
COMMUTATIVE ALGEBRA OF n POINTS IN THE PLANE

MARK HAIMAN

Introduction

These lectures will address commutative algebra questions arising from the geometry of configurations of
n points in the affine plane C2. In the first lecture, we will study the ideal of the locus where some two of
the points coincide. In the process, we will be led naturally to consider the action of the symmetric group
Sn, permuting the points among themselves. This provides the topic for the second lecture, in which we
will study the rings of invariants and coinvariants for this action. As you can see, we have chosen to study
questions that involve rather simple and naive geometric considerations. For those who have not encountered
this subject before, it may come as a surprise that the theorems which give the answers are quite remarkable,
and seem to be hard.

One reason for the subtlety of the theorems is that lurking in the background is the more subtle geometry
of the Hilbert scheme of points in the plane. The special properties of this algebraic variety play a role in
the proofs of the theorems. The involvement of the Hilbert scheme in the proofs means that at present the
theorems apply only to points in the plane, even though we could equally well raise the same questions for
points in Cd, and conjecturally we expect them to have similar answers.

In the third lecture, we will change perspective slightly, by introducing the
(
n
2

)
lines connecting the points

in pairs, and asking for the ideal of relations among the slopes of these lines when the points are in general
position (i.e., no two points coincide). We present a synopsis of the beautiful and surprising results on this
problem found by my former student, Jeremy Martin.

1. A subspace arrangement

Let us fix some notation. We consider ordered n-tuples of points in the plane

P1, . . . , Pn ∈ C2.

We work over C to keep things simple and geometrically concrete, although some of the commutative algebra
results remain true over more general ground rings. Assigning the points coordinates

x1, y1, . . . , xn, yn,

we identify the space E of all n-tuples (P1, . . . , Pn) with C2n. The coordinate ring of E is then the polynomial
ring

C[E] = C[x,y] = C[x1, y1, . . . , xn, yn]

in 2n variables. Let Vij be the locus where Pi = Pj , that is, the codimension-2 subspace of E defined by the
equations xi = xj , yi = yj . The locus

V =
⋃
i<j

Vij
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where some two points coincide is a subspace arrangement of
(
n
2

)
codimension-2 subspaces in E. Evidently,

V is the zero locus of the radical ideal

I = I(V ) =
⋂
i<j

(xi − xj , yi − yj).

Now we come to the central theme of today’s lecture.

Question: what does the ideal I look like?

As a warm-up, let us consider the much easier case of n points on a line. Then we only have coordinates
x1, . . . , xn, and the analog of I is the ideal

J =
⋂
i<j

(xi − xj) ⊆ C[x].

This ideal has various obvious properties.

(1) J is the principal ideal (∆(x)) generated by the Vandermonde determinant

∆(x) =
∏
i<j

(xi − xj) = det


1 x1 . . . xn−1

1

1 x2 . . . xn−1
2

...
...

...
1 xn . . . xn−1

n

 .

(2) J is (trivially) a free C[x] module with generator ∆(x).
(3) Jm = J (m) =

def

⋂
i<j(xi − xj)m, that is, the powers of J are equal to its symbolic powers. This is

clear, since both ideals are equal to (∆(x)m).
(4) The Rees algebra C[x][tJ ] is Gorenstein. In fact, it’s just a polynomial ring in n + 1 variables.

Of course all the above properties merely follow from the fact that J is the ideal of a hyperplane arrangement.
In general, one cannot say much about the ideal of an arrangement of subspaces of codimension 2 or more.
However, our ideal I is rather special, so let’s try to compare its properties with those listed above for J .

Beginning with property (1), we can observe that I has certain obvious elements. The symmetric group
Sn acts on E, permuting the points Pi amongst themselves. In coordinates, this is the diagonal action:

σxi = xσ(i), σyi = yσ(i) for σ ∈ Sn.

We denote the sign character of Sn by

ε(σ) =

{
1 if σ is even,
−1 if σ is odd.

Let
C[x,y]ε = {f ∈ C[x,y] : σf = ε(σ)f for all σ ∈ Sn}

be the space of alternating polynomials. Any alternating polynomial f satisfies

f(x1, y1, . . . , xi, yi, . . . , xj , yj , . . . , xn, yn) = −f(x1, y1, . . . , xj , yj , . . . , xi, yi, . . . , xn, yn),

which immediately implies that f vanishes on every Vij , that is, f belongs to I.
We remark here that there is a natural vector space basis for C[x,y]ε. Namely, let xαyβ =

xα1
1 yβ1

1 · · ·xαn
n yβn

n be a monomial, and put

A(xαyβ) =
∑

σ∈Sn

ε(σ)σ(xαyβ).
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If the exponent pairs (αi, βi) are not all distinct, then A(xαyβ) = 0. If they are all distinct, set
D = {(α1, β1), . . . , (αn, βn)} ⊆ N × N. Then A(xαyβ) is given by a bivariate analog of the Vandermonde
determinant

A(xαyβ) = ∆D = det

xα1
1 yβ1

1 . . . xαn
1 yβn

1
...

