaf of relative exterior
d-forms ΩdY/X . This follows from the definition of f] in [25], III, §2 and the fact
that f ! = f] for a smooth morphism f .

A scheme X is Cohen-Macaulay (respectively, Gorenstein) if its local ring OX,x
at every point is a Cohen-Macaulay (or Gorenstein) local ring. Since a localization
of a Cohen-Macaulay or a Gorenstein ring is again Cohen-Macaulay or Gorenstein,
it suffices that the condition hold for closed points x. If ρ : X → H is a finite
morphism of equidimensional schemes of the same dimension, with H nonsingular,
then X is Cohen-Macaulay if and only if ρ is flat. When those conditions hold, X
is also Gorenstein if and only if the scheme-theoretic fibers of ρ are Gorenstein.
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The Cohen-Macaulay property has a simple characterization in terms of the
dualizing complex. Recall that if A is a Noetherian local ring of dimension d and
x ∈ SpecA is the closed point (the maximal ideal of A), then A is Cohen-Macaulay
if and only if the local cohomology modules Hi

x(A) are zero except for i = d. Let x
be a closed point of a scheme X of finite type over k and let A = OX,x be the local
ring at x. By [25], V, Corollary 2.3, Ω• = ω•X,x is a dualizing complex on SpecA.
The duality theorem for the closed embedding of the point x in X implies that Ω•

is a normalized dualizing complex in the sense of [25], V, §6. It now follows from
[25], V, Corollary 6.3 that X is Cohen-Macaulay if and only if ω•X reduces to a
sheaf, concentrated in degree −d on all connected components of X with dimension
d. Note that if ω•X reduces to a sheaf on each connected component of X, then it
must be concentrated in the correct degree, since any scheme X of finite type over
k is generically Cohen-Macaulay.

Recall that if A is a Cohen-Macaulay local ring of dimension d, then its canonical
module Ω is the Matlis dual Ω ∼= Hom(Hd

x(A), I) of the d-th local cohomology
module, where I is an injective hull of the residue field A/x. Therefore it further
follows from [25], V, Corollary 6.3 that if X is Cohen-Macaulay, then the stalk ω•X,x
of the dualizing complex is isomorphic to Ω[d], where Ω is the canonical module
of A = OX,x. In particular, X is Gorenstein if and only if ω•X reduces to a line
bundle, i.e., a locally free sheaf of rank 1, on each connected component of X. More
precisely, when X is Gorenstein, ω•X reduces to ωX [d] on components of dimension
d, where ωX is the canonical line bundle.

4. Polygraphs

4.1. First definitions. Let E = A2(k) be the affine plane over a field k of charac-
teristic zero (the restriction on k is not really necessary—see §4.12). We are going
to study certain unions of linear subspaces, or subspace arrangements, in En ×El.
We call these arrangements polygraphs because their constituent subspaces are the
graphs of linear maps from En to El.

Let [n] denote the set of integers {1, . . . , n}. Given a function f : [l]→ [n], there
is a linear morphism

(62) πf : En → El

defined by

(63) πf (P1, . . . , Pn) = (Pf(1), . . . , Pf(l)).

Let

(64) Wf ⊆ En ×El

be the graph of πf . We denote the coordinates on En ×El by

(65) x,y, a,b = x1, y1, . . . , xn, yn, a1, b1, . . . , al, bl,

where xj, yj are the coordinates on the j-th factor in En and ai, bi are the coordi-
nates on the i-th factor in El. In coordinates, Wf is then defined by the equations

(66) Wf = V (If ), where If =
∑
i∈[l]

(ai − xf(i), bi − yf(i)).
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Definition 4.1.1. The polygraph Z(n, l) ⊆ En ×El is the subspace arrangement

(67) Z(n, l) =
⋃
Wf , over all f : [l]→ [n].

The geometric points of Z(n, l) are the points (x,y, a,b) = (P1, . . . , Pn,
Q1, . . . , Ql) satisfying the following condition: for all i ∈ [l] there is a j ∈ [n]
such that Qi = (ai, bi) is equal to Pj = (xj , yj). Note that for l = 0, the polygraph
Z(n, 0) makes sense and is equal to En. The index set [l] = [0] is empty in this
case, and the unique function f : [0]→ [n] is the empty function f = ∅, with I∅ = 0
and W∅ = En.

A word on terminology is in order here. For clarity it is is often useful to describe
a scheme or a morphism in terms of geometric points, that is, points defined by
values of the coordinates in some algebraically closed extension K of k. In the
preceding paragraph and in (63), we have given geometric descriptions. In all other
contexts, however, we will use the term point in the scheme-theoretic sense. When
discussing the local geometry of Z(n, l) at a point P , for instance, we mean that
P ∈ SpecR(n, l) is a prime ideal in the coordinate ring R(n, l) of Z(n, l). Since
all schemes under consideration are closed subschemes of En × El, we can also
identify P with a prime ideal of k[x,y, a,b]. Ultimately, everything we do reduces
to commutative algebra and ideal theory in the polynomial ring k[x,y, a,b]. Any
geometric descriptions we give are best understood merely as guides to formal
definitions in terms of ideals and ring homomorphisms. Thus the polygraph Z(n, l)
is correctly defined as the subscheme of En × El whose ideal is the intersection of
the ideals If defined in (66).

Our purpose in this section is to prove the following theorem.

Theorem 4.1. The coordinate ring R(n, l) = O(Z(n, l)) of the polygraph Z(n, l)
is a free k[y]-module.

4.2. Examples. As motivation for Theorem 4.1, it may be helpful to consider the
case of polygraphs in one set of variables, that is, the subspace arrangements defined
as in 4.1.1, but with E = A1.

Polygraphs as we have defined them are in two sets of variables, namely the
x, a and the y,b. Had we begun with E = Ad instead of E = A2, we would have
d sets of variables (and notational headaches galore). In one set of variables the
coordinates are just x, a, and the ideal of Z(n, l) is simply

(68) I =
∑
i∈[l]

( ∏
j∈[n]

(ai − xj)
)
.

Indeed, I clearly defines Z(n, l) set-theoretically, and it is a complete intersection
ideal, since Z(n, l) has codimension l, while I has l generators. It is easy to see that
V (I) is generically reduced: if P is a point where the xj are all distinct, then only
one Wf passes through P , and each factor (ai − xj) in (68) with j 6= f(i) is a unit
in the local ring k[x, a]P , so IP coincides with the local ideal (If )P . A generically
reduced complete intersection is reduced, so I = I(Z(n, l)).

Now R(n, l) = O(Z(n, l)) is a complete intersection ring, hence Cohen-Macaulay,
and since Z(n, l) is finite over En, the variables x form a homogeneous system of
parameters. This implies that R(n, l) is a free k[x]-module. In fact, it is free with
basis consisting of monomials ae = ae11 · · ·a

el
l , 0 ≤ ei < n, since these monomials

span modulo I and their number is equal to nl, which is the number of Wf ’s and
thus the degree of the finite flat morphism Z(n, l)→ En.
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Returning to polygraphs in two sets of variables, the analog of (68), namely

(69) I =
∑
i∈[l]

∏
j∈[n]

(ai − xj, bi − yj),

clearly defines Z(n, l) set-theoretically, but now it is not a complete intersection
ideal, and does not define Z(n, l) as a reduced scheme, that is, I 6=

√
I. At present,

we do not have a good conjecture as to a set of generators for the full ideal I(Z(n, l))
in general. To get a feeling for the possibilities, the reader might look ahead to §4.6,
eq. (95), where generators for the ideal are given in the case n = 2.

In the bivariate situation, Z(n, l) is not Cohen-Macaulay. In fact, Z(2, 1) is
isomorphic to E × Y , where Y is the union of two linear 2-spaces in A4 that meet
only at the origin. This Y is the classic simplest example of an equidimensional
affine algebraic set whose coordinate ring is not Cohen-Macaulay (and also not a
complete intersection, even set-theoretically).

The property that does extend from the univariate case, according to Theo-
rem 4.1, is that R(n, l) is free over the ring of polynomials in one set of the x,y
variables, which by symmetry, we have taken without loss of generality to be y.
We expect the analog of Theorem 4.1 to hold in d sets of variables, with freeness
over one set of the variables (Conjecture 5.2.2). The proof given here, however, is
specific to the bivariate case.

As a further example, let us consider the case l = 1. We will give a simple
proof of Theorem 4.1 for Z(n, 1), which also works in d sets of variables after some
obvious modifications.

For l = 1, we write Wj instead of Wf , where j = f(1). The subspaces Wj =
V (a1 − xj, b1 − yj) meet transversely, since a change of variables to x′j = xj − a1,
y′j = yj − b1 makes them into coordinate subspaces. It follows that the ideal
I(Z(n, 1)) of their union is the product of the ideals Ij. In other words, for l = 1,
the ideal I(Z(n, 1)) is equal to the ideal in (69).

NowWn projects isomorphically on En, the projection being given in coordinates
by the substitutions a1 7→ xn, b1 7→ yn. These substitutions carry the ideal of
W1 ∪ · · · ∪Wn−1 to

(70)
n−1∏
j=1

(xn − xj, yn − yj).

This shows that the scheme-theoretic intersection of Wn with W1 ∪ · · · ∪ Wn−1

is isomorphic to Z(n − 1, 1), the coordinates a1, b1 on Z(n − 1, 1) being identified
with xn, yn. Since W1 ∪ · · · ∪Wn−1 = Z(n− 1, 1)× E, we have an exact sequence
of k[x,y, a1, b1]-modules

(71) 0→ R(n, 1)→ k[x,y]⊕ (R(n − 1, 1)⊗ k[xn, yn])→ R(n− 1, 1)→ 0.

The middle term here is the direct sum of the coordinate rings of Wn and W1∪· · ·∪
Wn−1; the outer terms are the coordinate rings of their union and their scheme-
theoretic intersection. By induction on n (the case n = 1 is trivial), the middle
term is a free k[y]-module and the last term is a free k[y1, . . . , yn−1]-module. All
terms are graded k[y]-modules, finitely generated in each x-degree (see §4.5 for
more explanation). It follows that the first term is a free k[y]-module.
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4.3. Overview. Before embarking on the proof of Theorem 4.1, let us outline our
method. We will actually prove a stronger result, by induction on n and l, namely,
that R = R(n, l) is free with a basis B which is a common basis for a certain
family of ideals in R. By this we mean that each ideal in the family is itself a free
module, spanned by a subset of the overall basis B. We remark that this is only
possible because the family of ideals we consider is rather special: inside the lattice
of all ideals of R(n, l), with intersection and sum as lattice operations, our family
generates a distributive sublattice L, all of whose members are radical ideals, and
such that R(n, l)/I is a free k[y]-module for all I ∈ L.

The ideals I in our family will be the ideals of certain subspace arrangements
contained as closed subsets within the polygraph Z(n, l). Before proceeding further,
we define these new subspace arrangements, and state the theorem to be proven in
its full strength.

Definition 4.3.1. Let Z(n, l) be a polygraph. Given integers r ∈ [n] ∪ {0}, k ∈
[l] ∪ {0}, and m, we denote by Y (m, r, k) the subspace arrangement

(72) Y (m, r, k) =
⋃
f,T

V (xj : j ∈ T ) ∩Wf ,

where f ranges over functions f : [l]→ [n], as in Definition 4.1.1, and T ranges over
subsets of [n] such that

(73) |T ∩ [r] \ f([k])| ≥ m.

We denote by I(m, r, k) the ideal of Y (m, r, k) as a reduced closed subscheme of
Z(n, l).

Note that in some cases Y (m, r, k) is trivial—either empty or equal to Z(n, l).
Specifically, if m ≤ 0 then Y (m, r, k) is the whole of Z(n, l), and I(m, r, k) = 0. If
m > r, or if m = r = n and k > 0, then Y (m, r, k) is empty, and I(m, r, k) = (1).
Of course we could have simply ruled out the trivial cases by definition, but it will
simplify notation later on to admit them.

Roughly speaking, Y (m, r, k) consists of points at which xj vanishes for at least
m indices j ∈ [r] such that j 6= f(i) for i ≤ k. Stated this way, the criterion for
membership in Y (m, r, k) is ambiguous for points lying on more than one Wf . A
precise formulation will be given in §4.7.

Now we state the full theorem to be proven by induction.

Theorem 4.2. The coordinate ring R(n, l) of the polygraph Z(n, l) is a free k[y]-
module with a basis B such that every ideal I(m, r, k) is spanned as a k[y]-module
by a subset of B.

The proof of Theorem 4.2 will occupy us for most of the rest of this section.
Our strategy is to construct the common ideal basis B by induction, using bases
that we may assume are already given in R(n − 1, l) and R(n, l− 1). The induction
proceeds in three stages. First we construct a basis of R(n, l)/I(1, 1, l) from a basis
of R(n − 1, l), then we construct a basis of R(n, l)/I(1, 1, t− 1) from a basis of
R(n, l)/I(1, 1, t), for t descending from l to 1, and finally we construct a basis of
R(n, l) from a basis of R(n, l)/I(1, 1, 0).

In order to show that the sets we construct are bases, we rely on a simple
but crucial algebraic device. Because we only consider arrangements of subspaces
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on which the y coordinates are independent, their coordinate rings are torsion-
free k[y]-modules. To prove that a subset of a torsion-free k[y]-module is a free
module basis, it suffices to verify it locally on an open locus Û2 ⊆ Spec k[y] whose
complement has codimension two. In our situation there is a natural choice of the
open set Û2, namely, the set of points where at most two of the y coordinates
coincide. We shall see that the local geometry of Z(n, l) over Û2 essentially reduces
to the case n = 2. In this case we are able to verify everything explicitly.

Several sources of difficulty make the proof more complicated than the program
just outlined would suggest. The first difficulty is that we sometimes have to use
facts we can only verify over Û2 not just to prove that our elements form a ba-
sis, but to construct them in the first place. This forces us to employ a delicate
method in the second and third stages of the basis construction process. From an
inductively constructed common ideal basis, we first produce a less restrictive kind
of basis. We then define elements of our new common ideal basis in terms of the
less restrictive basis, allowing the coefficients to be rational functions of y. Finally
we use information from the case n = 2 to show that the coefficients are regular on
Û2, and hence they are polynomials.

Even in the construction of the less restrictive basis, the role of the inductively
constructed common ideal basis is quite subtle. Our ability to make use of it
depends on fortunate scheme-theoretic relationships between the subspace arrange-
ments Y (m, r, k) and certain other special arrangements. Most of the work in §§4.9
and 4.10 goes into establishing and carefully exploiting these relationships.

The easier, preliminary portions of the proof are in §§4.4–4.8. Some of this
preliminary material is conceptually fundamental, especially the local reduction in
§4.4, the description of the basis and the ideals I(m, r, k) in the case n = 2 in
§4.6, and the general basis lifting method in §4.8. The preliminary material also
includes various lemmas giving assorted details about the n = 2 picture and the
corresponding local picture over Û2. The reader might do well to skip the proofs of
these lemmas at first, returning to them after seeing how they are used later on. As
a guide to the reader we now summarize the contents of the remaining subsections.

§4.4 Definition of the open sets U1 and U2 and reduction of the local geometry
of Z(n, l) to the case n = 2.

§4.5 Double grading of R(n, l) and computation of x-degree Hilbert series for
generic y.

§4.6 Full working out of the case n = 2 and some of its consequences.
§4.7 Further information about the arrangements Y (m, r, k).
§4.8 General lifting principle for extending common ideal bases to schemes with

an extra coordinate.
§4.9 Application of the lifting principle in the case of special arrangements.
§4.10 The three stages of the basis construction procedure.
§4.11 Proofs of Theorems 4.1 and 4.2 and Proposition 3.8.1.
§4.12 Extension of Theorem 4.1 to arbitrary ground rings.

The geometric results in Section 3 only depend on the contents of §4.1 and §§4.3–
4.11. The material in §4.2 and §4.12 has been included for the sake of illustration
and completeness.

We close this subsection with a brief discussion of the base cases for the induction.
Theorem 4.2 is essentially trivial for n = 1. This case can therefore serve as the
base of induction on n, although we still need to work out the case n = 2 in full
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detail since it is used in the induction step for n > 1. The base of induction on
l will be the case l = 0. This case is not altogether trivial, and already usefully
illustrates both Theorem 4.2 and the definition of the arrangements Y (m, r, k). For
this reason we give it here rather than later.

Lemma 4.3.2. Theorem 4.2 holds for Z(n, 0). More precisely, we have R(n, 0) =
k[x,y], and the set of all monomials in the variables x is a basis of the required
type.

Proof. We have Z(n, 0) = En and hence R(n, 0) = k[x,y]. Obviously R(n, 0) is a
free k[y]-module, but there are also the ideals I(m, r, k) to consider. Necessarily
we must have k = 0. Then Y (m, r, 0) is the union of subspaces in En defined
by the vanishing of at least m of the coordinates x1, . . . , xr. Its ideal I(m, r, 0) is
generated by all square-free monomials

∏
j∈T xj, where T is a subset of [r] of size

|T | = r −m + 1. The set B of all monomials in the x coordinates is a free k[y]-
module basis of R(n, 0), with subsets spanning every ideal generated by monomials
in x. In particular, each ideal I(m, r, 0) is spanned by a subset of B. �

4.4. Local geometry of Z(n, l). Nearly everything in our proof of Theorem 4.2
ultimately depends on a process of local geometric reduction over certain open sets
Û1 and Û2 to the cases n = 1 (which is trivial) and n = 2 (which we will examine
in detail). Here we define the relevant open sets, and set up the required algebraic,
geometric, and notational machinery.

Definition 4.4.1. The set Ûk is the open locus in Spec k[y] where the coordinates
y1, . . . , yn assume at least n + 1 − k distinct values. In other words, Ûk is the
complement of the union of all linear subspaces V = V (yi1 − yj1 , . . . , yik − yjk)
defined by k independent forms (yi−yj). In particular, Û1 is the locus where the yi
are all distinct, and Û2 is the locus where there is at most one coincidence yp = yq .
For any scheme π : Z → Spec k[y] over Spec k[y], we define Uk ⊆ Z to be the open
set π−1(Ûk).

The definition of Uk involves an abuse of notation, since we might, for instance,
have Uk defined as a subset of En × El in one place and as a subset of Z(n, l) in
another. In practice it will be clear from the context what is meant. Note that the
definitions are consistent in the sense that the subset Uk ⊆ Z(n, l) is the intersection
of Z(n, l) with the subset Uk ⊆ En × El.

To study R(n, l) as a k[y]-module, we will want to localize with respect to prime
ideals in k[y], that is, at points Q ∈ Ûk ⊆ Spec k[y]. To extract local geometric
information about Z(n, l) as a subscheme of En × El, by contrast, we want to
localize at points P ∈ Uk ⊆ En ×El. The following lemma relates these two types
of localization.

Lemma 4.4.2. Let R be a k[y]-algebra, let π : SpecR→ Spec k[y] be the projection
on the y coordinates, let Û be an open subset of Spec k[y], and let U = π−1(Û), as
in Definition 4.4.1. If I, J ⊆ R are ideals such that IP = JP locally for all P ∈ U
(localized as R-modules), then IQ = JQ for all Q ∈ Û (localized as k[y]-modules).

Proof. The points of SpecRQ are exactly the ideals PQ, where P ∈ SpecR is such
that π(P ) ⊆ Q. In particular, every such P belongs to U , for Q ∈ Û . Since
(IQ)PQ = IP = JP = (JQ)PQ for all such P , we have IQ = JQ. �
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We will really only be interested in the open sets U1 and U2, where we can fully
understand the local geometry of Z(n, l). Since Z(n, l) and every other subspace
arrangement we consider consists of subspaces on which the y coordinates are in-
dependent, U1 and U2 are dense, and have complements of codimension 1 and 2
respectively. As we shall see, it is possible to extract significant global geometric
information from the careful use of local information on U1 or U2. The following
lemma shows that the local geometry of Z(n, l) on U1 is essentially trivial.

Lemma 4.4.3. The components Wf of Z(n, l) have disjoint intersections with U1.
Thus for P ∈ U1∩Z(n, l), there is a unique Wf containing P , and Z(n, l) coincides
locally with Wf , that is, I(Z(n, l))P = (If )P .

Proof. Let P be a point of Wf ∩Wg , where f(i) 6= g(i) for some i. On Wf we
have bi = yf(i), while on Wg we have bi = yg(i). Hence P ∈ V (yf(i) − yg(i)), so
P 6∈ U1. �

Here is one easy but useful consequence of the local picture on U1. Recall that
the lattice of ideals in a ring R is the set of all ideals in R, with meet and join
operations given by intersection and sum.

Lemma 4.4.4. Let L be the sublattice of the lattice of ideals in R(n, l) generated
by the ideals of all subspaces of the form

(74) V (xj : j ∈ T ) ∩Wf .

Then for every I ∈ L, V (I) ∩ U1 is reduced, that is, IP =
√
IP for all P ∈ U1.

Proof. At a point P ∈ U1, Z(n, l) coincides locally with Wg
∼= En for a unique g.

Identifying O(Wg) with O(En) = k[x,y], the ideal of the subspace in (74) is locally
either (xj : j ∈ T ), if g = f , or (1), otherwise. It follows that every I ∈ L coincides
locally with an ideal in k[x,y] generated by square-free monomials in the variables
x, and for such an ideal we have I =

√
I. �

Corollary 4.4.5. If I belongs to the lattice generated by the ideals I(m, r, k) in
R(n, l), then V (I) ∩ U1 is reduced.

Next we want to give the analog of Lemma 4.4.3 for U2, showing that the local
geometry of Z(n, l) at a point of U2 essentially reduces to the case n = 2. To state
our next lemma precisely, we will need to consider the following type of situation.
Let Z ⊆ Z(n, l) be the union of those components Wf of Z(n, l) for which f(i)
takes some preassigned value h(i), for all i in a subset I of the index set [l]. On
Z we have identically ai = xh(i), bi = yh(i) for i ∈ I. Using these equations to
eliminate the coordinates ai, bi for i ∈ I we see that Z is isomorphic to a polygraph
Z(n, l− j) ⊆ En × El−j , where j = |I|.

This situation creates a problem of notation, as the natural index set for the
coordinates on El−j here is not [l − j] but L = [l] \ I. Similar problems arise
involving the index set [n], for example if Z is the union of those components Wf

for which f takes values in a subset N ⊆ [n]. As such situations will arise repeatedly
in what follows, we adopt the following notational convention to deal with them.

Convention 4.4.6. Let N and L be finite sets of positive integers of sizes |N | = n,
|L| = l. To every construct that we will define in terms of n and l, there is a
corresponding construct in which the roles of [n] and [l] are played by N and L,
respectively. We will refer to the N , L version as the construct in indices N , L.
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A few examples should suffice to make the meaning of this convention clear. In
indices N , L, the ambient space En × El is replaced by the space EN × EL with
coordinates

(75) xN ,yN , aL,bL = xj1 , yj1, . . . , xjn , yjn , ai1 , bi1, . . . , ail, bil,

where N = {j1, . . . , jn} and L = {i1, . . . , il}. Functions f : [l] → [n] become
functions f : L→ N , the subspaces Wf in indices N , L have the obvious meaning,
and their union is the polygraph Z(N,L) in indices N , L. Its coordinate ring is
R(N,L). The arrangements YN,L(m, r, k) and their ideals IN,L(m, r, k) are defined
as in 4.3.1 but with [r] and [k] referring to the smallest r elements of N and the
smallest k elements of L, respectively.

Using the above convention we can readily describe the local geometry of Z(n, l)
at points of U2.

Lemma 4.4.7. Let P be a point of U2 \ U1 and let {p, q} be the unique pair of
indices such that P ∈ V (yp − yq). Let ∼ be the equivalence relation on functions
f : [l] → [n] defined by f ∼ g if and only if for all i ∈ [l], yf(i) − yg(i) vanishes at
P , that is, f(i) = g(i) or {f(i), g(i)} = {p, q}.

(i) We have P ∈ Wf only for f in a unique ∼-equivalence class F , so Z(n, l)
coincides locally at P with

Z =
⋃
f∈F

Wf .

(ii) Let h be a member of F , let N = {p, q} and let L = h−1(N) (note that L
depends only on F ). The projection of Z on the coordinates x, y, aL, bL
is an isomorphism

Z ∼= E[n]\N × Z(N,L),

where Z(N,L) is the polygraph in indices N and L.

Proof. If P ∈Wf∩Wg then for all i we have P ∈ V (yf(i)−yg(i)), just as in the proof
of Lemma 4.4.3. This implies (i). On Z we have identically ai = xh(i), bi = yh(i)

for i 6∈ L, so the coordinate ring of Z is generated by the remaining variables,
namely x, y, aL, bL. This implies that the projection on these coordinates is an
isomorphism of Z onto its image, which is clearly E[n]\N × Z(N,L). �

Reasoning as in the proof of part (ii) of the preceding lemma, we also obtain the
following ideal-theoretic result, which we record for future reference.

Lemma 4.4.8. Let I ⊆ [l] and h : I → [n] be given, and set

(76) Z =
⋃
Wf , over f : [l]→ [n] such that f |I = h,

a subarrangement of Z(n, l). Setting L = [l] \ I, the projection of Z on the coordi-
nates x, y, aL, bL is an isomorphism Z ∼= Z([n], L), and the ideal of Z as a closed
subscheme of Z(n, l) is given by

(77) I(Z) =
∑
i∈I

(ai − xh(i), bi − yh(i)).

Proof. Let π be the projection on the coordinates x,y, aL,bL. On Z we have
identically ai = xh(i), bi = yh(i) for i 6∈ L. As in the proof of the preceding lemma,
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this implies that π induces an isomorphism of Z onto its image, which in this case
is Z([n], L). Note that Z([n], L) is also the image under π of the whole of Z(n, l).

Let J be the ideal on the right-hand side in (77), and let Z̃ = V (J). Then
Z̃ is a closed subscheme of Z(n, l), conceivably non-reduced. Modulo J we again
have ai = xh(i), bi = yh(i) for i 6∈ L, so π induces an isomorphism of Z̃ onto
its (scheme-theoretic) image. But we have Z ⊆ Z̃ ⊆ Z(n, l), and Z([n], L) is
the image of both Z and Z(n, l). Since Z and Z(n, l) are reduced, this holds
scheme-theoretically as well as set-theoretically. It follows that Z([n], L) is also the
scheme-theoretic image π(Z̃). The isomorphism π : Z ∼= Z([n], L) factors as the
isomorphism π : Z̃ ∼= Z([n], L) composed with the closed embedding Z ↪→ Z̃, so
this implies Z = Z̃ or equivalently I(Z) = J . �

We come now to a technical lemma which despite its simplicity is really the motor
of the whole machine. It allows us to verify that a purported free k[y]-module basis
(of R(n, l), for instance) really is one by restricting our attention to Û2, where we
have good control of the local geometry.

Lemma 4.4.9. Let M be a torsion-free k[y]-module, and let B be a subset of M .
Suppose that for every Q ∈ Û2, the localization MQ is a free k[y]Q-module with
basis B. Then M is a free k[y]-module with basis B.

Proof. We are to show that every x ∈M can be uniquely expressed as

(78) x =
∑
α

pαbα

with pα ∈ k[y] and bα ∈ B. By hypothesis, this is true for the image of x in MQ,
with pα ∈ k[y]Q, for all Q ∈ Û2. The local ring k[y]Q is a subring of k[y](0) = k(y),
and the unique coefficients pα ∈ k[y]Q ⊆ k(y) satisfying (78) for any Q also satisfy
(78) for Q = 0. Hence they do not depend on Q. Since the complement of Û2 has
codimension 2, every rational function regular on Û2 is regular everywhere. Thus
the pα belong to k[y]. Since M is torsion-free and (78) holds locally on the dense
open set Û2, (78) holds identically. �

Corollary 4.4.10. Let I and J be free submodules of a torsion-free k[y]-module
M and suppose that IQ = JQ for all Q ∈ Û2. Then I = J .

Proof. Lemma 4.4.9 implies that any free k[y]-module basis of I is also a basis of
I + J , so I = I + J . Similarly J = I + J . �

We should stress that the role of the explicit basis B in Lemma 4.4.9 is crucial.
In general, a torsion-free k[y]-module M which is locally free on Û2 certainly need
not be free. As an example, take M to be an ideal in k[y] with V (M) non-empty
and disjoint from Û2. Then MQ = (1)Q for all Q ∈ Û2, so M is locally free with
basis {1} on Û2. But no element contained in M generates M locally on Û2, so we
cannot conclude that M is free. Indeed if M were free, Corollary 4.4.10 would then
imply M = (1).

The following companion to Lemma 4.4.9 is useful to establish that a known basis
of a free k[y]-module (of R(n, l), for instance) is a common basis for a submodule
or submodules (such as the ideals I(m, r, k)).
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Lemma 4.4.11. Let B be a basis of a free k[y]-module M . Let J be a submodule
of M , and suppose that B1 = B ∩ J spans k(y)⊗ J . Then J = k[y]B1.

Proof. Let x be an element of J . Since M is free with basis B we can write

(79) x =
∑
α

pαbα,

with pα ∈ k[y] and bα ∈ B. Of course this is also the unique expression for x in
terms of the basis B of the k(y)-vector space k(y)⊗M . Hence pα = 0 for bα 6∈ B1,
so we have x ∈ k[y]B1. �

Note that the condition that B1 spans k(y) ⊗ J can be checked locally on Û1,
since tensoring with k(y) is the same as localizing at Q = 0, and the zero ideal
belongs to every non-empty open subset of Speck[y]. The philosophy governing
the application of Lemmas 4.4.9 and 4.4.11 is therefore as follows. To show that
a candidate B is a free module basis, we can check it locally on Û2; then to show
that B is a common ideal basis, we can check it locally on Û1.

4.5. Generic Hilbert series. Our next task is to work our the case n = 2 in
detail. This will be done in §4.6, using what amounts to a Gröbner basis argument
in disguise. To make this argument work, we need some enumerative information in
advance about the Hilbert series ofR(n, l). Here we gather the required information.
We also note the general fact that R(n, l) is doubly graded and finite over k[x,y],
a fact that will later be used implicitly in several places.

The coordinate ring

(80) O(En × El) = k[x,y, a,b]

of En×El is doubly graded, by degree in the x, a variables (or x-degree) and the y,b
variables (y-degree) respectively. The ideals If are obviously doubly homogeneous,
and since the defining ideal of Z(n, l) is their intersection, the coordinate ring

(81) R(n, l) = k[x,y, a,b]/I(Z(n, l))

is doubly graded. All ideals considered throughout will be doubly homogeneous,
and all coordinate rings doubly graded.

By construction Z(n, l) is finite over En, so R(n, l) is a finitely generated k[x,y]-
module. Hence if

(82) R(n, l) =
⊕
d

R(n, l)d

is the grading of R(n, l) by x-degree, then each homogeneous component R(n, l)d is
a finitely generated graded k[y]-module (graded by y-degree). We have the following
well-known graded version of Nakayama’s lemma.

Lemma 4.5.1. Let M be a finitely generated graded k[y]-module. If B is a set
of homogeneous elements of M that spans M/yM as a k-vector space, then B
generates M . If B further satisfies |B| = dimk(y)(k(y) ⊗M), then M is a free
k[y]-module with basis B.

For the coordinate ring R of any union of subspaces of the form V (xj : j ∈
T ) ∩Wf , including Z(n, l) and Y (m, r, k), we can readily determine the Hilbert
series of k(y) ⊗R as a graded k(y)-algebra (graded by x-degree).
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Lemma 4.5.2. Let R be the coordinate ring of a union of subspaces

(83)
⋃
C

V (xj : j ∈ T ) ∩Wf ,

over some collection C of pairs T ⊆ [n], f : [l] → [n]. Then R is torsion-free as a
k[y]-module, and the dimension of the x-degree homogeneous component k(y)⊗Rd
is equal to the number of pairs

(84) e ∈ Nn, f : [l]→ [n]

such that e1 + · · ·+ en = d and there is some (T, f) ∈ C for this f with ej = 0 for
all j ∈ T .

Proof. Let WT,f denote the subspace V (xj : j ∈ T )∩Wf , and let IT,f = If + (xj :
j ∈ T ) be its ideal and RT,f = k[x,y, a,b]/IT,f its coordinate ring. By definition,
R = k[x,y, a,b]/I, where I is the intersection of the ideals IT,f for all (T, f) ∈ C.
Since the y coordinates are independent on each WT,f , the coordinate rings RT,f
are free, and hence torsion-free, k[y]-modules. The ring R is isomorphic to a subring
of the direct sum

⊕
C RT,f , so R is also a torsion-free k[y]-module.

Let Cf be the set of pairs (T, f) ∈ C with a given f , and let Rf be the coordinate
ring of the partial union Zf =

⋃
Cf
WT,f . We have an injective ring homomorphism

(85) R ↪→
⊕
f

Rf .

By Lemma 4.4.3, the partial unions Zf have disjoint restrictions to U1. By Lemma
4.4.2, this implies that (85) localizes to an isomorphism at each point of Û1, and in
particular, upon tensoring with k(y).

Now the projection ofWf onEn is an isomorphism, so Zf projects isomorphically
on V × Spec k[y], where V is the union of coordinate subspaces

⋃
Cf
V (xj : j ∈ T )

in Spec k[x]. The coordinate ring of V , say k[x]/J , is the face ring of a simplicial
complex. It has a homogeneous vector space basis consisting of all monomials xe

such that there is some (T, f) ∈ Cf with ej = 0 for all j ∈ T . The ring Rf in turn
is a free k[y] module with this same basis. Since k(y) ⊗ R ∼=

⊕
f k(y) ⊗ Rf , the

result follows. �
Corollary 4.5.3. The Hilbert series of k(y)⊗ R(n, l) as a k(y)-algebra graded by
x-degree is given by

(86)
∑
d

td dimk(y)(k(y)⊗ R(n, l)d) =
nl

(1− t)n .

In §4.6 we will make use of Lemma 4.5.1 and Corollary 4.5.3 in the following
guise.