...
xα1

n yβ1
n . . . xαn

n yβn
n

 ,

which only depends on D, up to sign. It is easy to see that the set of all such polynomials

{∆D : D ⊆ N× N, |D| = n}
is a vector space basis of C[x,y]ε. In particular, the ideal they generate is the same as the ideal generated
by all alternating polynomials. We have just seen that this ideal is contained in I.

Theorem 1.1. We have I = (∆D : D ⊆ N× N, |D| = n).

As far as I know, this is not an easy theorem. We will say something about its proof later on. Before
that, I would like to briefly discuss the question of finding a minimal set of generators for I, and take up the
analogs of the other properties (2)–(4) that we had for J .

Note that I is a homogeneous ideal—in fact it is doubly homogeneous, with respect to the double grading
given by degrees in the x and y variables separately. It follows that a set of homogeneous generators for I,
for example a subset of the ∆D’s, is minimal if and only if its image is a vector space basis of

I/(x,y)I.

It turns out that we know exactly what the size of such a minimal generating set must be, although no one
has yet succeeded in finding an explicit choice of minimal generators.

Theorem 1.2. The dimension of I/(x,y)I is equal to the Catalan number Cn = 1
n+1

(
2n
n

)
.

Indeed, quite a bit more can be said. The space M = I/(x,y)I is doubly graded, say M =
⊕

r,s Mr,s.
Define a “q, t-analog” of the Catalan number by

Cn(q, t) =
∑
r,s

trqs dim Mr,s.

According to Theorem 1.2 we then have Cn(1, 1) = Cn. From geometric considerations involving the Hilbert
scheme we have a formula for Cn(q, t) [9, 11], and Theorem 1.2 is proved by specializing the formula to
q = t = 1. The formula gives Cn(q, t) as a complicated rational function of q, t that on its face is not even
obviously a polynomial. However, Garsia and Haglund [5, 6] discovered a simple combinatorial interpretation
of the formula, as follows. Let D be the set of integer sequences

λ1 ≥ λ2 ≥ · · ·λn−1 ≥ 0

satisfying
λi ≤ n− i for all i.

In other words, D is the set of partitions whose Young diagram fits inside that of the partition (n − 1, n −
2, . . . , 1). It is well-known that the number of these is the Catalan number Cn. For each λ ∈ D, define

a(λ) =
∑

i

(n− i− λ),

b(λ) =
∣∣{i < j : λi − λj + i− j ∈ {0, 1}

}∣∣ .

Garsia and Haglund showed that
Cn(q, t) =

∑
λ∈D

qa(λ)tb(λ).
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Problem 1.1. Find a rule associating to each λ ∈ D an n-element subset D(λ) ⊆ N×N in such a way that
degy ∆D(λ) = a(λ), degx ∆D(λ) = b(λ), and the set {∆D(λ) : λ ∈ D} generates I.

A solution to this problem would give a new and in some sense improved proof of the Garsia-Haglund
result. One can proceed similarly for the powers of I, defining

M (m) = Im/(x,y)Im

and
C(m)

n (q, t) =
∑
r,s

trqs dim M (m)
r,s .

Again there is a formula for C
(m)
n (q, t) from geometry. There is also a conjectured combinatorial interpreta-

tion, as follows. Let D(m) be the set of integer sequences

λ1 ≥ λ2 ≥ · · ·λn−1 ≥ 0

satisfying
λi ≤ m(n− i) for all i.

In other words, we now allow partitions whose Young diagram fits inside that of m · (n− 1, n− 2, . . . , 1). For
each λ ∈ D(m), define

a(m)(λ) =
∑

i

(m(n− i)− λ),

b(m)(λ) =
∣∣{i < j : λi − λj + m(i− j) ∈ {0, 1, . . . ,m}

}∣∣ .

Conjecture 1.1. We have C
(m)
n (q, t) =

∑
λ∈D(m) qa(m)(λ)tb

(m)(λ).

Problem 1.2. Find generators for Im indexed by elements λ ∈ D(m), with y-degree equal to a(m)(λ) and
x-degree equal to b(m)(λ).

We remark that it is known that C
(m)
n (q, 1) =

∑
λ∈D(m) qa(m)(λ), and hence in particular that

dim Im/(x,y)Im = Cn(1, 1) = |D(m)|. The generating set given by a solution to Problem 1.2 would therefore
be minimal, so Conjecture 1.1 would follow automatically.

Now we ask whether I has an analog of property (2) for J . It certainly cannot be that I is a free C[x,y]-
module, for then C[x,y]/I would have depth 2n−1, whereas it has dimension 2n−2. What we have instead
is that I is a free module with respect to either set of variables alone.

Theorem 1.3. The ideal I is a free C[y]-module.