Corollary 4.5.4. Let B be a set of doubly homogeneous polynomials whose images
in R(n, l) span R(n, l)/(y) as a k-vector space. Denoting the x-degree of p ∈ B by
d(p), suppose the degree enumerator of B satisfies

(87)
∑
p∈B

td(p) =
nl

(1− t)n .

Then R(n, l) is a free k[y]-module with basis B.

We also have a version of Corollary 4.5.3 for the arrangements Y (m, r, k).
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Corollary 4.5.5. The Hilbert series

(88)
∑
d

td dimk(y) (k(y)⊗O(Y (m, r, k))d)

of k(y)⊗O(Y (m, r, k)) as a graded k(y)-algebra is equal to the enumerator

(89)
∑
e,f

t|e|, over e ∈ Nn, f : [l]→ [n] satisfying |[r] \ Sk(e, f)| ≥ m,

where |e| = e1 + · · ·+ en and Sk(e, f) = {j : ej > 0} ∪ f([k]).

Proof. The requirement that ej = 0 for all j ∈ T , for a given f and some T
satisfying (73), is equivalent to |[r] \ Sk(e, f)| ≥m. �

4.6. The case n = 2. At this point we are ready to analyze the case n = 2 in
full detail. Apart from our later need for the results, we hope the reader may find
that working out the case n = 2 usefully illustrates the concepts introduced so far.
We begin by writing down explicit polynomials that will form the common ideal
basis required by the conclusion of Theorem 4.2. For this discussion we fix l, and
of course we fix n = 2.

To each pair (e, f), for e ∈ N2 and f : [l]→ [2], we will associate a basis element
p[e, f ], homogeneous of x-degree |e| = e1 + e2.

For e = (0, 0) we set

(90) p[e, f ] =
∏
j>1

f(j)6=f(1)

(bj − b1) ·
{

(b1 − y2) if f(1) = 1
1 otherwise.

For e = (0, h) with h > 0, let f−1({1}) = S ∪T , where S and T are disjoint and
S consists of the smallest h elements of f−1({1}), or the whole set if h ≥ |f−1({1})|.
Then we set

(91) p[e, f ] = x
h−|S|
2

∏
i∈S

(ai − x1 − x2)
∏
j∈T

(bj − y2).

For e = (h, 0) with h > 0 we set

(92) p[e, f ] = x1θp[(0, h− 1), θf ],

where θ denotes the transposition (1 2), acting on f in the obvious way, and on the
polynomial ring k[x,y, a,b] by exchanging x1 with x2 and y1 with y2, while fixing
the coordinates a, b.

Finally, for e = (h1, h2) with both h1, h2 > 0 we set h = min(h1, h2) and

(93) p[e, f ] = (x1x2)hp[e− (h, h), f ].

The complicated definition of the elements p[e, f ] is forced on us by the require-
ment that they should form a common basis for the ideals I(m, r, k), with the rule
for membership in I(m, r, k) being given by Lemma 4.6.2, below. To help orient
the reader let us consider the simplest example. For e = (0, 0) and f equal to the
constant function f(i) = 2, we have p[e, f ] = 1. For these e, f , the rule in Lemma
4.6.2 places p[e, f ] only in the ideals I(m, r, k) with m > r and I(2, 2, k) with k > 0,
which are trivially equal to (1).

Lemma 4.6.1. For n = 2, the coordinate ring R(2, l) of Z(2, l) is a free k[y]
module with basis B the set of elements p[e, f ] defined in (90)–(93).
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Proof. We will show that B spans R(2, l)/(y) as a k-vector space. Since the x-
degree enumerator of B is clearly 2l/(1 − t)2, this implies the result by Corollary
4.5.4.

Let B0 = {p[(0, h), f ]} be the subset of B containing only the elements defined
in (90) and (91). By (92) and (93) we have

(94) B = (B0 ∪ x1θB0) · {1, x1x2, (x1x2)2, . . .}.

It suffices to show that B0 ∪ x1θB0 spans S = R(2, l)/((x1x2) + (y)). For this
it suffices in turn to show that B0 spans S/(x1) and x1θB0 spans x1S. Since
x1x2 = 0 in S, multiplication by x1 gives a well-defined surjective homomorphism
S/(x2) → x1S. If B0 spans S/(x1), then θB0 spans S/(x2), and therefore x1θB0

spans x1S. Hence we need only show that B0 spans S/(x1).
The ideal of Z(2, l) contains the ideal

(95)
∑
i∈[l]

(ai − x1, bi − y1)(ai − x2, bi − y2) +
∑
i,j∈[l]

(
det

ai bi 1
aj bj 1
x1 y1 1

).
It is a consequence of the argument below that I(Z(2, l)) is actually equal to the
ideal in (95), but we do not need this result. We only verify that the generators
displayed in (95) do indeed vanish on Z(2, l). This is clear for the generators in
the first term, which is the special case of (69) for n = 2. The determinants in the
second term vanish because on every Wf , either f(i) = f(j), making the first two
rows equal, or f(i) 6= f(j), making one of the first two rows equal to the last. From
(95) it is easy to see that the ideal

(96) I = I(Z(2, l)) + (x1) + (y)

contains a2
i − aix2, aibi, b2i , and x2bi for all i, and ajbi − aibj for all i < j.

With respect to a suitable term ordering, the initial ideal of I contains a2
i , aibi,

b2i , and x2bi for all i, and ajbi for all i < j. Hence S/(x1) = k[x,y, a,b]/I is
spanned by monomials in k[x2, a,b] not divisible by any of these. In other words,
S/(x1) is spanned by monomials

(97) xk2
∏
i∈S

ai
∏
j∈T

bj ,

where every element of S is less than every element of T , and k = 0 if T 6= ∅. Let
us order the monomials in (97) so that those with smaller values of k precede those
with larger values, and for k = 0, those that don’t contain b1 as a factor precede
those that do. Then it is easy to see that each monomial in (97) occurs as the
leading term in the reduction of an element of B0 modulo I. This implies that B0

spans S/(x1), as desired. �

We now obtain the special case of Theorem 4.2 for n = 2.

Lemma 4.6.2. For n = 2, each ideal I(m, r, k) ⊆ R(2, l) is spanned as a k[y]-
module by the set of elements p[e, f ] ∈ B indexed by e, f satisfying

(98) |[r] \ Sk(e, f)| < m,

where Sk(e, f) = {j : ej > 0} ∪ f([k]).
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Proof. First we verify that the specified elements do belong to I(m, r, k). Observe
(glancing ahead) that for each m, r, k, the ideal I displayed on the right-hand
side in (99) is generated by polynomials which vanish on Y (m, r, k), so we have
I ⊆ I(m, r, k). It is mostly routine now to check case-by-case that the relevant
elements p[e, f ] belong to I. The only tricky case is to show that p[e, f ] belongs to
I(1, 2, k) for e = (1, 0), f(1) = 2, and k > 0. In this case p[e, f ] = x1θp[(0, 0), θf ]
contains a factor x1(b1 − y1), which is not so obviously in I. However, in this
case I contains a1 − x1 − x2, and in R(2, l) we have (a1 − x2)(b1 − y1) = 0, so
x1(b1 − y1) = −(a1 − x1 − x2)(b1 − y1).

Using Lemma 4.4.11, to complete the proof it is enough to show that the spec-
ified elements p[e, f ] span k(y) ⊗ I(m, r, k). Since B is a homogeneous basis of
k(y) ⊗ R(2, l), it is equivalent to show that pairs e, f not satisfying (98), counted
according to the x-degree |e| of p[e, f ], are enumerated by the Hilbert series of
k(y)⊗O(Y (m, r, k)). This is true by Corollary 4.5.5. �
Corollary 4.6.3. In the case n = 2, the (non-trivial) ideals I(m, r, k) are generated
as ideals in R(2, l) as follows:

(99)

I(2, 2, 0) = (x, a)

I(1, 2, k) = (x1x2) +
∑
i∈[k]

(ai − x1 − x2, bi − b1)

I(1, 1, k) = (x1) +
∑
i∈[k]

(ai − x2, bi − y2)

Proof. In each case the ideal listed on the right-hand side is clearly contained in
I(m, r, k). Conversely, in the proof of Lemma 4.6.2 we showed that I(m, r, k) is
generated (and even spanned as a k[y]-module) by elements belonging to the ideal
on the right-hand side. �

Knowing the ideals I(m, r, k) for n = 2, we now want to draw conclusions for
general n. The lemmas expressing our conclusions will come in pairs. In each
pair we first establish a fact about the case n = 2, then deduce its analog on U2 for
general n by local reduction. Our first pair of lemmas extends the local reducedness
result in Corollary 4.4.5 from U1 to U2. In this instance we will need the first lemma
in the pair again later, for the proof of Lemma 4.9.5 (looking ahead, the reader may
notice that Lemmas 4.9.4 and 4.9.5 form another pair of the same type).

Lemma 4.6.4. Fix a two-element subset N ⊆ [n]. Let R1 be the coordinate ring of
E[n]\N , so R = R1 ⊗k R(N, l) is the coordinate ring of E[n]\N × Z(N, l). Let L be
the lattice of ideals in R generated by the ideals (xj) for j 6∈ N and R1⊗IN,l(m, r, k)
for all m, r, k. Then I =

√
I for all I ∈ L.

Proof. Let x′,y′ be the coordinates in indices [n] \N , so R1 = k[x′,y′]. Obviously
R1 is a free k[y′]-module with basis B1 the set of all monomials in the variables
x′, and each ideal (xj) ∩ R1 is spanned by a subset of B1. By Lemma 4.6.2,
R2 = R(N, l) is a free k[yN ]-module with a basis B2 which is a common basis for
the ideals IN,l(m, r, k). It follows that R is a free k[y]-module with basis B1 ⊗ B2

and that every ideal in L is spanned by a subset of B1⊗B2. This implies that L is
a distributive lattice, and hence every ideal in L is an intersection of ideals of the
form J = (xj : j ∈ T ) ⊗R2 + R1 ⊗ I, where I is a sum of ideals IN,l(m, r, k). Now
V (J) = V (xj : j ∈ T ) × V (I), so we only have to show that V (I) is reduced.
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Lemma 4.6.2 implies that R2/I is a free k[yN ] module, and hence a subring of
its localization (R2/I)Q at any point Q ∈ Spec k[yN ]. By Corollary 4.4.5 the latter
ring is reduced for Q ∈ Û1 (in particular, Q = 0 suffices). �
Lemma 4.6.5. If I belongs to the lattice generated by the ideals I(m, r, k) in R(n, l),
then V (I) ∩U2 is reduced.

Proof. We already have the result on U1 by Corollary 4.4.5. Let P be a point of
U2 \ U1. By Lemma 4.4.7, Z(n, l) coincides locally at P with a subspace arrange-
ment isomorphic to E[n]\N × Z(N,L), for a set N with two elements. Unraveling
the definitions of Y (m, r, k) and the local isomorphism, we find that Y (m, r, k) co-
incides locally, as a reduced closed subscheme of E[n]\N ×Z(N,L), with a subspace
arrangement

(100)
⋃
T1,m′

V (xj : j ∈ T1)× YN,L(m′, r′, k′).

Here we set r′ = |[r]∩N | and k′ = |[k]∩L|. The union ranges over T1 ⊆ [n] \N
and m′ satisfying m′ + |T1 ∩ ([r] \ N) \ h([k])| ≥ m, where h is chosen so that
P ∈Wh. Note that the set ([r] \N) \ h([k]) does not depend on the choice of h. It
follows from Lemma 4.6.4 that the ideals of the subspace arrangements in (100), for
N , L fixed and m, r, k arbitrary, belong to a lattice consisting entirely of radical
ideals. �

We remark that once Theorem 4.2 is established, we can conclude a posteriori
that the lattice L generated by the ideals I(m, r, k) is distributive, and that the ring
R(n, l)/I is a free k[y]-module for every I ∈ L. In fact, it can be shown that the
existence of a common free module basis is equivalent to these conditions, plus the
freeness of R(n, l) itself. Combined with Corollary 4.4.5, the freeness of R(n, l)/I
for I ∈ L implies that V (I) is reduced everywhere, not just on U2, or in other
words, I =

√
I. However, we do not see a way to obtain these stronger results

without appealing to Theorem 4.2. We must therefore content ourselves for now
with the local result on U2, and we will ultimately prove Theorem 4.2 for general
n by means that require only this local information.

We conclude our study of the case n = 2 with another pair of lemmas giving a
reducedness property for n = 2 and the corresponding local property on U2 for all
n. For this (and again later) we need a preliminary lemma. By construction, the
subspaces Wf are invariant with respect to simultaneous translation of the x and
a coordinates by a common quantity. This fact has the following consequence.

Lemma 4.6.6. Let R be the coordinate ring of any union of the subspaces Wf ⊆
En ×El. If x is one of the coordinate variables x, a, we have (x) =

√
(x) in R.

Proof. A manifestation of translation invariance is that the endomorphism τx of
k[x,y, a,b] defined by the substitutions

(101) xj 7→ xj − x, ai 7→ ai − x, for all j ∈ [n], i ∈ [l]

carries the ideals If into themselves, as is clear from their definition in (66). We
therefore have τxI ⊆ I, where I is the defining ideal of R = k[x,y, a,b]/I. Since
τx(x) = 0, we have an induced ring homomorphism τx : R/(x) → R. We see
immediately that if φ : R → R/(x) is the canonical projection, then φ ◦ τx is the
identity map on R/(x). Hence R/(x) is isomorphic to a subring of R. Since R is
reduced, so is R/(x), so we have (x) =

√
(x). �
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We will need the second lemma of the following pair for the proof of Lemma
4.10.7.

Lemma 4.6.7. For n = 2 and t ∈ [l] the ideal I = I(1, 1, t− 1) + (at) in R(2, l) is
equal to its radical.

Proof. By Corollary 4.6.3, we have I = J+(x1, at), where J =
∑
i<t(ai−x2, bi−y2).

By Lemma 4.4.8, we have R(2, l)/J ∼= R(2, L) where L = [l] \ [t− 1]. Replacing [l]
with L, this reduces the problem to showing that I =

√
I in R(2, l) for I = (x1, a1).

For this I we have set-theoretically

(102) V (I) =

 ⋃
f(1)=1

V (x1) ∩Wf

 ∪
 ⋃
f(1)=2

V (x1, x2) ∩Wf

 .

By Lemma 4.4.8, the ideal (a1 − x1, b1 − y1) is equal to its radical, and its zero
set is

⋃
f(1)=1 Wf . Applying Lemma 4.6.6 with x = x1 to the union of subspaces⋃

f(1)=1 Wf , we see that the ideal (x1) + (a1 − x1, b1 − y1) = I + (b1 − y1) is
equal to its radical, and hence to (

√
I) + (b1 − y1). The zero set of this ideal is

V (x1) ∩
⋃
f(1)=1 Wf , which is the first big union in (102).

Again by Lemma 4.4.8, the ideal (a1−x2, b1−y2) is equal to its radical, with zero
set
⋃
f(1)=2 Wf

∼= Z(2, l− 1). Observing that V (x1, x2) = Y (2, 2, 0) in Z(2, l− 1),
it follows from Corollary 4.6.3 that the ideal of V (x1, x2)∩

⋃
f(1)=2 Wf , that is, of the

second big union in (102), is (x, a)+(a1−x2, b1−y2) = (x, a)+(b1−y2). Since b1−y1

does not vanish identically on any component of the second big union, the ideal
(
√
I) : (b1− y1) is equal to the ideal of the latter. Hence we have (

√
I) : (b1− y1) =

(x, a) + (b1 − y2).
We now claim that I : (b1−y1) contains (x, a)+(b1−y2), and hence I : (b1−y1) =

(
√
I) : (b1− y1). For the claim, observe that (b1− y1)(b1− y2) = 0 in R(2, l), which

shows that b1−y2 ∈ I : (b1−y1). Observe also that (b1−y1)(a1−x2) = 0 in R(2, l),
which shows that x2 ∈ I : (b1 − y1). Finally observe that the determinant

(103) det

ai bi 1
a1 b1 1
x1 y1 1


from (95) reduces modulo (x1, a1) to ai(b1−y1), which shows that ai ∈ I : (b1−y1)
for all i.

Multiplying the identity of ideals I : (b1− y1) = (
√
I) : (b1− y1) by b1− y1 yields

I ∩ (b1 − y1) = (
√
I) ∩ (b1 − y1), and we showed above that I + (b1 − y1) =

(
√
I) + (b1 − y1). By the modular law for ideals, since I ⊆

√
I, these imply

I =
√
I. �

Lemma 4.6.8. For all n and for t ∈ [l], if I is the ideal I(1, 1, t− 1) + (at) in
R(n, l), then V (I) ∩ U2 is reduced.

Proof. Note that by Lemma 4.6.6, V (at) is reduced and equal to the union over all
f of V (xf(t)) ∩Wf . Thus (at) belongs to the lattice of ideals in Lemma 4.4.4, as
does I(1, 1, t− 1). Therefore V (I) ∩ U1 is reduced.

For P ∈ U2 \ U1, Z(n, l) coincides locally with the arrangement Z = E[n]\N ×
Z(N,L) from Lemma 4.4.7, and we may as well replace Z(n, l) with Z.
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First suppose 1 6∈ N . Fixing some h such that P ∈ Wh as in Lemma 4.4.7,
either Y (1, 1, t− 1) is locally empty, if 1 ∈ h([t− 1]), or else Y (1, 1, t− 1) coincides
locally with V (x1). If t 6∈ L then V (at) = V (xj) for j = h(t) 6∈ N . Otherwise
V (at) = E[n]\N × Y , where Y = V (at) ∩ Z(N,L), which is reduced by Lemma
4.6.6. In every case, the scheme-theoretic intersection of Y (1, 1, t− 1) and V (at)
either is empty or coincides locally with a product of reduced schemes, so V (I) is
locally reduced when 1 6∈ N .

Suppose instead that 1 ∈ N . Then Y (1, 1, t− 1) coincides locally with E[n]\N ×
Y (1, 1, t′ − 1), where t′ − 1 = |[t− 1] ∩ L|. If t 6∈ L we have V (at) = V (xh(t)) and
the result is immediate, as before. Otherwise it reduces to Lemma 4.6.7. �
4.7. Further description of Y (m, r, k). In §§4.9 and 4.10 we will prove a series
of lemmas enabling us to extend bases of the type specified in Theorem 4.2 from
the coordinate rings of smaller arrangements to those of larger ones. Since the
characteristic property of our bases is their compatibility with the ideals I(m, r, k),
we will of course have to use some geometric facts about the corresponding subspace
arrangements Y (m, r, k). Our purpose in this subsection is to take note of some
such facts for later use. We begin by refining our description of the arrangements
Y (m, r, k).

Lemma 4.7.1. Let P be a point of Z(n, l) and let f be the pointwise maximum
of all functions h such that P lies on Wh. Then P lies on Wf , and P belongs to
Y (m, r, k) if and only if the set T = {j : P ∈ V (xj)} satisfies |T ∩ [r] \ f([k])| ≥ m.

Proof. Define an equivalence relation ∼′P on [n] by the rule i ∼′P j if and only
if P ∈ V (xi − xj , yi − yj). It induces an equivalence relation ∼P on functions
h : [l] → [n] by the rule g ∼P h if and only if g(i) ∼′P h(i) for all i ∈ [l] (this
differs from the equivalence relation in Lemma 4.4.7 in that it depends on both the
x and the y coordinates). It is easy to see that the functions h such that P lies on
Wh form an equivalence class, and that the pointwise maximum of two equivalent
functions is equivalent to each of them. This shows that P lies on Wf .

The function f takes at most one value in each ∼′P -equivalence class, namely,
the maximum element in that class. Furthermore, that value is only in [r] if the
whole equivalence class is contained in [r]. Hence, among all functions in its ∼P -
equivalence class, f maximizes the size of the intersection of [r] \ f([k]) with every
∼′P -equivalence class. The set T is a union of ∼′P -equivalence classes, so it follows
that f maximizes |T ∩ [r] \ f([k])|. But P belongs to Y (m, r, k) if and only if the
maximum of this quantity over all h such that P ∈Wh is at least m. �

At certain points later on we will need to know that intersections of the arrange-
ments Y (m, r, k) consist of spaces on which the y coordinates are independent.
Note that this is not obvious from the definition, although it has to be true if The-
orem 4.2 is to hold. Using the preceding lemma, we can prove a precise version of
the fact we require.

Lemma 4.7.2. Set-theoretically, Y (m, r, k)∩Y (m′, r′, k′) is the union of subspaces

(104)
⋃
f,T

V (xj : j ∈ T ) ∩Wf ,

over all f : [l]→ [n] and T ⊆ [n] satisfying

(105) |T ∩ [r] \ f([k])| ≥ m and |T ∩ [r′] \ f([k′])| ≥ m′.
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Proof. It is clear that Y (m, r, k)∩Y (m′, r′, k′) contains the union in (104). Given a
point P of Y (m, r, k)∩ Y (m′, r′, k′), let T = {j : P ∈ V (xj)}. By the definitions of
Y (m, r, k) and Y (m′, r′, k′), we have P ∈Wf for some f such that |T ∩[r]\f([k])| ≥
m, and P ∈ Wf′ for some f ′ such that |T ∩ [r′] \ f ′([k′])| ≥ m′. A priori, f and
f ′ might be different, but Lemma 4.7.1 allows us to take them both to be the
maximum f for which Wf contains P . Hence Y (m, r, k)∩Y (m′, r′, k′) is contained
in the union in (104). �

In the proof of Lemma 4.10.7, we will need one more result. To state it we need
to introduce the circular shift permutation θ = (1 2 . . . n), acting on En × El as
the automorphism which shifts the En coordinates and fixes the El coordinates,
that is,

(106) θ(P1, . . . , Pn, Q1, . . . , Ql) = (Pn, P1, . . . , Pn−1, Q1, . . . , Ql).

Since the definition of the polygraph is symmetric in the Pi’s, θ maps Z(n, l) onto
itself.

Lemma 4.7.3. Given n, l and t ∈ [l], set L = [l]\{t} and let π : Z(n, l)→ Z(n, L)
be the projection on the coordinates other than at, bt. Let θ be as above. Then for
r > 0 and k < t we have

(107) Y (1, 1, t)∪ (Y (m, r, k) ∩ Y (1, 1, t− 1))

= Y (1, 1, t)∪ (π−1θYn,L(m− 1, r − 1, k) ∩ Y (1, 1, t− 1)),

while for r > 0 and k ≥ t we have

(108) Y (1, 1, t)∪ (Y (m, r, k) ∩ Y (1, 1, t− 1))

= Y (1, 1, t)∪ (π−1θYn,L(m, r − 1, k− 1) ∩ Y (1, 1, t− 1)).

Proof. For each identity, we are to show that a point P belongs to the set on the
left-hand side if and only if it belongs to the set on the right-hand side. Suppose
first that we have P ∈ V (x1 − xj, y1 − yj) for some j > 1. In the notation of the
proof of Lemma 4.7.1, this means that 1 ∼′P j. In this case, we have 1 6∈ f([l]),
where f is the pointwise maximum function for which P ∈Wf . From the criterion
in Lemma 4.7.1 we see that P ∈ Y (1, 1, t− 1) if and only if P ∈ Y (1, 1, t). Hence
both identities (107) and (108) hold trivially for such a point P . We may therefore
assume that P 6∈ V (x1 − xj , y1 − yj) for all j > 1. Then the set S = h−1({1}) is
the same for every function h such that P ∈Wh. If we have P ∈ Y (1, 1, t− 1) and
P 6∈ Y (1, 1, t) then t must be the least element of S, and we must have P ∈ V (x1).
Thus we may assume that these conditions hold.

For k < t, we are to show that P ∈ Y (m, r, k) if and only if π(P ) ∈
θYn,L(m− 1, r− 1, k), assuming the above conditions. Let f be the pointwise max-
imum function for which P ∈Wf . Note that a component Wh ⊆ Z(n, L) contains
π(P ) if and only if h = g|L for some Wg containing P . Hence h = f |L is the point-
wise maximum h such that Wh contains π(P ). We claim that h is also pointwise
maximum for the circularly shifted ordering 2 < 3 < · · · < n < 1 of [n]. To see this,
suppose h′ is the maximum for this ordering. Clearly h′(i) can only differ from
h(i) if h′(i) = 1. But that would force 1 ∼′P h(i), contrary to our assumptions. It
follows that we can test π(P ) for membership in θYn,L(m− 1, r− 1, k) by applying
the criterion in Lemma 4.7.1 using the function h.
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Let T = {j : P ∈ V (xj)}. By Lemma 4.7.1, we have P ∈ Y (m, r, k) if and only if
|T∩[r]\f([k])| ≥m. By assumption, we have 1 ∈ T and 1 6∈ f([t− 1]). Hence, since
k < t, we have 1 ∈ T ∩ [r] \ f([k]) and |T ∩ [r] \ f([k])|= 1 + |T ∩ ([r] \ {1}) \ f([k])|.
Abusing notation, we write θ for the circular shift (1 2 . . . n) permuting the index
set [n] as well as for the corresponding automorphism of Z(n, L). Then we have
[r] \ {1} = θ[r − 1]. Since k < t, we also have f([k]) = h([k]). Thus we have
P ∈ Y (m, r, k) if and only if |T ∩ θ[r − 1] \ h([k])| ≥ m− 1. By Lemma 4.7.1, this
is precisely the criterion for π(P ) ∈ θYn,L(m− 1, r − 1, k), which establishes (107).

For k ≥ t, we are to show that P ∈ Y (m, r, k) if and only if π(P ) ∈
θYn,L(m, r − 1, k − 1). As before, we can test the latter condition using the cri-
terion in Lemma 4.7.1 with the function h. By assumption we have f(t) = 1.
Hence we have 1 6∈ T ∩ [r] \ f([k]) and |T ∩ [r] \ f([k])| = |T ∩ ([r] \ {1}) \ f([k])| =
|T ∩ θ[r − 1] \h([k] \{t})|. Now we conclude as before that P belongs to Y (m, r, k)
if and only if π(P ) belongs to θYn,L(m, r − 1, k− 1). �

4.8. Lifting common ideal bases. We now develop a technique for lifting a
common free k[y]-module basis for certain ideals in a k[y]-algebra R to a basis of
a finite R-algebra S generated by one extra coordinate variable b. We give the
general method here. In §4.9 we apply it with R = R(n, l− 1) to obtain bases for
the coordinate rings of certain special arrangements Z′ contained in Z(n, l). This
basis lifting from Z(n, l− 1) to Z′ ⊆ Z(n, l) will be crucial for one of the three
stages of our basis construction procedure in §4.10.

Definition 4.8.1. Let Z = SpecR be a Noetherian affine scheme. Let S = R[b]/J
be a finite R-algebra generated by one variable b, i.e., Z′ = SpecS is a closed
subscheme of A1(Z) finite over Z. We denote by Im(Z′) the ideal in R consisting
of all elements am−1 for some

(109) am−1b
m−1 + · · ·+ a1b+ a0 ∈ J (ai ∈ R).

We denote by Vm(Z′) the corresponding closed subscheme V (Im(Z′)) ⊆ Z.

Note that the elements in (109) for a given m constitute an R-submodule of J ,
so Im(Z′) is in fact an ideal. If Fm denotes the the R-submodule of S generated
by the elements {1, b, . . ., bm−1}, then Fm/Fm−1 is a cyclic R-module generated
by bm−1 and isomorphic to R/Im(Z′). In other words, we have Rbm−1 ∩ Fm−1 =
bm−1Im(Z′). Since S is assumed to be finitely generated as an R-module, we have
Fr = S for some r and hence Im(Z′) = (1) for all m > r.

Multiplying (109) by b, we see that Im(Z′) ⊆ Im+1(Z′) for all m. If we agree to
set I0(Z′) = 0, then we have

(110) 0 = I0(Z′) ⊆ I1(Z′) ⊆ · · · ⊆ Ir+1(Z′) = (1).

The ideals Im(Z′) are called partial elimination ideals by Green [20], who studied
them in connection with the theory of lexicographic generic initial ideals. Green
observed that the geometric interpretation of the the loci Vm(Z′) has to do with
the lengths of the fibers of the morphism Z′ → Z, as we now explain.

Definition 4.8.2. Let S be a finitely generated module over a Noetherian com-
mutative ring R. For P ∈ SpecR we set

(111) µP (S) = dimKP (KP ⊗R S),

where KP = RP/PRP is the residue field of the local ring at P .
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By Nakayama’s lemma, µP (S) is the number of elements of any minimal set of
generators of SP as an RP -module. Also, if S is an R-algebra, then µP (S) is the
length of the fiber of SpecS over the KP -valued point SpecKP → SpecR with
image P .

Lemma 4.8.3 ([20]). Let Z and Z′ be as in Definition 4.8.1. As sets, we have

(112) Vm(Z′) = {P ∈ Z : µP (S) ≥ m}.

Proof. Let P be a point of Z = SpecR. The Artin KP -algebraKP⊗RS is a quotient
of the polynomial ring KP [b], and therefore has a KP -basis {1, b, . . ., bm0−1}, where
m0 = µP (S). Equivalently, {1, b, . . ., bm0−1} minimally generates SP as an RP -
module, so with Fm as in the remarks following Definition 4.8.1, we have (Fm0)P =
SP , (Fm0−1)P 6= SP . This implies Im0(Z′)P 6= (1), Im0+1(Z′)P = (1), that is,
P ∈ Vm0(Z′), P 6∈ Vm0+1(Z′). By (110) it follows that P ∈ Vm(Z′) if and only if
m ≤ µP (S). �

The next two lemmas give some further elementary facts about partial elimina-
tion ideals.

Lemma 4.8.4. Let Z and Z′ be as in Definition 4.8.1. Assume they are schemes
over k, and let X be an affine scheme flat over k. Then we have

(113) Vm(Z′ ×X) = Vm(Z′)×X
as closed subschemes of Z ×X.

Proof. Let Z = SpecR, Z′ = Spec S, and X = Spec T , where S = R[b]/J . Then
S ⊗ T = (R ⊗ T )[b]/(J ⊗ T ), so the defining ideal of Z′ ×X is J ⊗ T . Since T is
flat, we have (J⊗T )∩ (R⊗T ){1, b, . . . , bm−1} = (J ∩R{1, b, . . ., bm−1})⊗T . From
the definition it then follows that Im(Z′×X) = Im(Z′)⊗ T , which is the algebraic
equivalent of (113). �

Note that the lemma as stated holds over an arbitrary ground ring k. When k
is a field the hypothesis that X is flat over k is satisfied automatically.

Lemma 4.8.5. With Z and Z′ as in Definition 4.8.1, suppose that Z′ is the
scheme-theoretic union of closed subschemes Z′1 and Z′2, that is, the defining ideal
of Z′ is an intersection J = J1 ∩ J2. Then we have

(114) Is(Z′1)It(Z′2) ⊆ Is+t−1(Z′)

for all s, t.

Proof. Let p ∈ Is(Z′1) be the leading coefficient of an element f ∈ J1 with leading
form pbs−1, as in (109). Similarly let q ∈ It(Z′2) be the leading coefficient of g ∈ J2

with leading form qbt−1. Then we have fg ∈ J1J2 ⊆ J , and the leading form of fg
is pqbm−1 where m = s+ t− 1. �

For us, the main significance of the partial elimination ideals Im(Z′) is their use-
fulness in lifting a free k[y]-module basis from R to S. Supposing that R has a basis
which is a common basis for all the partial elimination ideals, it is straightforward
to construct from it a free k[y]-module basis of S. In keeping with our program of
reducing everything to the case n = 2, we require a stronger form of the construc-
tion, in which the hypotheses are limited to things we can check locally on U2 or
U1. We remark, however, that when the hypotheses in the following lemma hold
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locally, it actually follows that they hold everywhere—in other words, the ideals Im
in (115) below are equal to the partial elimination ideals.

Lemma 4.8.6. Let R be a k[y]-algebra and let Z = SpecR, Z′ = SpecS be as
in Definition 4.8.1. Assume that R is free and S is torsion-free as k[y]-modules.
Suppose that R has a basis B which is a union of disjoint subsets B =

⋃r
j=0Bj

such that for each m, the submodule Im = k[y]
⋃
j<mBj is an ideal in R satisfying

(115) Im(Z′)P = (Im)P
for all P ∈ U2 ∩ Z. Then S is a free k[y]-module with basis

(116) B′ =
r⋃

m=1

Bm · {1, b, . . ., bm−1}.

Furthermore, let I ⊆ R be an ideal spanned as a (free) k[y]-module by a subset
A ⊆ B, and let Y ′ = SpecS/IS. Suppose that

(117) Im(Y ′)P = IP + Im(Z′)P
for all m > 0 and all P ∈ U1 ∩ Z. Then the ideal IS is spanned by the subset
A′ = (A · {1, b, b2, . . .}) ∩B′ of B′.

Proof. Consider the filtration 0 = F0 ⊆ F1 ⊆ · · · of S, where Fm = R · {1, b, . . . ,
bm−1}. Without loss of generality we can assume that Fr = S, since the hypotheses
and conclusion of the Lemma are unaltered if we replace r by a larger integer r1

and define the extra subsets Bj for r < j ≤ r1 to be empty. We have Fm/Fm−1
∼=

R/Im(Z′) and therefore, by (115) and Lemma 4.4.2, (Fm/Fm−1)Q ∼= (R/Im)Q
for all Q ∈ Û2. It follows that (Fm/Fm−1)Q is a free k[y]Q-module with basis
bm−1

⋃
j≥mBj , and since B′ is the union of these, SQ is a free k[y]Q-module with

basis B′. By Lemma 4.4.9 this implies that S is a free k[y]-module with basis B′.
By (117) and Lemma 4.4.2, we have Im(Y ′)Q = IQ + Im(Z′)Q for Q ∈ Û1. By

the definition of Y ′, multiplication by bm−1 is an isomorphism R/Im(Y ′)→ (Fm +
IS)/(Fm−1 + IS) ∼= Fm/(Fm−1 + IS ∩Fm). The R-module Fm/(Fm−1 + bm−1I) is
generated by bm−1 and is therefore equal to Rbm−1/(Rbm−1∩(Fm−1 +bm−1I)). By
the modular law and the identity Rbm−1∩Fm−1 = bm−1Im(Z′), this is in turn equal
to Rbm−1/(bm−1Im(Z′) + bm−1I). Multiplication by bm−1 is thus an isomorphism
R/(Im(Z′) + I)→ Fm/(Fm−1 + bm−1I). Hence for Q ∈ Û1 we have (Fm−1 + IS ∩
Fm)Q = (Fm−1 + bm−1I)Q and therefore (IS ∩ Fm)Q ⊆ (bm−1I + Fm−1 ∩ IS)Q .
It follows that the map IQ/(Im(Z′) ∩ I)Q → (IS ∩ Fm)Q/(IS ∩ Fm−1)Q given by
multiplication by bm−1 is surjective. It is injective by the definition of Im(Z′), so
it is an isomorphism.