This theorem is best possible, modulo one detail. The ideal I has an extra degree of freedom: it is
invariant with respect to x-translations mapping each xi to xi + a. This invariance holds for I/(y)I as
well, and implies that I/(y)I is a free C[x1]-module (say). Hence Theorem 1.3 actually implies that I is a
free C[y, x1]-module, and in particular has depth at least n + 1. On the other hand, it is easy to see that
∆(y) represents a nonzero element of I/(y)I annihilated by (x1 − x2, . . . , xn−1 − xn). This implies that
depth I/(y)I ≤ 1 and hence depth I = n + 1.

Next we turn to property (3), the coincidence of powers with symbolic powers.

Theorem 1.4. We have Im = I(m) =
def

⋂
i<j(xi − xj , yi − yj)(m) for all m.

In fact, Theorems 1.1, 1.3, and 1.4 are all plainly corollaries to the following two statements.

Theorem 1.5. For all m, the m-th power of the ideal (∆D : D ⊆ N× N, |D| = n) is a free C[y]-module.

Corollary 1.1. For all m, we have I(m) = (∆D : D ⊆ N× N, |D| = n)m.
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On the maxim that every mathematics lecture should contain one proof, let us sketch how Theorem 1.5
implies Corollary 1.1. Abbreviating (∆D : D ⊆ N× N, |D| = n) to (∆D), we clearly have

(∆D)m ⊆ I(m).

Localizing at any point P ∈ E with not all Pi equal, one shows that both (∆D)P and I
(m)
P factor locally into

products of the corresponding ideals in subsets of the variables. On the open set U where some Pi 6= Pj we
can therefore assume locally that (∆D)m

P = I
(m)
P , by induction on n.

Now Theorem 1.5 implies that C[x,y]/(∆D)m has depth ≥ n− 1 as a C[y]-module. In particular, (∆D)m

cannot have an associated prime supported in V (y1 − y2, . . . , yn−1 − yn), if n ≥ 3. In other words, if
f ∈ C[x,y] belongs to the localization (∆D)m

Q for all Q ∈ (Spec C[y]) \ V (y1 − y2, . . . , yn−1 − yn), then
f ∈ (∆D)m. By induction this holds for all f ∈ I(m). The induction step assumes n ≥ 3. The base cases
n = 1, 2 are trivial. �

Finally, we discuss property (4). Consider the Rees algebra R = C[x,y][t(∆D)], and put X = ProjR,
that is, the blowup of E at the ideal (∆D). Here, as above, (∆D) is shorthand for the ideal generated by
all the alternating polynomials ∆D. In view of Theorem 1.1, we can also identify X with the blowup of E
along V , but it is preferable for geometric reasons not to take this as the definition.

The symmetric group Sn acts equivariantly on both X and E, giving a diagram
X −−−−→ Ey y

X/Sn −−−−→ E/Sn.

Now it develops that X/Sn is nothing else but the Hilbert scheme Hilbn(C2) parametrizing 0-dimensional
subschemes of length n in C2, or equivalently, ideals J ⊆ C[x, y] such that dimC C[x, y]/J = n. This is in
fact not difficult to show, using explicit local coordinates on Hilbn(C2) and the definition of X.

By a classical theorem of Fogarty [4], Hilbn(C2) is non-singular and irreducible—see the Appendix for
another proof using explicit local coordinates. It is also known that the locus in Hilbn(C2) where the y-
coordinates vanish, that is, the locus describing subschemes of C2 supported on the x-axis, has codimension
n. From this it follows easily that

dim R/(y) = n + 1.

We come now to the most important theorem from the geometric point of view.

Theorem 1.6. The blowup scheme X is arithmetically Gorenstein, that is, R is a Gorenstein ring.

Let us pause to understand how this result is related to Theorem 1.5. The dimension count above shows
that (y) is a complete intersection ideal in R. Hence, if we assume Theorem 1.6 holds, then R is a free C[y]-
module, which is merely a restatement of Theorem 1.5. So Theorem 1.5 is a simple corollary to Theorem 1.6.

Unfortunately for this logic, the only proof of Theorem 1.6 known at present uses Theorem 1.5. Specifically,
although the main argument of the proof given in [10] is an induction based on elementary geometry of the
Hilbert schemes, there is a key technical step that depends on Theorem 1.5. So for now we cannot elegantly
deduce Theorem 1.5 from Theorem 1.6, as above, but must prove Theorem 1.5 directly.

Problem 1.3. Find an “intrinsic” proof of Theorem 1.6 that does not rely on Theorem 1.5.

In this connection we may note that there are classical theorems in commutative algebra for showing that
Rees algebras are Cohen-Macaulay or Gorenstein. In particular, as W. Vasconcelos pointed out to me, since
our ideal has codimension 2 it is enough to show that the Rees algebra R is Cohen-Macaulay, and it is then
automatically Gorenstein (this consequence also follows from the geometry). Unfortunately, as far as I am
aware, the theorems one might use to show that R is Cohen-Macaulay tend to require hypotheses on the
blowup ideal, such as strong Cohen-Macaulayness, or small analytic spread, that fail drastically for our ideal
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I. It is natural to inquire whether advances in singularity theory might even make it possible to show that
our Rees algebra R has singularities better than Cohen-Macaulay. Could one hope to prove, for instance,
that R is of F -rational type?