Setting Aj = A ∩ Bj , this implies that bm−1
⋃
j≥mAj is a basis of (IS ∩

Fm)Q/(IS ∩ Fm−1)Q. Since A′ is the union of these, A′ is a basis of ISQ. In
particular this holds for Q = 0, which by Lemma 4.4.11 suffices to show that A′

spans IS. �

4.9. Lifting for special arrangements. The most intricate stage in the basis
construction procedure to be presented in §4.10 involves the construction of a free
k[y]-module basis in the ring R(n, l)/I(1, 1, t− 1), given a suitable basis in the
ring R(n, l)/I(1, 1, t). To pass from one ring to the other we will need a basis of
I(1, 1, t)/I(1, 1, t− 1). We will get this basis from a basis of R(n, l− 1) by applying
the lifting theory from §4.8 to certain special arrangements, which we now define.
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Definition 4.9.1. Given n, l, r and k, with r ∈ [n] ∪ {0} and k ∈ [l], the special
arrangement Z′ = Z′(r, k) is the subspace arrangement

(118) Z′ =
⋃
V (ak) ∩Wf , over f : [l]→ [n] such that f(k) ∈ [r] \ f([k − 1]),

a reduced closed subscheme of Z(n, l). We denote by π : Z′ → Z(n, L) the projec-
tion on the coordinates other than ak, bk, mapping Z′ into the polygraph Z(n, L)
in indices [n] and L = [l] \ {k}.

The significance of the special arrangements Z′(r, k) is twofold. On the one hand,
they are related to the arrangements Yn,L(m, r, k− 1) in the ground scheme Z(n, L)
via our basis lifting theory. On the other hand, in Z(n, l) there is a geometric rela-
tionship between the closed subsets Z′(n, t), Z′(n − 1, t), Y (1, 1, t) and Y (1, 1, t− 1)
that makes possible the step from from R(n, l)/I(1, 1, t− 1) to R(n, l)/I(1, 1, t).
The latter aspect will be explained in detail in §4.10. Here we treat the basis lifting
aspect. To start with, we need the following purely set-theoretic fact, which already
gives an idea of the relationship between Z′(r, k) and Yn,L(m, r, k− 1).

Lemma 4.9.2. Let Z′ = Z′(r, k) be a special arrangement over Z = Z(n, L),
where L = [l] \ {k}, and let π : Z′ → Z(n, L) be the coordinate projection. Then
Yn,L(m, r, k− 1) ⊆ Z(n, L) is the closure of the locus consisting of points P ∈
U1 ∩ Z(n, L) for which the fiber π−1(P ) has size |π−1(P )| ≥ m.

Proof. Let P be a point of U1 ∩ Z(n, L), and let Q ∈ π−1(P ) be a point of the
fiber. Note that this implies Q ∈ U1 ∩ Z(n, l). By Lemma 4.4.3 there is a unique
Wf containing Q and a unique Wh containing P . Clearly we must have h = f |L.
By the definition of Z′, we have f(k) ∈ [r] \h([k− 1]), and xf(k) vanishes at Q and
hence at P . Conversely, for every j ∈ [r] \ h([k − 1]) such that xj vanishes at P ,
there is a point Q ∈ π−1(P ) lying on Wf , where f(k) = j and f |L = h. Note that f
determines Q, since the subspaces Wf ⊆ En×El and Wh ⊆ En×EL both project
isomorphically onto En, and the two projections map Q and P to the same point.

This shows that the number of points in the fiber π−1(P ) is equal to the size
of the set T ∩ [r] \ h([k − 1]), where T = {j : P ∈ V (xj)}. By Lemma 4.7.1,
Yn,L(m, r, k− 1)∩U1 consists of those points P for which |T ∩ [r] \h([k− 1])| ≥ m.
Since Yn,L(m, r, k− 1) ∩ U1 is dense in Yn,L(m, r, k− 1), the result follows. �

We will now apply the theory developed in §4.8 to the case where Z′ = SpecS
is the special arrangement Z′(r, k) over Z = Z(n, L), with L = [l] \ {k}. The
coordinate ring of the ground scheme is thus R = R(n, L). The map π : Z′ → Z
is the projection on the coordinates other than ak, bk. Note that ak vanishes on
Z′ by definition, so Z′ is a closed subscheme of A1 × Z(n, L), where the extra
coordinate b on A1 is bk. Note also that the product

∏
j∈[n](bk − yj) ∈ R[bk] is a

monic polynomial in bk which vanishes identically on Z(n, l) and therefore also on
Z′, so Z′ is finite over Z(n, L). Thus Z′ and Z = Z(n, L) are as in Definition 4.8.1.

Lemma 4.9.3. Let Z′ = Z′(r, k) be a special arrangement over Z = Z(n, L), where
L = [l] \ {k}. Then we have

(119) Im(Z′) ⊆ In,L(m, r, k − 1),

where In,L(m, r, k − 1) ⊆ R(n, L) is the ideal of Yn,L(m, r, k− 1).
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Proof. Let π : Z′ → Z(n, L) be the projection. If P is a point of Z(n, L) such that
the fiber π−1(P ) has at least m points then, in the notation of Definitions 4.8.1 and
4.8.2, we have µP (S) ≥m.

By Lemmas 4.8.3 and 4.9.2 it follows that Yn,L(m, r, k− 1) ⊆ Vm(Z′). Since
Yn,L(m, r, k− 1) is reduced, this implies Im(Z′) ⊆ In,L(m, r, k− 1). �

Lemma 4.9.4. For n = 2, with the notation of Lemma 4.9.3, we have equality in
(119).

Proof. By Lemma 4.9.3 we have Im(Z′) ⊆ I(m, r, k− 1) in R(2, L). This contain-
ment implies equality trivially if Im(Z′) = (1) or I(m, r, k− 1) = 0. For m = 0 we
have I(m, r, k − 1) = 0. For r = 0, Z′ is empty, so Im(Z′) = (1) for m > 0. Hence
we may assume m, r > 0.

For m = 1, the definition yields that I1(Z′) is the kernel of the ring homomor-
phism R→ S corresponding to the projection π : Z′ → Z, that is, the ideal of the
image of Z′ in Z. The latter coincides with Y (1, r, k− 1) by construction.

Since (bk − y1)(bk − y2) vanishes on Z′, we have Im(Z′) = (1) for m > 2. If
r = 1, then bk − y1 vanishes on Z′, and if k > 1, then bk + b1 − y1 − y2 vanishes on
Z′. Hence we have Im(Z′) = (1) for r = 1 or k > 1, and m > 1. This leaves only
the case m = r = 2, k = 1, in which we are to show

(120) I(2, 2, 0) ⊆ I2(Z′).

We have already seen (Corollary 4.6.3) that I(2, 2, 0) = (x, a). Thus we have
only to show that x1, x2, and the ai for i ∈ L = [l] \ {1} belong to I2(Z′). For
this we need only observe that x1, x2, and ai are the b1 coefficients of the following
polynomials, which vanish on Z′:

(121)

(b1 − y2)x1

(b1 − y1)x2

(b1 − y1)ai + (bi − y2)x1.

For the vanishing of the last of these, note that it is congruent modulo ((b1 − y2)x1,
a1) to the determinant

(122) det

ai bi 1
a1 b1 1
x1 y1 1


from (95), which vanishes on Z(2, l). �

Lemma 4.9.5. For all n, with the notation of Lemma 4.9.3, we have equality in
(119) locally on U2, that is,

(123) Im(Z′)P = In,L(m, r, k− 1)P

for all P ∈ U2 ∩ Z(n, L).

Proof. First consider a point P ∈ U1 ∩ Z(n, L). By Lemma 4.4.3, P lies on a
unique component Wf , for some f : L → [n], and Z(n, L) coincides locally with
Z1 = Wf

∼= En. Since π : Z′ → Z(n, L) maps Wg into Wg|L , every point of
Z′ lying over P belongs to a component V (ak) ∩ Wg with g|L = f and hence
g(k) ∈ T = [r] \ f([k − 1]). We can replace Z′ with the union Z′1 of only these
components, without changing SP and therefore without changing the local ideals
Im(Z′)P .
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Identifying Z1 with En = Spec k[x,y], Z′1 is the union of subspaces V (xj, bk −
yj) ⊆ Spec k[x,y, bk] over all j ∈ T . Thus the defining ideal J1 of Z′1 contains

(124) J =
∏
j∈T

(xj, bk − yj).

From this we see that Im(Z′1) contains all square-free monomials of degree |T |+1−m
in the variables {xj : j ∈ T}. These monomials generate the ideal of the union of
coordinate subspaces

(125)
⋃
V (xj : j ∈ T1) ∩ Z1, over subsets T1 ⊆ T of size |T1| ≥ m.

This union coincides locally with Yn,L(m, r, k− 1) at P , so we have shown that
In,L(m, r, k− 1)P ⊆ Im(Z′)P . We already have the reverse containment by Lemma
4.9.3.

For P ∈ U2 \U1, the local picture of Z(n, L) is given by Lemma 4.4.7 as E[n]\N×
Z(N,L′) for some N = {p, q} ⊆ [n], and L′ ⊆ L. Let F be the equivalence class of
functions f : L → [n] defined in Lemma 4.4.7, containing all f such that P ∈ Wf .
We put Z1 = E[n]\N and Z2 = Z(N,L′).

As before, Z′ coincides locally over P with the union of its components V (ak)∩
Wg, where g|L = f for some f ∈ F . We divide these into two classes. The first
consists of components with g(k) 6∈ N . These have a point lying over P only if g(k)
belongs to

(126) T = ([r] \N) \ f([k − 1]).

Note that T is well-defined, since f([k − 1]) ∪N depends only on F . The union of
these components is Z′1 × Z2, where Z′1 ⊆ A1 × Z1 is the union of the subspaces
V (xj , bk − yj) over all j ∈ T . Let R1 = Spec k[x[n]\N ,y[n]\N ] be the coordinate
ring of Z1. Repeating our analysis of the case P ∈ U1, we see that for each s,
Is(Z′1) contains the ideal I′s ⊆ R1 generated by all square-free monomials of degree
|T |+ 1− s in the variables {xj : j ∈ T}.

The second class consists of components V (ak) ∩Wg of Z′ with g|L ∈ F and
g(k) ∈ N . The union of these components is Z1 × Z′2, where Z′2 is the special
arrangement Z′(r′, k′) over Z2, with extra coordinate bk, and r′ = |N ∩ [r]|, k′−1 =
|L′ ∩ [k − 1]|. By Lemma 4.9.4 we have IN,L′(t, r′, k′ − 1) = It(Z′2) for all t. Note
that this is still correct when r′ = 0 and Z′2 is empty.

Using Lemmas 4.8.4 and 4.8.5, we see that for s + t = m + 1 we have I′s ⊗
IN,L′(t, r′, k′ − 1) ⊆ Im(Z′). By Lemma 4.6.4, the ideal

(127) I =
∑

s+t=m+1

I′s ⊗ IN,L′(t, r′, k′ − 1) ⊆ Im(Z′)

is equal to its radical. Here we implicitly used the identity I′s⊗ IN,L′(t, r′, k′ − 1) =
(I′s ⊗ R(N,L′)) ∩ (R1 ⊗ IN,L′(t, r′, k′ − 1)), which holds because R1/I

′
s and

R(N,L′)/IN,L′(t, r′, k′ − 1) are flat over the field k. We have

(128)

V (I) =
⋂

s+t=m+1

(V (I′s) × Z2) ∪ (Z1 × YN,L′(t, r′, k′ − 1))

=
⋃

s+t=m

V (I′s)× YN,L′(t, r′, k′ − 1).
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The second equality here follows because the closed subsets V (I′s) ⊆ Z1 and
YN,L′(t, r′, k′ − 1) ⊆ Z2 decrease as s and t increase. Unraveling the local iso-
morphism of Z(n, L) with Z1 × Z2 we see that the union in (128) coincides locally
at P with Yn,L(m, r, k− 1). This shows that In,L(m, r, k − 1)P ⊆ Im(Z′)P , and we
already have the reverse containment by Lemma 4.9.3, as before. �

The next three lemmas contain specific consequences of the preceding results that
we will use in §4.10. Throughout, the special arrangements are over Z = Z(n, L),
where L = [l] \ {k}, and all ideals I(m′, r′, k′) considered are in the ring R(n, L).
For readability, we suppress the subscripts, writing I(m′, r′, k′) for In,L(m′, r′, k′)
and Y (m′, r′, k′) for Yn,L(m′, r′, k′).

Lemma 4.9.6. Let Z′ = Z′(r, k) be a special arrangement over Z = Z(n, L), where
L = [l] \ {k}. Assume that the coordinate ring R(n, L) is a free k[y]-module with
basis B such that each ideal I(m′, r′, k′) ⊆ R(n, L) is spanned by a subset of B.
In particular, for r′ = r, k′ = k − 1, we have B =

⋃r
j=0Bj , where the Bj are

disjoint, such that I(m, r, k − 1) = k[y] ·
⋃
j<mBj for all m. Then the coordinate

ring S = O(Z′) is a free k[y]-module with basis

(129) B′ =
r⋃

m=1

Bm · {1, bk, . . . , bm−1
k }.

Moreover, for all m′, r′, k′, if A ⊆ B spans I(m′, r′, k′), then A′ = (A ·
{1, bk, b2k, . . .}) ∩B′ spans I(m′, r′, k′)S.

Proof. By Lemma 4.5.2, the coordinate ring S of Z′ is a torsion-free k[y]-module.
By Lemma 4.9.5 we have Im(Z′)P = I(m, r, k − 1)P for all m and all P ∈ U2.
Thus the hypotheses of Lemma 4.8.6 are satisfied and we have (129) immedi-
ately. For Lemma 4.8.6 also to yield us the last conclusion we need to have
Im(Y ′)P = I(m′, r′, k′)P + I(m, r, k − 1)P for P ∈ U1 and m > 0, where Y ′ is
the scheme-theoretic preimage π−1Y (m′, r′, k′) in Z′, that is, Y ′ = V (J ′) where
J ′ = I(m′, r′, k′)S.

As in the proof of Lemma 4.9.2, if P is a point of U1 ∩ Z(n, L) belonging to the
unique component Wf , then Z′ contains |T∩[r]\f([k− 1])| distinct points lying over
P , where T = {j : P ∈ V (xj)}. If P belongs to U1∩Y (m, r, k− 1), then (since Wf is
unique) we have |T ∩ [r]\f([k − 1])| ≥ m. If P also belongs to Y (m′, r′, k′) then the
points lying over P belong to Y ′, which shows that Vm(Y ′red)∩U1 ⊇ Y (m′, r′, k′)∩
Y (m, r, k− 1) ∩ U1 as sets. By Corollary 4.4.5, the last intersection is scheme-
theoretically reduced, so we have Im(Y ′red)P ⊆ I(m′, r′, k′)P + I(m, r, k − 1)P for
all P ∈ U1.

Let J ⊆ R(n, L)[bk] be the defining ideal of Z′, so S = R(n, L)[bk]/J . We
defined J ′ as an ideal in S, but we can also regard it as an ideal in R(n, L)[bk] which
contains J . Obviously J ′ is contained in the defining ideal

√
J ′ of Y ′red. This implies

Im(Y ′) ⊆ Im(Y ′red) and hence Im(Y ′)P ⊆ I(m′, r′, k′)P + I(m, r, k − 1)P . For the
reverse containment, we clearly have Im(Y ′) ⊇ I1(Y ′) = J ′∩R(n, L) ⊇ I(m′, r′, k′)
for m > 0, and we have Im(Y ′)P ⊇ I(m, r, k− 1)P because I(m, r, k − 1)P =
Im(Z′)P and J ′ contains J . �

Lemma 4.9.7. Under the hypotheses of Lemma 4.9.6, each ideal I(m′, r′, k′)S is
equal to its radical, so S/I(m′, r′, k′)S is the coordinate ring of the reduced preimage
π−1Y (m′, r′, k′) in Z′, and this coordinate ring is a free k[y]-module.
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Proof. Lemma 4.9.6 implies that S/I(m′, r′, k′)S is a free k[y]-module and therefore
a subring of k(y) ⊗ S/I(m′, r′, k′)S. Let J be the ideal of Z′ as a subscheme of
Z(n, l), so S ∼= R(n, l)/J . Both J and

√
I(m′, r′, k′)R(n, l) belong to the lattice

in Lemma 4.4.4. Moreover I(m′, r′, k′)R(n, l)P =
√
I(m′, r′, k′)R(n, l)P for all

P ∈ U1, as follows easily from Lemma 4.4.3. Hence Lemma 4.4.4 implies that
I(m′, r′, k′)R(n, l)P +JP is equal to its radical for all P ∈ U1, and by Lemma 4.4.2
this implies that (S/I(m′, r′, k′)S)Q is a reduced ring for all Q ∈ Û1. In particular,
taking Q = 0, k(y)⊗ S/I(m′, r′, k′)S is a reduced ring. �
Lemma 4.9.8. Let Z′ = Z′(r, k) and Z′′ = Z′(r − 1, k) be special arrangements
over Z = Z(n, L), where L = [l] \k. Let Z′ = SpecS, and let J ′ ⊆ S be the ideal of
Z′′ as a closed subscheme of Z′. Assume that R(n, L) is a free k[y]-module with a
basis B such that each ideal I(m′, r′, k′) is spanned by a subset of B. Then J ′ is a
free k[y]-module with a basis B′ such that every ideal I(m′, r′, k′)S ∩ J ′ is spanned
by a subset of B′.

Proof. For each basis element p ∈ B, let m(p) be the unique non-negative integer
m such that p belongs to I(m+ 1, r, k− 1) but not to I(m, r, k − 1). Similarly, let
m′(p) be the unique m′ such that p belongs to I(m′ + 1, r− 1, k − 1) but not to
I(m′, r− 1, k − 1). Thus by Lemma 4.9.6, the set of elements

(130) B1 = {pbjk : p ∈ B, j < m(p)}
is a free k[y]-module basis of S and the set

(131) B′1 = {pbjk : p ∈ B, j < m′(p)}
is a free k[y]-module basis of S/J ′. From the definition we have Y (m+ 1, r− 1,
k − 1) ⊆ Y (m+ 1, r, k− 1) ⊆ Y (m, r − 1, k − 1), hence I(m, r − 1, k − 1) ⊆
I(m+ 1, r, k− 1) ⊆ I(m+ 1, r− 1, k− 1). Therefore we have m′(p) ≤ m(p) ≤
m′(p) + 1 for all p ∈ B.

For each p ∈ B such that m(p) = m′(p) + 1, the element p0 = pb
m(p)−1
k belongs

to B1 but not to B′1. There is, however, a unique k[y]-linear combination p1 of the
elements in B′1 such that p0 ≡ p1 (mod J ′). Set q = p0 − p1, so we have q ∈ J ′,
and q is congruent to p0 modulo k[y]B′1. Let B′ be the set of all such elements q.

The union B′ ∪ B′1 is again a basis of S, while B′1 is a basis of S/J ′ and B′ is
contained in J ′. This implies that B′ spans J ′, that is, J ′ is a free k[y]-module
with basis B′.

By Lemma 4.9.6, I(m′, r′, k′)S is spanned by the subset A1 = {pbjk ∈ B1 : p ∈
I(m′, r′, k′)}. Consider an element p ∈ I(m′, r′, k′) ∩ B with p0 = pb

m(p)−1
k ∈

B1 \ B′1, and the corresponding element q constructed as above. By Lemma
4.9.6 applied to Z′′, the set A′1 = {p′bjk ∈ B′1 : p′ ∈ I(m′, r′, k′)} spans
I(m′, r′, k′)S/(I(m′, r′, k′)S ∩ J ′). Hence there is a k[y]-linear combination of the
elements of A′1 congruent to p0 modulo I(m′, r′, k′)S∩J ′. By uniqueness this linear
combination must be p1, so q belongs to I(m′, r′, k′)S ∩ J ′. Let A′ ⊆ B′ be the
set of these elements q. As before, A′ ∪A′1 spans I(m′, r′, k′)S, while A′1 is a basis
of I(m′, r′, k′)S/(I(m′, r′, k′)S ∩ J ′) and A′ is contained in I(m′, r′, k′)S ∩ J ′. This
implies that A′ spans I(m′, r′, k′)S ∩ J ′. �
4.10. Basis construction. We are finally ready to establish the lemmas that will
allow us to construct the basis required by Theorem 4.2. As explained in §4.3, the
construction proceeds by induction, in three stages. In the first stage we construct a
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basis of R(n, l)/I(1, 1, l) from a basis of R(n−1, l). In the second stage we construct
a basis of R(n, l)/I(1, 1, t− 1) from a basis of R(n, l)/I(1, 1, t) for 1 ≤ t ≤ l. In the
third and final stage we construct a basis of R(n, l) from a basis of R(n, l)/I(1, 1, 0).
The three stages are given by corresponding lemmas below: the first stage by
Lemma 4.10.2, the third stage by Lemma 4.10.5, and the second stage by Lemma
4.10.7. In the order we present them, each lemma requires progressively more
algebraic and geometric machinery to prove; this is why we consider the third stage
before the second. All stages of the construction involve the rings R(n, l)/I(1, 1, t).
Before we give any of the basis construction lemmas, we first need to define the
type of basis we want in the rings R(n, l)/I(1, 1, t) as well as R(n, l).

Definition 4.10.1. A common ideal basis of R(n, l) is a set B for which the con-
clusion of Theorem 4.2 holds: namely, R(n, l) is a free k[y]-module with basis B
and every ideal I(m, r, k) is spanned by a subset of B. Given t ∈ {0} ∪ [l], let
J = I(1, 1, t). A common ideal basis of R(n, l)/J is a set B such that R(n, l)/J is
a free k[y]-module with basis B and every ideal

(132)
√

(I(m, r, k) + J)/J

is spanned as a k[y]-module by a subset of B.

For the sake of clarity let us point out that if a common ideal basis of R(n, l)
exists, then R(n, l)/(I(m, r, k) + J) is a free k[y]-module and hence a subring of
k(y) ⊗ R(n, l)/(I(m, r, k) + J). By Corollary 4.4.5, the latter ring is reduced, so
I(m, r, k) + J =

√
(I(m, r, k) + J). In light of Theorem 4.2, the radical sign in

(132) is therefore superfluous. However, in the construction of our basis in stages,
we will have to construct common ideal bases for the rings R(n, l)/J first, before
we reach R(n, l) itself. For this reason we have taken care to define a common
ideal basis of R(n, l)/J = O(Y (1, 1, t)) to be a common basis of the ideals of the
reduced arrangements Y (m, r, k)∩Y (1, 1, t), without assuming in advance that these
intersections are scheme-theoretically reduced.

Each stage of our basis construction procedure involves the action of the circular
shift permutation θ = (1 2 . . . n) which appeared earlier in Lemma 4.7.3. Let us
briefly note what its action means in various contexts. Geometrically, θ acts on En

as the right circular shift

(133) θ(P1, . . . , Pn) = (Pn, P1, . . . , Pn−1),

and on El as the identity. In coordinates, θ acts by

(134) θxi = xi+1, θyi = yi+1 (i < n), θxn = x1, θyn = y1,

and fixes the coordinates a,b. The shift θ also acts on various indexing data, e.g.,
for subsets S ⊆ [n] we have θS = θ(S), and for functions f : [l] → [n] we have
θf = θ ◦ f . The various actions are mutually consistent: we have θWf = Wθf , for
example, and the ideal of θY (m, r, k) is θI(m, r, k). The ring homomorphism defined
by (134) corresponds to the inverse of the morphism θ given in (133). However,
it is this definition that makes the notation consistent, as the reader can verify.
In general, whenever a group G acts on a scheme X = SpecR, we must define
g ∈ G to act on R by the ring homomorphism corresponding to the morphism
g−1—otherwise the left action of G on X would become a right action on R. In our
situation, θ is merely a specially chosen element of the symmetric group Sn, which
acts on En by permuting the factors.
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We turn now to the basis construction lemmas, beginning with the easiest.
Throughout we will maintain the hypothesis that the bases we construct consist of
homogeneous polynomials. Strictly speaking, we only need to maintain homogene-
ity with respect to the x-degree, although it is not hard to see on closer examination
that everything in the construction also maintains homogeneity with respect to the
y-degree.

Lemma 4.10.2. Suppose that R(n− 1, l) has a homogeneous common ideal basis.
Then so does R(n, l)/I(1, 1, l).

Proof. We can assume we are given a common ideal basis of R(n − 1, l), represented
by a set of homogeneous polynomials B′ ⊆ k[x,y, a,b] not involving the variables
xn, yn. We will show that B = θB′ is the required basis of R(n, l)/I(1, 1, l).

Let J = I(1, 1, l). From the definition it is immediate that Y (1, 1, l) ∼= Z(N, l)×
Spec k[y1], where N = [n] \ {1} = θ[n − 1]. This implies that R(n, l)/J is a free
k[y]-module with basis B. It follows from Lemma 4.7.2 that for r > 0, the image of
Y (m, r, k)∩Y (1, 1, l) under the isomorphism is YN,l(m− 1, r − 1, k)×Spec k[y1], so√

(I(m, r, k)+J)/J = IN,l(m− 1, r − 1, k)⊗k[y1]. This shows that B is a common
ideal basis as far as the ideals

√
(I(m, r, k) + J)/J with r > 0 are concerned, and

those with r = 0 are trivial. �

The remaining stages in the basis construction procedure make use of the fol-
lowing technical lemma.

Lemma 4.10.3. Let R be a k[y]-algebra and let J , I1, . . . , Im be ideals of R such
that R/Ii is a torsion-free k[y]-module for all i, and for every intersection I of
some of the ideals Ii, we have (I + J)P =

√
(I + J)P for all P ∈ U2. Assume that

J is a free k[y]-module with basis B′′ such that each ideal Ii ∩ J is spanned by a
subset of B′′, and that R/J is a free k[y]-module with basis B′ such that each ideal√

(Ii + J)/J is spanned by a subset of B′. Then R is a free k[y]-module with a
basis B such that J and all the ideals Ii are spanned by subsets of B.

Proof. Choosing an arbitrary representative q ∈ R of each J-coset belonging to B′,
we can assume that B′ is given as a subset of R. Then R is a free k[y]-module with
basis B′ ∪B′′. This basis need not be a common basis of the ideals Ii; to construct
B we have to modify it.

Given q ∈ B′, let α be the set of indices i for which
√

(Ii + J) contains q, and
let I =

⋂
i∈α Ii. Then

√
(I + J) =

⋂
i∈α
√

(Ii + J) contains q. For Q ∈ Û2 we have
(I + J)Q =

√
(I + J)Q by Lemma 4.4.2, hence q ∈ (I + J)Q. Thus there exists an

element q1 ∈ RQ satisfying

(135) q1 ∈ IQ, q1 − q ∈ JQ.

These conditions determine q1 and q1 − q uniquely modulo (I ∩ J)Q. Now, it
follows from the hypotheses of the Lemma that if C ⊆ B′′ is the subset consisting
of elements not belonging to I ∩ J , then J/I ∩ J is a free k[y]-module with basis
C. Expanding the unique element q1 − q ∈ JQ/(I ∩ J)Q satisfying (135) in terms
of the basis C, we have

(136) q1 = q +
∑
γ

pγbγ ,
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with pγ ∈ k[y]Q and bγ ∈ C. The coefficients pγ are uniquely determined by (135)
and (136), and the solution for any Q is also the solution for Q = 0. As in the proof
of Lemma 4.4.9, it follows that as elements of k(y), the coefficients pγ ∈ k[y]Q do
not depend on Q and hence belong to k[y]. In particular, the polynomial q1 defined
in (136) is an element ofR satisfying (135) for allQ ∈ Û2. The hypothesis that R/Ii
is a torsion-free k[y]-module means that the canonical map R/Ii → k(y)⊗(R/Ii) is
injective. Since k(y)⊗ (R/Ii) = (R/Ii)Q for Q = 0, and we have q1 ∈ I(0) ⊆ (Ii)(0),
this implies q1 ∈ Ii for all i ∈ α.

We now define B to be the union of B′′ and the set of elements q1 constructed
as above, for all q ∈ B′. By (136) we have q1 ≡ q (mod J). This implies that the
elements q1 form a basis of R/J , so B is a basis of R.

For each i, the elements q ∈ B′ ∩
√

(Ii + J) span the k[y]-module
√

(Ii + J)/J
by hypothesis, and therefore span the vector space k(y) ⊗

√
(Ii + J)/J = k(y) ⊗

((Ii + J)/J). Since the corresponding elements q1 belong to Ii and satisfy q1 ≡ q
(mod J), it follows from the canonical isomorphism Ii/(Ii ∩ J) → (Ii + J)/J that
they span k(y) ⊗ (Ii/(Ii ∩ J)). By hypothesis the elements of B′′ ∩ Ii span Ii ∩ J ,
so the elements of B∩ Ii all together span k(y)⊗ Ii. By Lemma 4.4.11, this implies
they span Ii as a k[y]-module. �

To maintain homogeneity, we need a graded version of the preceding lemma. For
the stage going from R(n, l)/I(1, 1, 0) to R(n, l) in our basis construction procedure
we will want a bit more: the graded version should hold in each degree separately.
To avoid cluttering the notation, we did not mention the grading in the proof
of Lemma 4.10.3, but everything we need is already implicit there. To see this,
consider the situation in which R =

⊕
dRd is a graded k[y]-algebra with k[y] ⊆ R0,

the ideals Ii and J are homogeneous, and the elements of B′ and B′′ are also
homogeneous. Then the construction of the basis B in the proof of the lemma
can be carried out in each degree separately. More precisely, the proof yields a
common basis for the homogeneous components of the ideals J and Ii in a given
degree d, assuming only that we have bases B′′d of Jd and B′d of (R/J)d satisfying
the hypotheses of the lemma in degree d. Thus we have the following corollary to
the proof of Lemma 4.10.3.

Corollary 4.10.4. Let R, J and I1, . . . , Im be as in Lemma 4.10.3, but assume
further that R =

⊕
dRd is graded, with k[y] ⊆ R0, and the ideals J , I1, . . . , Im are

homogeneous. For a given degree d, suppose that Jd is a free k[y]-module with basis
B′′d such that each (Ii ∩ J)d is spanned by a subset of B′′d , and that (R/J)d is a free
k[y]-module with basis B′d such that each (

√
(Ii + J)/J)d is spanned by a subset of

B′d. Then Rd is a free k[y]-module with a basis Bd such that Jd and all (Ii)d are
spanned by subsets of Bd.

We remark that the torsion-freeness hypothesis and the local reducedness condi-
tion (I+J)P =

√
(I+J)P in Lemma 4.10.3 and Corollary 4.10.4 are automatically

satisfied in the situations where we will apply them. The ideals Ii will always be
ideals of (reduced) subspace arrangements Y (m, r, k) or Y (m, r, k) ∩ Y (1, 1, t). By
Lemmas 4.5.2 and 4.7.2 their coordinate rings R/Ii are torsion-free k[y]-modules.
The ideal J will always be I(1, 1, t) for some t, so it follows from Lemma 4.6.5 that
V (I + J) is locally reduced on U2.

It follows a posteriori from the conclusion of Lemma 4.10.3 that if the reducedness
hypotheses (I+J)P =

√
(I+J)P hold locally on U2, we must actually have (I+J) =
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(I+J). This is similar to the situation we encountered earlier with Lemma 4.8.6.

As in that case, we proved the lemma with the weaker local hypotheses so that we
can verify them by reduction to the case n = 2.

We come now to our second basis construction lemma, giving what is actually
the third stage in the inductive process.

Lemma 4.10.5. Suppose that R(n, l)/I(1, 1, 0) has a homogeneous common ideal
basis. Then so does R(n, l).

Proof. Let J = I(1, 1, 0). By definition, Y (1, 1, 0) = V (x1), so J =
√

(x1). By
Lemma 4.6.6,

√
(x1) = (x1). Since x1 does not vanish identically on any Wf , it

is a non-zero-divisor in R(n, l). Hence multiplication by x1 is an isomorphism of
R(n, l) onto J = (x1).