I’ll conclude with some remarks concerning the existing proof and possible generalizations of Theorem 1.5,
which for the moment remains the linchpin among the results. To prove Theorem 1.5, we first show that
(∆D)m is a direct summand as a graded C[x,y]-module of the coordinate ring C[W ] of an auxiliary subspace
arrangement W ⊆ E × C2mn, called a “polygraph.” Then we show that C[W ] is a free C[y]-module by
explicitly constructing a basis. This requires a horribly complicated and not very illuminating induction.
The basis construction is secretly modeled on a combinatorial interpretation of a formula from geometry for
the Hilbert series of C[W ]. In the end, however, both the formula and the combinatorics are suppressed from
the proof, as they must be, since one can only prove such formulas by assuming the theorem a priori.

I think that some of the complexity of the existing proof may eventually be removed. I also think that
most of the phenomena concerning the ideal I should persist if we take points in Cd for general d, instead of
C2. If so, we will need proofs that do not refer to the Hilbert scheme, secretly or otherwise. Here are some
specific problems motivated by my thoughts along these lines.

Problem 1.4. Is it possible to dispense with the polygraph and construct a free C[y]-module basis of
(∆D)m directly? It would already be interesting to accomplish this for d = 2. In this case, the geometry
does provide a formula for the Hilbert series, but an obstacle to using it is that we don’t have a combinatorial
interpretation, and therefore no clue how to index the basis elements.

Problem 1.5. Our subspace arrangement V can be written as C2 ⊗ V ′, where V ′ is the hyperplane ar-
rangement V ′ =

⋃
i<j V (xi − xj) in Cn. Here, for any subspace arrangement A =

⋃
k Ak ⊆ Cn, we denote

by Cd ⊗A the arrangement of subspaces Cd ⊗Ak ⊆ Cd ⊗ Cn = Cdn.
(a) Is it true more generally that for all d, the ideal of Cd ⊗ V ′ is a free C[x]-module, where x is one of

the d sets of n coordinates on Cdn?
(b) The hyperplane arrangement V ′ is the Coxeter arrangement of type An−1. What if we consider

instead the Coxeter arrangements of other types?
(c) Are there general criteria for a hyperplane arrangement A ⊆ Cn to have the property that the ideal

Id of Cd ⊗A is a free module over the coordinate ring of Cn, for all d?
(d) Exercise: show that a hyperplane arrangement with the property in (c) must be free in the sense

used in the theory of hyperplane arrangements [16]. Freeness as a hyperplane arrangement is not
sufficient for (c), however.

2. A ring of invariants

As in Lecture 1, let E = C2n be the space of n-tuples (P1, . . . , Pn) of points in the plane. The action of
the symmetric group Sn on E has already made an appearance in our study of the ideal of the locus where
points coincide. In this lecture we will discuss some other features of this action. We will begin with a review
of some general theory of invariants and coinvariants of linear representations of finite groups, then turn to
particulars of the representation of Sn on E.

For the moment, we consider an arbitrary finite group G, acting linearly on a finite-dimensional vector
space V = kn. Our only assumption will be that char k does not divide |G|. Then all finite-dimensional
representations of G are completely reducible, i.e., they are direct sums of irreducible representations. In
particular, each homogeneous component of the ring k[V ] of polynomial functions on V is completely re-
ducible. Of special interest is the subring of invariants k[V ]G. It follows from complete reducibility that
k[V ]G is a direct summand of k[V ] as a G-module, and also as a k[V ]G-module. The projection of k[V ] on
its summand k[V ]G is given explicitly by the Reynolds operator

Rf =
1
|G|

∑
g∈G

g · f,
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which will be important in what follows.
A second ring associated with the action of G on V is the ring of coinvariants , defined as

RG = k[V ]/IG,

where IG = k[V ] · (k[V ]G+) is the ideal generated by all homogeneous invariants of positive degree. Geomet-
rically, these rings have the following interpretation (at least when k is algebraically closed). The space of
G-orbits V/G has a natural structure of algebraic variety, with regular functions given by the G-invariant
functions on V . Thus its coordinate ring is the ring of invariants:

k[V ]G = k[V/G].

The homogeneous maximal ideal k[V ]G+ in k[V ]G is the ideal of the origin 0 ∈ V/G (the G-orbit consisting
only of the origin in V ). Then the scheme-theoretic fiber π−1(0) of the natural projection

π : V → V/G

has coordinate ring equal to the ring of coinvariants,

RG = k[π−1(0)].

The two constructions are related by a famous lemma of Hilbert.

Lemma 2.1 (Hilbert). Homogeneous invariants f1, . . . , fr of positive degree generate k[V ]G as a k-algebra
if and only if they generate IG as an ideal.

Proof. If k[V ]G = k[f1, . . . , fr], then every homogeneous invariant of positive degree is a polynomial without
constant term in the fi’s. This shows that IG ⊆ (f1, . . . , fr), and the reverse inclusion is trivial.