We may assume we are given a homogeneous common ideal basis B′ of R(n, l)/J .
Suppose that in a given x-degree d, we can find a free k[y]-module basis Bd of
R(n, l)d such that every I(m, r, k)d is spanned by a subset of Bd. We claim that
x1θBd is then a basis of Jd+1 with subsets spanning each (I(m, r, k)∩J)d+1. Grant-
ing this claim for the moment, we can apply Corollary 4.10.4 with B′′d+1 = x1θBd
and B′d+1 the degree d+ 1 part of the given basis B′ to obtain a free k[y]-module
basis Bd+1 of R(n, l)d+1 which is a common basis for every I(m, r, k)d+1. In degree
zero, we can take B0 = B′0, since R(n, l)0 = (R(n, l)/J)0. We can then construct
Bd by induction for all degrees d, obtaining a common ideal basis B =

⋃
d Bd of

R(n, l).
It remains to prove the claim. If Bd is a free module basis of R(n, l)d then so

is θBd , and therefore x1θBd is a basis of Jd+1, since multiplication by x1 is an
isomorphism of R(n, l)d onto Jd+1. To complete the proof, observe that for any
ideal I ⊆ R(n, l) we have I ∩ J = I ∩ (x1) = x1(I : (x1)). If I is radical, then
so is I : (x1), and V (I : (x1)) is the union of those components of V (I) on which
x1 does not vanish identically. Applying this to I = I(m, r, k) for r > 0, we get
I(m, r, k) : (x1) = θI(m, r − 1, k), and hence I(m, r, k)∩ J = x1θI(m, r − 1, k). For
r > 0, this shows that if Bd has a subset spanning I(m, r − 1, k)d, then x1θBd has
a subset spanning (I(m, r, k)∩J)d+1. This suffices, since I(m, r, k) is trivially equal
to 0 or (1) for r = 0. �

The remaining and most subtle stage of the basis construction procedure is the
one going from R(n, l)/I(1, 1, t) to R(n, l)/I(1, 1, t− 1), for t ∈ [l]. For this stage we
will also assume we have a common ideal basis of R(n, l− 1), and apply the basis
lifting technique developed in §§4.8 and 4.9. Recall that the basis lifting involves
the special arrangements Z′(r, k). In order to make use of them we need a lemma
relating the ideal of Y (1, 1, t) as a closed subscheme of Y (1, 1, t− 1) to the ideal of
Z′′ as a closed subscheme of Z′, for a suitable pair of special arrangements Z′′ ⊆ Z′.
Before stating the lemma we fix some notation. Let n > 1, l > 0 and t ∈ [l] be
given. Let Z′ = Z′(n, t) be the special arrangement with r = n and k = t, and let
Z′′ = Z′(n− 1, t).

Note that Z′′ is a subarrangement of Z′. The components of Z′ that do not
belong to Z′′ are the subspaces

(137) V (at) ∩Wf = V (xn) ∩Wf
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for f : [l]→ [n] such that f(t) = n, f(i) 6= n for i ∈ [t− 1]. Let Z1 be the union of
these components. Then we have

(138) Z′ = Z′′ ∪ Z1,

with Z′′ and Z1 having no component in common.
Similarly, Y (1, 1, t) is a subarrangement of Y (1, 1, t− 1), and the components of

Y (1, 1, t− 1) not belonging to Y (1, 1, t) are the subspaces

(139) V (x1) ∩Wf

for f : [l] → [n] such that f(t) = 1, f(i) 6= 1 for i ∈ [t− 1]. Letting Z0 be their
union, we have as above

(140) Y (1, 1, t− 1) = Y (1, 1, t)∪ Z0,

with Y (1, 1, t) and Z0 having no component in common. Observe that Z0 = θZ1.
The key fact about this set-up is as follows.

Lemma 4.10.6. With n, l, t, Z′, Z′′ and Z0 as above, we have

(141) θZ′′ ∩ Z0 = Y (1, 1, t)∩ Z0,

scheme-theoretically on U2. In other words, for all P ∈ U2 we have equality of
ideals θI(Z′′)P + I(Z0)P = I(1, 1, t)P + I(Z0)P .

Proof. We caution the reader immediately that in general the intersections in (141)
are not scheme-theoretically reduced, so it is not enough to check the result set-
theoretically. Instead, we must use our knowledge of the local picture on U2 to
write down equations. If P is a point of the intersection on either side of (141),
then we have P ∈ Wf ∩Wg for some f , g with f(t) 6= 1, g(t) = 1, so P is not in
U1. Thus we need only consider points P ∈ U2 \ U1.

The schemes in question are subschemes of Z(n, l). Fix a point P ∈ U2 \ U1,
and let N , L, ∼, F , and h ∈ F be as in Lemma 4.4.7. We may replace Z(n, l) with
E[n]\N × Z(N,L) without changing any of the local ideals at P .

First consider the case 1 6∈ N . If P ∈ Z0 we must have h(t) = 1. But if P ∈ θZ′′
or P ∈ Y (1, 1, t), we must have h(t) 6= 1. Hence both intersections in (141) are
locally empty at P .

For the case 1 ∈ N we may assume h(t) ∈ N , and hence t ∈ L, as otherwise
P 6∈ Z0 and the result is trivial. Under the local isomorphism of Z(n, l) with
E[n]\N × Z(N,L), Z0 coincides locally with E[n]\N × Z̃0, where Z̃0 ⊆ Z(N,L) is
the subspace arrangement

(142) Z̃0 =
⋃
f

V (x1) ∩Wf ,

over f : L→ N such that f(t) = 1, f(i) 6= 1 for i ∈ [t− 1] ∩ L.
Similarly, Y (1, 1, t) coincides locally with E[n]\N × YN,L(1, 1, s), where s = |[t]∩

L|, and θZ′′ coincides with E[n]\N × Z̃ , where

(143) Z̃ =
⋃
f

V (at) ∩Wf ,

over f : L→ N such that f(t) 6= 1, f(i) = 1 for i ∈ [t− 1] ∩ L.
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We are to show that Z̃ ∩ Z̃0 = YN,L(1, 1, s) ∩ Z̃0 as subschemes of Z(N,L).
Renaming the indices so that N becomes [2], L becomes [l̃ ], and (hence) t becomes
s, our subschemes become subschemes of Z(2, l̃ ):

(144)

Z̃0 =
⋃
V (x1) ∩Wf : f(s) = 1, f(i) = 2 for i < s,

Z̃ =
⋃
V (x2) ∩Wf : f(s) = 2, f(i) = 1 for i < s,

Y (1, 1, s) =
⋃
V (x1) ∩Wf : f(s) = 2, f(i) = 2 for i < s.

Let I ⊆ R(2, l̃ ) be given by

(145) I = (as − x1, bs − y1) +
∑
i<s

(ai − x2, bi − y2).

By Lemma 4.4.8, I =
√
I and V (I) ∼= Z(2, L̃), where L̃ = [l̃] \ [s]. By Corollary

4.6.3 or Lemma 4.6.6, we have I(1, 1, 0) = (x1) in Z(2, L̃), which shows that (x1)+I
is a radical ideal. Since we clearly have V ((x1)+I) = Z̃0 set-theoretically, it follows
that

(146) I(Z̃0) = (x1) + (as − x1, bs − y1) +
∑
i<s

(ai − x2, bi − y2).

By symmetry, we have

(147) I(Z̃) = (x2) + (as − x2, bs − y2) +
∑
i<s

(ai − x1, bi − y1),

and by Corollary 4.6.3 we have

(148) I(1, 1, s) = (x1) + (as − x2, bs − y2) +
∑
i<s

(ai − x2, bi − y2).

Now we see immediately that both I(Z̃) + I(Z̃0) and I(1, 1, s) + I(Z̃0) contain
(x1 − x2, y1 − y2) and hence they both reduce to

(149) (x1, x2, y1 − y2) +
∑
i≤s

(ai, bi − y1).

�
As was the case with Lemma 4.6.5, one can show using Theorem 4.2 that the

conclusion of Lemma 4.10.6 actually holds everywhere, and not just on U2. As
before, the result on U2 suffices for our purposes, and the restriction to U2 enables
us to prove it by reduction to the case n = 2.

Lemma 4.10.7. Given n > 1, l > 0 and t ∈ [l], suppose that R(n, l− 1) and
R(n, l)/I(1, 1, t) each have a homogeneous common ideal basis. Then so does
R(n, l)/I(1, 1, t− 1).

Proof. To simplify notation let R = R(n, l)/I(1, 1, t− 1) and let J be the ideal
I(1, 1, t)/I(1, 1, t− 1) in R.

We first prove that R is a free k[y]-module. The ideal (at) ⊆ R is isomorphic to
R/(0 : (at)). Since I(1, 1, t− 1) : (at) = I(1, 1, t) in R(n, l), we have R/(0 : (at)) ∼=
R(n, l)/I(1, 1, t), and the latter is a free k[y]-module by hypothesis. The locus
V (at)∩Y (1, 1, t− 1) is isomorphic to the preimage π−1Yn,L(1, 1, t− 1) in the special
arrangement Z′(n, 1) over Z(n, L), where L = [l] \ {1}. The isomorphism is given
by transposing the indices 1 and t in [l]. Lemma 4.9.7 then implies that R/

√
(at)
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is a free k[y]-module. Let B1 be a free k[y]-module basis of (at) and let B2 be a
basis of R/

√
(at). By Lemmas 4.4.2 and 4.6.8 we have

√
(at)Q = (at)Q for Q ∈ Û2,

so B1 ∪B2 is a basis of RQ. Then R is a free k[y]-module by Lemma 4.4.9.
Now take Z′ , Z′′, and Z0 as in the preamble to Lemma 4.10.6, so Z′ and

Z′′ are special arrangements over Z(n, L), where L = [l] \ {t}. Set R0 = O(Z0),
R′ = O(Z′), and let J ′′ = θI(Z′′)/I(Z′) be the ideal of θZ′′ as a closed subscheme
of Z′ = θZ′.

By (140) we have I(Z0) ∩ J = 0 in R so the canonical map J → JR0 is an
isomorphism. Similarly, applying θ to (138), we have I(Z0) ∩ θI(Z′′) = 0 in R′,
hence J ′′ → J ′′R0 is an isomorphism as well.

Since R and R/J are both free k[y]-modules, finitely generated and y-graded in
each x-degree, it follows that J is a free k[y]-module. Hence JR0 is a free k[y]-
module. By Lemma 4.9.8, I(Z′′)/I(Z′) is a free k[y]-module with a common basis
B for the ideals I ∩ I(Z′′)/I(Z′), where I = In,L(m, r, k)R′. In particular, this
implies that J ′′ and J ′′R0 are free k[y]-modules. By Lemma 4.5.2, R0 is a torsion-
free k[y]-module. By Lemmas 4.4.2 and 4.10.6, the free submodules JR0 and J ′′R0

of R0 coincide when localized at Q ∈ Û2, so by Corollary 4.4.10 they are equal. Let
J0 = JR0 = J ′′R0.

With B as in the previous paragraph, θB is a free k[y]-module basis of the ideal
J ′′ in R′, with subsets spanning the ideals J ′′∩θIn,L(m, r, k)R′. We have canonical
isomorphisms J ′′ ∼= J0

∼= J . Let B′′ ⊆ J be the image of θB under the composite
isomorphism J ′′ ∼= J .

The canonical isomorphism J ′′ → J0 is given by restriction to Z0 of functions
on Z′ vanishing on θZ′′. Lemma 4.9.7 implies that each ideal θIn,L(m, r, k)R′ is
equal to its radical, namely the ideal I(π−1θYn,L(m, r, k)) of the reduced preim-
age of θYn,L(m, r, k) in Z′. Therefore, since every function p ∈ J ′′ vanishes
on θZ′′, p belongs to θIn,L(m, r, k)R′ if and only if its restriction to Z0 van-
ishes on Z0 ∩ π−1θYn,L(m, r, k). Similarly, writing π1 for the coordinate projec-
tion Y (1, 1, t− 1) ⊆ Z(n, l) → Z(n, L), a function p ∈ J belongs to the ideal
J ∩ I(π−1

1 θYn,L(m, r, k)) in R if and only if the same criterion holds (note that π
and π1 have the same restriction to Z0). This shows that the isomorphism J ′′ ∼= J
carries J ′′ ∩ θIn,L(m, r, k)R′ onto J ∩ I(π−1

1 θYn,L(m, r, k)). Hence the latter ideals
are spanned by subsets of B′′.

Given r > 0, m and k, set m′ = m− 1, k′ = k if k < t, or else m′ = m,
k′ = k − 1 if k ≥ t. By Lemma 4.7.3, we have Y (1, 1, t) ∪ (Y (m, r, k) ∩
Y (1, 1, t− 1)) = Y (1, 1, t) ∪ π−1

1 θYn,L(m′, r− 1, k′). The ideal in R of Y (1, 1, t) ∪
π−1

1 θYn,L(m′, r− 1, k′) is J ∩ I(π−1
1 θYn,L(m′, r − 1, k′)), and we have shown above

that it is spanned by a subset of B′′. But this ideal is equal to the ideal of
Y (1, 1, t)∪ (Y (m, r, k)∩Y (1, 1, t− 1)), namely, J ∩

√
I(m, r, k)R. This shows that

all the ideals J ∩
√
I(m, r, k)R are spanned by subsets of B′′, the cases with r = 0

being trivial. Since R/J has a common ideal basis by hypothesis, the conclusion
now follows from Corollary 4.10.4. �

4.11. Proof and consequences of Theorem 4.2. We have established all the
stages in our basis construction procedure in §4.10. To complete the proof of
Theorem 4.2 and its corollary Theorem 4.1, we have only to assemble the pieces.

Proof of Theorem 4.2. We prove the theorem by induction on n and l, maintaining
as part of the induction hypothesis that the common ideal basis specified in the
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theorem is homogeneous. The base case l = 0 is given by Lemma 4.3.2. The base
case for n is n = 1. Note that for n = 1 we have Z(1, l) ∼= Z(1, 0) = E, for all l, and
that the only non-trivial Y (m, r, k) is Y (1, 1, 0), which already appears in Z(1, 0).
Thus the case n = 1 is included in the case l = 0.

For n > 1 and l > 0 we can assume by induction that R(n− 1, l) has a homo-
geneous common ideal basis. Then by Lemma 4.10.2, so does R(n, l)/I(1, 1, l). We
can also assume by induction that R(n, l− 1) has a homogeneous common ideal ba-
sis. Applying Lemma 4.10.7 repeatedly, with t descending from l to 1, we conclude
that R(n, l)/I(1, 1, 0) has a homogeneous common ideal basis. Then by Lemma
4.10.5, so does R(n, l). �

The bridge from Theorem 4.1 to Hilbert schemes is supplied by Proposition 3.8.1,
which we restate and prove below. We remark that the bridge is not quite as narrow
as it might appear. The polygraph rings R(n, l) carry geometric information about
the tensor powers ρ∗B⊗l of the tautological bundle over the isospectral Hilbert
scheme Xn. Theorem 4.1 can be further exploited to obtain vanishing theorems
for these vector bundles. This subject will be taken up elsewhere, along with its
application to the determination of the character formula for diagonal harmonics,
which was discussed briefly in the introduction.

Proposition 3.8.1. Let J = C[x,y]A be the ideal generated by the space of alter-
nating polynomials A = C[x,y]ε. Then Jd is a free C[y]-module for all d.

Proof. Set l = nd, and let Z(n, l) be the polygraph over C, a subspace arrangement
in (C2)n×(C2)l. Let G = Sdn be the Cartesian product of d copies of the symmetric
group Sn, acting on (C2)n×(C2)l by permuting the factors in (C2)l in d consecutive
blocks of length n. In other words each w ∈ G fixes the coordinates x,y on (C2)n,
and for each k = 0, . . . , d− 1 permutes the coordinate pairs akn+1, bkn+1 through
akn+n, bkn+n among themselves.

Let R(n, l) = C[x,y, a,b]/I(n, l) be the coordinate ring of Z(n, l). By Theo-
rem 4.1, R(n, l) is a free C[y]-module. By the symmetry of its definition, I(n, l)
is a G-invariant ideal, so G acts on R(n, l). We claim that Jd is isomorphic as
a C[x,y]-module to the space R(n, l)ε of G-alternating elements of R(n, l). Each
x-degree homogeneous component of R(n, l) is a finitely generated y-graded free
C[y]-module. Since R(n, l)ε is a graded direct summand of R(n, l), it is a free
C[y]-module, so the claim proves the Proposition.

Let f0 : [l] → [n] be defined by f0(kn + i) = i for all 0 ≤ k < d, 1 ≤ i ≤ n.
Restriction of regular functions from Z(n, l) to its component subspace Wf0 is given
by the C[x,y]-algebra homomorphism ψ : R(n, l) → C[x,y] mapping akn+i, bkn+i

to xi, yi. Observe that ψ maps R(n, l)ε surjectively onto C[x,y]Ad = Jd.
Let p be an arbitrary element of R(n, l)ε. Since p is G-alternating, p vanishes

on Wf if f(kn + i) = f(kn + j) for some 0 ≤ k < d and some 1 ≤ i < j ≤ n.
Thus the regular function defined by p on Z(n, l) is determined by its restriction to
those components Wf such that for each k, the sequence f(kn + 1), . . . , f(kn + n)
is a permutation of {1, . . . , n}. Moreover, for every such f there is an element
w ∈ G carrying Wf onto Wf0 . Hence p is determined by its restriction to Wf0 .
This shows that p vanishes on Z(n, l) if ψ(p) = 0, that is, the kernel of the map
ψ : R(n, l)ε → Jd is zero. �
4.12. Arbitrary ground rings. For convenience of exposition we have assumed
that k is a field of characteristic zero. For completeness we now show that the
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results on polygraphs hold over any ground ring. This generalization is not needed
elsewhere in the paper, where we always have k = C.

To begin with, observe that the proof of Theorems 4.1 and 4.2 goes through
with minor modifications for k = Z. As a matter of notation, we must replace k(y)
throughout with Q(y). In Lemma 4.5.1 and elsewhere, we must read “generates as
a Z-module” for “spans as a k-vector space.”