For the converse, suppose to the contrary that IG = (f1, . . . , fr) but k[V ]G 6= k[f1, . . . , fr]. Let h be a
homogeneous invariant of minimal degree, say d, not contained in k[f1, . . . , fr]. Certainly d > 0, so h ∈ IG,
and we can write

h =
∑

i

aifi,

where we can assume without loss of generality that ai is homogeneous of degree d − deg fi. Applying the
Reynolds operator to both sides gives

h =
∑

i

(Rai)fi.

But each Rai is a homogeneous invariant of degree < d, hence belongs to k[f1, . . . , fr]. This contradicts the
assumption h 6∈ k[f1, . . . , fr]. �

It is natural to ask for a bound on the degrees of a minimal set of homogeneous generators for k[V ]G, or
equivalently for IG. To give precise bounds for particular G and V is in general a difficult problem. One has
the following global bound, which was proved by Noether in characteristic 0.

Theorem 2.1. The ring of invariants k[V ]G is generated by homogeneous elements of degree at most |G|.

Let us pause to discuss a more modern proof of this theorem, based on a beautiful lemma of Harm
Derksen. To state the lemma we need some additional notation. Let x1, . . . , xn be a basis of coordinates on
V , so k[V ] = k[x]. We introduce a second copy of V , with coordinates y1, . . . , yn. Then the coordinate ring
k[V × V ] is identified with the polynomial ring k[x,y]. For each g ∈ G, let

(1) Jg = (xi − gyi : 1 ≤ i ≤ n) ⊆ k[x,y]

be the ideal of the subspace Wg = {(v, gv) : v ∈ V } ⊆ V × V .

Lemma 2.2 (Derksen [3]). Let J =
⋂

g∈G Jg, with Jg as above. Then k[x] ∩ (J + (y)) = IG.
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Proof. If f(x) is a homogeneous invariant of positive degree, then f(y) ∈ (y), and f(x) − f(y) ∈ J , since
f(x)− f(y) vanishes on setting y = gx for any g ∈ G. This shows IG ⊆ k[x] ∩ (J + (y)).

For the reverse inclusion, suppose f(x) ∈ J + (y), so

(2) f(x) =
∑

i

ai(x)bi(y) + p(x,y),

where p(x,y) ∈ J and we can assume bi(y) homogeneous of positive degree. Let Ry be the Reynolds
operator for the action of G on the y variables only. The ideal J is invariant for this action, so RyJ ⊆ J .
Hence, applying Ry to both sides in (2) yields

f(x) =
∑

i

ai(x)Rybi(y) + q(x,y)

with q(x,y) ∈ J . In particular, q(x,x) = 0. Substituting y 7→ x on both sides now exhibits f as an element
of IG. �

We remark that J is the ideal of the subspace arrangement W =
⋃

g Wg, which we will call Derksen’s
arrangement. It is the arrangement in V ×V whose projection on the first factor V has finite fiber over each
point v, identified set-theoretically with the orbit Gv (by projecting on the second factor). Derksen’s Lemma
says that the scheme-theoretic 0-fiber of the projection W → V is isomorphic to the scheme-theoretic 0-fiber
of π : V → V/G, that is, to Spec RG.

Derksen’s lemma has the following easy analog for the product ideal.

Lemma 2.3. Let d = |G| and let J ′ =
∏

g Jg, with Jg as in (1). Then k[x] ∩ (J ′ + (y)) = (x)d.

Proof. Note that k[x]∩ (J ′+(y)) is the set of polynomials {f(x, 0) : f(x,y) ∈ J ′} (this holds with any ideal
in the role of J ′). Since J ′ is generated by products of d linear forms, this shows k[x] ∩ (J ′ + (y)) ⊆ (x)d.
For the reverse inclusion, fix any monomial xα of degree d, and write it as a product of individual variables

xα = xi1xi2 · · ·xid
.

Let g1, . . . , gd be an enumeration of all the elements of G, and consider the polynomial

f(x,y) =
∏
j

(xij − gjyij ).

The j-th factor belongs to Jgj , so f(x,y) ∈ J ′, and clearly f(x, 0) = xα. �

Now J ′ ⊆ J , so Lemmas 2.2 and 2.3 imply (x)d ⊆ IG. Hence IG is generated by its homogeneous elements
of degree at most d, proving Theorem 2.1. In fact, we have proved something stronger.

Corollary 2.1. The ring of coinvariants RG is zero in degrees ≥ |G|.

The degree bound in Theorem 2.1 is tight only when G is a cyclic group. For arbitrary G and V , rather
little is known about how to describe k[V ]G and RG more fully. Of the two, the ring of invariants is better
understood. In particular, we have the Eagon-Hochster theorem:

Theorem 2.2 (Eagon-Hochster [12]). The ring of invariants k[V ]G is Cohen-Macaulay.

My hope in this lecture is to persuade you that k[V ]G and RG can have surprisingly rich structure for
naturally occurring group representations, and that the problem of describing them is deserving of further
study. We now turn to the particular case G = Sn, and fix k = C. As we did in Lecture 1, let’s warm up
in the easier situation of n points on a line. This means we consider the representation of Sn on V = Cn,
permuting the coordinates x1, . . . , xn. We make several observations.
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(I) The ring of invariants C[x]Sn is the polynomial ring C[e1, . . . , en] freely generated by the elementary
symmetric functions ej = ej(x). This is the fundamental theorem of symmetric functions. Its Hilbert series
is

1
(1− q)(1− q2) · · · (1− qn)

,

which can also be written as

(3) hn(1, q, q2, . . .),

where hn(z1, z2, . . .) denotes the complete homogeneous symmetric function of degree n in infinitely many
variables.

(II) By Lemma 2.1, ISn
(x) = (e1, . . . , en). In particular it is a complete intersection ideal. Hence RSn

(x)
is an Artinian local complete intersection ring. It can be described quite precisely. For example, since
deg ej = j, the Hilbert series of RSn

(x) is given by the q-analog of n!, namely,

[n]q! =
(1− q)(1− q2) · · · (1− qn)

(1− q)n
= [n]q[n− 1]q · · · [1]q,

where [k]q = 1 + q + · · ·+ qk−1. Hence
dimC RSn(x) = n!.

(III) Since C[x] is a graded Cohen-Macaulay ring, and e1, . . . , en is a homogeneous system of parameters, it
follows that C[x] is a free C[x]Sn-module, with basis given by any n! homogeneous elements forming a vector
space basis of RSn

(x). It is easy using standard techniques to determine the character of the polynomial
ring C[x] as a graded Sn representation, and from this to determine the corresponding graded character of
RSn

(x). The answer can be expressed as follows. The irreducible representations Vλ of Sn are indexed by
partitions λ of the integer n. For each λ, define

fλ(q) = (1− q)(1− q2) · · · (1− qn)sλ(1, q, q2, . . .),

where sλ(z1, z2, . . .) is the Schur symmetric function indexed by λ in infinitely many variables. Then fλ(q) is
a polynomial with positive integer coefficients, and fλ(1) is the number of standard Young tableau of shape
λ, which is also equal to dim Vλ. Let m(Vλ, RSn

(x)d) denote the multiplicity of Vλ in a decomposition of the
degree d homogeneous component RSn

(x)d as a direct sum of irreducible representations of Sn. Then these
multiplicities are given by ∑

d

m(Vλ, RSn(x)d)qd = fλ(q).

This is a very precise answer, as fλ(q) has an explicit combinatorial description, and it is possible to produce
a correspondingly explicit decomposition of RSn

(x) into irreducibles with generators indexed by suitable
combinatorial data. It would take us too far afield to go into this here, but see e.g. [1] for more details. We
only note that ignoring the grading gives

m(Vλ, RSn(x)) = fλ(1) = dim Vλ,

so RSn
(x) is a graded version of the regular representation of Sn (the representation of Sn by left multipli-

cation on its group algebra CSn).

(IV) Derksen’s arrangement W is a complete intersection in Cn×Cn, defined by the ideal (ei(x)− ei(y) :
1 ≤ i ≤ n). In particular, its coordinate ring C[W ] is Cohen-Macaulay, and since (y) is obviously a system
of parameters, C[W ] is a free C[y]-module.

The above special properties of the invariants and coinvariants of Sn on Cn are consequences of the
fact that Sn acts on Cn as a group generated by complex reflections: linear transformations that fix a
hyperplane pointwise. In the case of Sn, the reflections are the transpositions (i, j), which fix every vector
on the hyperplane xi = xj . By general results of Steinberg, Chevalley, Shepard and Todd, every complex
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reflection group G has k[V ]G a polynomial ring, IG a complete intersection ideal, and RG isomorphic to a
graded version of the regular representation of G. Moreover, each of these properties holds only for complex
reflection groups, and there is a complete classification of such groups [2, 17, 19, 20].

Finally we come to the situation that we set out to study in the first place, namely, the action of Sn on
E = C2n. Note that this is not an action generated by complex reflections. In fact, every element of Sn acts
on E with determinant 1, while a nontrivial complex reflection has determinant 6= 1. The determinant 1
property does have a useful consequence, however, owing to the following refinement of the Eagon-Hochster
theorem.

Theorem 2.3 (Watanabe [21]). The canonical module of k[V ]G is the module of covariants k[V ]ε, where
ε denotes the determinant character ε(g) = detV (g). In particular if G acts on V by endomorphisms with
determinant 1, then k[V ]G is Gorenstein.

There is an old theorem of Weyl giving a (minimal) generating set for the ring of invariants C[E]Sn .

Theorem 2.4 (Weyl [22]). The ring of invariants C[x,y]Sn is generated by the polarized power-sums

pr,s =
n∑

i=1

xr
i y

s
i , 1 ≤ r + s ≤ n.