In the proofs of Lemmas 4.6.4, 4.6.8 and 4.9.5 we implicitly used the facts that
every scheme over a field k is flat over k, and that the product of reduced schemes
over a field of characteristic zero is reduced. In our case, the schemes in question
are (reduced) subspace arrangements in En × El. If Y =

⋃
Yα is a subspace

arrangement defined over Z, then its coordinate ring R = O(Y ) is a subring of
a direct sum

⊕
O(Yα) of polynomial rings over Z. Therefore R is a torsion-free

Abelian group, that is, a flat Z-module. Every subspace arrangement over Z is thus
flat, and a product of reduced schemes flat over Z is reduced.

In the proofs of Lemmas 4.4.9 and 4.10.3 we also used the fact that a rational
function regular outside a subset of codimension two in Spec k[y] is regular. This
holds with any normal integral domain in place of k[y], and in particular for Z[y].

The theorem for k = Z implies the following fully general result.

Theorem 4.3. Let E = A2(k), where k is any commutative ring with unit. Let
Z(n, l) ⊆ En × El be a polygraph over k (defined as the union of the closed sub-
schemes Wf , just as in 4.1.1). Then the coordinate ring R(n, l) = O(Z(n, l)) is a
free k[y]-module.

Proof. By the preceding remarks, the Theorem holds for k = Z. Tensoring the
exact sequence

(150) 0→ IZ(n, l)→ Z[x,y, a,b]→ RZ(n, l)→ 0,

over Z[y] with k[y], we get an exact sequence

(151) 0→ I = k[y]IZ(n, l)→ k[x,y, a,b]→ R→ 0

with R a free k[y]-module. Since IZ(n, l) ⊆ IZ(Wf ) for all f , and If = k[y]IZ(Wf )
by (66), we have I ⊆ I(n, l).

Let δ =
∏
i<j(yi − yj). Note that U1 is the affine open set Uδ , so inverting δ is

the same thing as localizing to U1. By Lemma 4.4.3, therefore, we have RZ(n, l)δ =⊕
f OZ(Wf )δ, and hence Rδ =

⊕
f O(Wf )δ. By definition I(n, l) is the kernel of

the canonical homomorphism

(152) k[x,y, a,b]→
⊕
f

O(Wf ).

Hence inverting δ in (151) gives Iδ = I(n, l)δ.
Now δ is a non-zero-divisor in k[y], so it is also a non-zero-divisor on the free k[y]-

module R and its submodule I(n, l)/I. But since (I(n, l)/I)δ = 0, every element
of I(n, l)/I is annihilated by a power of δ. Therefore we have I(n, l)/I = 0 and
R = R(n, l). �

5. Applications, conjectures, and problems

5.1. The G-Hilbert scheme. Let G ⊆ GL(V ) be a finite group acting faithfully
on a complex vector space V = Cm. For all vectors v in a non-empty open subset of
V , the orbit Gv consists of N = |G| distinct points and thus represents an element
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of HilbN (V ). The closure in HilbN (V ) of the set of such orbits is a component of
the G-fixed locus of HilbN (V ), called the Hilbert scheme of G-orbits or G-Hilbert
scheme and denoted V //G. These schemes were first defined and studied by Ito and
Nakamura [28, 29].

The universal family over V //G has a G action, in which the coordinate ring
of each fiber affords the regular representation of G. There is a canonical Chow
morphism

(153) V //G→ V/G

making the G-Hilbert scheme V //G projective and birational over V/G. In the case
V = (C2)n, G = Sn, as shown in [24], Section 4, the morphism in (153) factors
through a morphism

(154) φ : (C2)n//Sn → Hn

of schemes over SnC2. In fact, if Y denotes the universal family over (C2)n//Sn,
then Y/Sn−1 is a flat family of degree n, and it can be naturally identified with a
family of subschemes of C2. The universal property of Hn then gives rise to φ.

By Theorem 3.1, the isospectral Hilbert scheme is a flat family Xn ⊆ Hn ×
(C2)n of degree n!. Hence the universal property gives rise to a morphism
Hn→ Hilbn!((C2)n) whose image is clearly contained in (C2)n//Sn. This mor-
phism is inverse to φ, since it is so on the generic locus. By construction, Xn is
pulled back via this φ−1 from the universal family Y over (C2)n//Sn. Hence we
have the following result, which is in fact equivalent to the flatness of ρ and thus
to the Cohen-Macaulay property of Xn.

Theorem 5.1. The morphism φ in (154) is an isomorphism of (C2)n//Sn onto
Hn, and it identifies the universal family over (C2)n//Sn with the isospectral Hilbert
scheme Xn.

In light of Theorem 5.1, the vector bundle P = ρ∗OXn considered in the proof
of Proposition 3.7.4 may be identified with the tautological bundle on (C2)n//Sn,
a vector bundle whose fibers afford the regular representation of Sn. To each irre-
ducible representation V λ of Sn is associated a vector bundle Cλ = HomSn(V λ, P )
on (C2)n//Sn known as a character sheaf. We have P =

⊕
λ Cλ ⊗ V λ, and since

P affords the regular representation, Cλ has rank dim(V λ) = χλ(1). It follows
from Theorem 3.1, Proposition 3.7.3, and Theorem 3.2 that the Kostka-Macdonald
coefficient K̃λµ(q, t) may be interpreted as the doubly graded Hilbert series of the
fiber of Cλ at the T2-fixed point Iµ. Equivalently, K̃λµ(q, t) is the character of the
T2 action on this fiber.

We remark that the geometric picture described by Theorems 3.1 and 5.1 applies
more generally with any smooth complex quasiprojective surface E replacing C2.
Specifically, we have that En//Sn is isomorphic to the Hilbert scheme Hilbn(E),
and the universal family over En//Sn may be identified with the isospectral Hilbert
scheme Xn(E), which is also the blowup of En with center the union of the pairwise
diagonals. To see this, note that Lemma 3.3.1 holds in this situation and reduces
the question to a local one over points of the form (P, P, . . . , P ) ∈ En, for P ∈ E.
Passing to the completion with respect to the ideal of such a point, we see that
the Cohen-Macaulay property of Xn(E) and its identification with the blowup are
equivalent to the corresponding facts for Xn(C2).



HILBERT SCHEMES, POLYGRAPHS AND MACDONALD POSITIVITY 61

Returning to the general situation, assume that G is a subgroup of SL(V ). Then
V/G is Gorenstein and has rational singularities. A desingularization

(155) σ : H → V/G

is said to be crepant if ωH = OH . The generalized McKay correspondence, con-
jectured by Reid [43] and proved by Batyrev [1], asserts that if H is a crepant
resolution, then the sum of the Betti numbers of H is equal to the number of
conjugacy classes, or the number of irreducible characters, of G. For V = (C2)n,
G = Sn, the Hilbert scheme Hn is a crepant resolution of SnC2, by Proposition
3.6.3. The computation of the homology of Hn by Ellingsrud and Strømme [11]
verifies the McKay correspondence in this case.

In dimension 2, it develops that V //G is a crepant resolution of V/G for every
G. Nakamura conjectured that this should hold in dimension 3 as well, and proved
it for G abelian [42]. Recently, Bridgeland, King and Reid [6] established Naka-
mura’s conjecture by proving that a certain fiber dimension condition on the map
V //G→ V/G is sufficient to imply that V //G is a crepant resolution of V/G. In this
situation, moreover, the McKay correspondence holds in a strong form, expressed
as an equivalence of derived categories. By Theorem 5.1, we know that V //G is a
crepant resolution of V/G in the case G = Sn, V = (C2)n. As things stand, this
is the only known higher-dimensional family of groups for which V //G is a crepant
resolution, apart from examples built up as products of lower-dimensional cases. It
is natural to ask whether Theorem 5.1 might generalize to yield other such families.

Problem 5.1.1. Let G be a complex reflection group with defining representation
W , and let V = W ⊕W ∗. For which G is V //G a crepant resolution of V/G?

The related problem of whether (W ⊕W ∗)/G admits a crepant resolution at all
has been considered by Kaledin [30] and Verbitsky [47], who prove that this can
happen only for complex reflection groups.

We have limited information about the solution to Problem 5.1.1. By our results
here, the symmetric groups, or Weyl groups of type A, are examples for which
V //G is a crepant resolution. By the classical McKay correspondence for subgroups
of SL(2), the cyclic groups Zn, regarded as one-dimensional complex reflection
groups, are also examples. The hyperoctahedral groups, or Weyl groups of type B,
are counterexamples. This can be seen by explicit computation for B2. Since B2

occurs as the stabilizer of a vector in the reflection representation of Bn, it follows
that Bn is a counterexample for all n ≥ 2.

For the hyperoctahedral groups G = Bn, and more generally for G the wreath
product of the symmetric group Sn with the cyclic group Zm, crepant resolutions
of (W ⊕W ∗)/G do exist. In these cases, the action of G on V = W ⊕W ∗ is the
wreath product action on (C2)n, where the cyclic group Zm acts on C2 = C ⊕ C∗
as the direct sum of a one-dimensional representation and its dual. As observed by
Wang [48], whenever G acts on V = (C2)n as the wreath product of Sn with a finite
subgroup Γ ⊆ SL(2), there are two natural crepant resolutions. One is a component
of the Γ-fixed locus in the Hilbert scheme Hn|Γ|. The other is the Hilbert scheme
Hilbn(XΓ) of the minimal resolution XΓ = C2//Γ of C2/Γ. In general (and for
G = B2 in particular) these two resolutions can be different, and neither of them
need coincide with V //G.



62 MARK HAIMAN

5.2. Higher dimensions. For d > 2 the Hilbert scheme Hilbn(Cd) has in general
multiple irreducible components, frequently of dimension exceeding dn, and bad
singularities. Nevertheless there is a distinguished principal component Hn(Cd),
the closure of the open subset parametrizing reduced subschemes S ⊆ Cd with n
distinct points. The isospectral Hilbert scheme Xn(Cd) over Hn(Cd) can be defined
as in 3.2.4, and the analogs of Propositions 3.4.1 and 3.4.2 hold also for d > 2.

Conjecture 5.2.1. For all d and n, the isospectral Hilbert scheme Xn(Cd) over
the principal component Hn(Cd) of Hilbn(Cd) is normal and Cohen-Macaulay.

Since Hn(Cd) = Xn(Cd)/Sn the conjecture implies that the principal component
Hn(Cd) is itself normal and Cohen-Macaulay. Note that it does not imply the analog
of the n! conjecture in d sets of variables, since in general Hn(Cd) is singular and
thus the projection ρ need not be flat. In other words, Theorem 5.1 can fail, and
Hn(Cd) need no longer coincide with the G-Hilbert scheme (Cd)n//Sn for d > 2.

An example exhibiting the failure of the higher-dimensional analogs of the n!
conjecture and Theorem 5.1 occurs in dimension d = 3, with n = 4. The analog of
the n! conjecture would require the determinant

(156) ∆(x,y, z) = det


1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4


to have 4! = 24 linearly independent partial derivatives, but in fact it has only 20.
More generally, Tesler [46] has shown that the analogous determinant in dimension
d has

(
2d
d

)
independent derivatives.

Nevertheless, Conjecture 5.2.1 does hold for the case d = 3, n = 4, as we have
verified using the computer algebra system Macaulay [2]. Both X4(C3) and H4(C3)
turn out to be normal and Gorenstein. (Strictly speaking, we have verified this
over a field of characteristic 31991, Macaulay’s default, and of course modulo the
correctness of the program.)

Conjecture 5.2.1 is rather speculative, and the author would not be greatly sur-
prised if it turned out to be wrong. A more definite conjecture, whose failure he
would indeed consider a surprise, is the following higher-dimensional version of the
polygraph theorem.

Conjecture 5.2.2. The coordinate ring of the polygraph Z(n, l) over E = Ad is
a free k[z]-module, where x,y, . . . , z = x1, y1, . . . , z1, . . . , xn, yn, . . . , zn are the
coordinates on En.

This conjecture implies the analogs of Proposition 3.8.1 and Corollary 3.8.3 in
more than two sets of variables, with essentially the same proof. Hence it implies
that Xn(Cd) is the blowup of (Cd)n with center the reduced union of the pairwise
diagonals, that it is arithmetically normal in its embedding as a blowup, and that
it is flat over the coordinate space Cn = SpecC[z] in any one set of the variables.

5.3. Bases. The proof of the n! conjecture via Proposition 3.7.3 and Theorem 3.1
does not yield an explicit basis of the space Dµ or the ring Rµ. We still have an
important combinatorial open problem.

Problem 5.3.1. Find a doubly homogeneous basis of Rµ, compatible with (or trian-
gular with respect to) the decomposition into isotypic components as an Sn-module,
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and indexed combinatorially so as to yield a purely combinatorial interpretation of
the Kostka-Macdonald coefficients K̃λµ(q, t).

A related doubly graded Sn-module is the the ring Rn = C[x,y]/In, where In
is the ideal generated by all Sn-invariant polynomials without constant term. This
ring has the same graded character as the space of diagonal harmonics, and is the
subject of a series of conjectures relating its character to various combinatorial
objects and to Macdonald polynomials [16, 22]. In particular it is conjectured that
dimCRn = (n + 1)n−1.

Each ring Rµ for µ a partition of n is a quotient ring of Rn, so bases of Rµ may
be realized as subsets of a basis of Rn.

Problem 5.3.2. Find a doubly homogeneous basis of Rn compatible with the Sn-
module structure, and for each partition µ of n, a distinguished subset which is a
basis of Rµ.

Algebraically, the relationship between Rn and R(n, l) can be described as fol-
lows. Let l = n. In the polygraph Z(n, n) we have a subarrangement

(157) Z =
⋃
Wf , over permutations f : [n]→ [n].

Let J ⊆ R(n, n) be the ideal of Z. For any Sn-invariant polynomial p(x,y) we
clearly have p(a,b) − p(x,y) ∈ J . Hence if p ∈ In is an Sn-invariant polyno-
mial without constant term, then we have p(a,b) ∈ J + (x,y). This yields a
ring homomorphism ψ : Rn → R(n, n)/(J + (x,y)), sending x,y in Rn to a,b in
R(n, n)/(J + (x,y)). We conjecture that ψ is an isomorphism. Postulating this
for the moment, we have a surjection of R(n, n)/(x,y) onto a copy of Rn in the
variables a,b.

From the proof of Theorem 4.2, we have an at least somewhat explicit free k[y]-
module basis of R(n, n), and therefore a vector space basis of R(n, n)/(y). This
basis is not compatible with the Sn-action, nor does a subset of it span the ideal
(x). Nevertheless, some subset of it must be a basis of R(n, n)/(x,y), and some
further subset must be a basis of R(n, n)/(J + (x,y)).

Problem 5.3.3. (1) Find a distinguished subset of the free k[y]-module basis of
R(n, l) constructed in the proof of Theorem 4.2 which is a vector space basis of
R(n, l)/(x,y).

(2) For l = n, find a further distinguished subset of the above basis, with
(n+ 1)n−1 elements, such that setting x = y = 0 and then replacing a1, b1, . . . ,
an, bn with x1, y1, . . . , xn, yn, we get a basis of Rn. To agree with the conjectures
on Rn discussed in [22], this basis should be indexed by parking functions in such a
way that the x-degree of the basis element is the weight of the parking function.

(3) For each µ, find a still further distinguished subset of the above basis of Rn,
with n! elements, whose image in Rµ is a basis. For each λ, distinguish yet another
subset whose projection on the isotypic component of Rµ affording the Sn character
χλ is a basis of that isotypic component, so that the enumerator of its elements by
x- and y-degrees is equal to χλ(1)K̃λµ(q, t).
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Abstract. We study the isospectral Hilbert scheme Xn, defined as the re-

duced fiber product of (C2 )n with the Hilbert scheme Hn of points in the
plane C2 , over the symmetric power SnC2 = (C2 )n/Sn. By a theorem of

Fogarty, Hn is smooth. We prove that Xn is normal, Cohen-Macaulay, and

Gorenstein, and hence flat over Hn. We derive two important consequences.
(1) We prove the strong form of the n! conjecture of Garsia and the author,

giving a representation-theoretic interpretation of the Kostka-Macdonald coef-
ficientsKλµ(q, t). This establishes the Macdonald positivity conjecture, namely

that Kλµ(q, t) ∈ N[q,t].
(2) We show that the Hilbert scheme Hn is isomorphic to the G-Hilbert

scheme (C2 )n//Sn of Nakamura, in such a way that Xn is identified with the
universal family over (C2 )n//Sn. From this point of view, Kλµ(q, t) describes

the fiber of a character sheaf Cλ at a torus-fixed point of (C2 )n//Sn corre-
sponding to µ.

The proofs rely on a study of certain subspace arrangements Z(n, l) ⊆
(C2 )n+l , called polygraphs, whose coordinate rings R(n, l) carry geometric in-

formation about Xn. The key result is that R(n, l) is a free module over the
polynomial ring in one set of coordinates on (C2 )n. This is proven by an

intricate inductive argument based on elementary commutative algebra.
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