The analogous theorem holds in d sets of variables. Note that the actual degree bound on the generators
in this case, namely n, is very much smaller than the order of the group!

It turns out to be almost as easy to determine the Hilbert series of C[E]Sn = C[x,y]Sn as it is for C[x]Sn .
In fact, we can compute its Hilbert series as a doubly graded ring, by degree in the x and y variables
separately. It is given by the following analog of (3).∑

r,s

dim(C[x,y]Sn)r,sq
rts = hn(1, q, q2, . . . , t, qt, q2t, . . . , t2, qt2, q2t2, . . .).

There is a similar formula for the Hilbert series of the ring of invariants C[x,y, . . . , z]Sn in d sets of variables,
as an Nd-graded ring. So we have good analogs of observation (I) for the invariants of n points in the plane
or more generally in Cd.

The interesting surprises appear when we turn to analogs of observations (II) and (III), on the ring of
coinvariants. We now drop the modifier x from the notation and write simply RSn

for the ring of coinvariants
C[E]/ISn .

Around 1991, Garsia and I were led to investigate RSn because of its connection with a problem on
Macdonald polynomials. For small values of n, we used a computer to determine its dimension and Sn

character in each (double) degree. Immediately we noticed some amazing coincidences between our data
and well-known combinatorial numbers. We publicized our early findings informally, leading various other
people, especially Ira Gessel and Richard Stanley, to discover still more such coincidences. Eventually I
published a compilation of these discoveries, all of which were then just conjectures, in [8].

Later, Procesi pointed out to us the fact that the Hilbert scheme Hilbn(C2) provides a nice resolution of
singularities of E/Sn, as discussed in Lecture 1, and observed how this should be useful in attacking the
conjectures. Assuming the validity of some geometric hypotheses that would make Procesi’s method work, I
was soon able to find a formula for the doubly graded character of RSn

in terms of Macdonald polynomials.
Garsia and I then proved that the earlier combinatorial conjectures would all follow from the master formula.
Recently [10, 11] I succeeded in proving the needed geometric hypotheses, which by this time were the only
missing pieces remaining.

There is not room here to discuss in full the geometry of the Hilbert scheme and the combinatorial theory
of Macdonald polynomials. I will only summarize some of the facts about RSn

that have been established
using these methods.
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Theorem 2.5. The coinvariant ring RSn for Sn acting on C2n has length

dimC RSn
= (n + 1)n−1.

Ignoring the grading, the representation of Sn on RSn is isomorphic to the sign representation ten-
sored by the obvious permutation representation of Sn on the finite Abelian group Q/(n + 1)Q, where
Q = Zn/Z · (1, 1, . . . , 1). Retaining the grading by x degree only, one has the Hilbert series∑

d

dim(RSn)(d,−)q
d = Fn(q),

where Fn(q) is the generating function enumerating rooted forests on the vertex set {1, . . . , n} by number of
inversions, or equivalently, enumerating parking functions on n cars by weight (see [8] for definitions and
details).

Here we should mention the connection between RSn
and the ideal I studied in the previous lecture, given

by the following proposition, which is easy to prove.

Proposition 2.1. Homogeneous Sn-alternating polynomials f1, . . . , fr ∈ C[E] minimally generate the ideal
I in Theorem 1.1 if and only if their images modulo ISn form a basis of the space of Sn-alternating elements
of RSn .

In particular, Theorem 1.2 is really a statement about the character of RSn
. Like Theorem 2.5, it follows

from the master formula for the character of RSn
given by the geometry of the Hilbert scheme.

I think it should be possible to obtain at least some of the above results on RSn
, and maybe some new ones,

or analogous ones for other groups, without invoking Hilbert scheme and Macdonald polynomial machinery.
In particular, it seems to me that there is room for purely algebraic approaches. One encouraging sign is a
recent preprint by Iain Gordon [7], where he obtains an extension of the (n + 1)n−1 theorem, in a slightly
weakened form, to any Weyl group. This is especially notable in that for the Weyl groups of type G2, F4,
and Dn, it is known that there is no suitable geometric analog of the Hilbert scheme.

To close, let me suggest some open problems that might repay further study.

Problem 2.1. Can one determine the dimension and Hilbert series of RSn
inductively by fitting it into an

exact complex with other terms built out of the coinvariant rings RSk
for k < n? A specific conjecture along

these lines in [8] remains open.

Problem 2.2. Describe the minimal free resolution of C[x,y]Sn with respect to the minimal generators
given by Theorem 2.4. One could also consider this problem in d sets of variables, although d = 2 may be
nicer, since the ring of invariants is Gorenstein. I don’t think a good description is known even for the first
syzygies.

Problem 2.3. Let W be the Derksen arrangement for Sn acting on E, say with coordinates x,y,x′,y′ on
E×E. Is C[W ] a free C[y]-module? What about the same problem for fiber powers W×EW×E · · ·×EW? An
affirmative answer would be equivalent to sheaf cohomology vanishing properties for certain vector bundles
on the Hilbert scheme. Are there similar results in d sets of variables, with E replaced by Cdn? Are there
similar results for other Weyl groups G, with E the direct sum of two (or more) copies of the defining
representation?

3. A remarkable Gröbner basis

This lecture will be an overview of some results by Jeremy Martin. I’ll give less detailed notes here than
for the previous two lectures, referring you to [14, 15] for the full story. Martin’s results concern the situation
where we introduce not only the points P1, . . . , Pn ∈ C2 but also lines Lij connecting them in pairs. That
is, Lij is a line passing through Pi and Pj . When Pi and Pj are distinct, of course, Lij is determined. When
they coincide, the line Lij can pass through them with any slope, introducing an extra degree of freedom.
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The locus of all configurations of points and lines as above is the picture space X (Kn). One thinks of
these configurations as plane “pictures” of the complete graph Kn on n vertices, with edges represented by
lines. To specify a picture, we need to give the coordinates x1, y1, . . . , xn, yn of the n points, together with
the slopes mij of the

(
n
2

)
lines. In principle, the slopes mij lie on a projective line P1. However, we will be

interested only in local questions, so we will consider the affine open set in X (Kn) where mij 6= ∞. It is the
locus cut out (set-theoretically, at least) by the equations

yj − yi = mij(xj − xi) for all i, j.

Now X (Kn) is in general not irreducible. For example, X (K4) has two irreducible components, each of
dimension 8: the generic component—the closure of the locus where all the points are distinct, and the lines
are determined—and another component where all four points coincide, and the six lines have arbitrary
slopes. Martin has given a complete combinatorial description of the component structure of X (G) for any
graph G, which we won’t discuss in this lecture. Instead we will concentrate on his results describing the
generic component V(Kn) of X (Kn), which we call the graph variety. Note that V(Kn) is, essentially by
definition, the simultaneous blowup of C2n along the coincidence subspaces Vij = V (xi−xj , yi−yj) discussed
in Lecture 1. This is, however, quite a different thing from the blowup along the union of these subspaces,
which is the variety X from Lecture 1.

Proposition 3.1. The graph variety V(Kn) is cut out set-theoretically in X (Kn) by the equations in the
variables mij giving the algebraic relations among the slopes that hold when the points Pi are in general
position (i.e., no two coincide).

In view of this proposition, the key issue is to understand the ideal of relations among the slope variables
mij . Although the problem of describing all relations among the slopes of the

(
n
2

)
lines connecting n points

in general position in the plane is very classical in nature, there seems to have been almost no earlier work
on it. In more geometric terms, the projection of the graph variety V(Kn) on the slope coordinates is a
variety S(Kn), called the slope variety, whose ideal I(Sn) is the ideal of all algebraic dependencies among
the rational functions (yj − yi)/(xj − xi). We want to describe this ideal.

The first result tells us which subsets of the variables mij are minimally algebraically dependent—i.e.,
are circuits of the algebraic dependence matroid of the quantities (yj − yi)/(xj − xi).

Theorem 3.1. The variables mij corresponding to a set of edges E ⊆ E(Kn) are minimally algebraically
dependent if and only if

(1) |E| = 2|V (E)| − 2, and
(2) |F | ≤ 2|V (F )| − 3 for all ∅ ⊂ F ⊂ E,

where V (E) denotes the set of all endpoints of the edges in E.

This result is particularly interesting because there is another well-known algebraic dependence matroid
whose characterization (due to Laman) is exactly the same: that is the rigidity matroid of algebraic depen-
dencies among the squared-lengths (xi − xj)2 + (yi − yj)2 of the line segments connecting the points (for
points with real coordinates).

The next result, which is a key one, is an explicit description of the polynomial giving the algebraic
dependence among the slopes in a rigidity-circuit. First one shows that every rigidity circuit is the edge-
disjoint union of two spanning trees on a common set of vertices. Conversely, every minimal such union is a
rigidity circuit.

Now consider any two disjoint spanning trees S and T on the same vertex set, and fix an arbitrary
orientation of the edges of each tree. For each edge f ∈ S, there are unique coefficients cef ∈ {0,±1} such
that

(4) f −
∑
e∈T

cefe
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is a directed cycle. Let us abbreviate xe = xj − xi, ye = yj − yi for a directed edge e = (i, j). Then for a
cycle as in (4), we have

yf =
∑
e∈T

cefye

xf =
∑
e∈T

cefxe.

Now since yf = mfxf and ye = mexe, we have an identity between two expressions for yf∑
e∈T

cefmexe = mf

∑
e∈T

cefxe,

or ∑
e∈T

cef (me −mf )xe = 0.

This of course is not yet an equation among the variables mij . However, if S and T are trees on d + 1
vertices, then we have d such equations, one for each f , which we can regard as linear equations in the d
“unknowns” xe. When the points are in general position, they obviously have a non-zero solution, since the
xe’s do not vanish. Hence the d× d matrix

MST = [cef (me −mf )]f∈S,e∈T

must be singular. Its determinant
DS∪T (m)

is a polynomial of degree d in the slope variables me for e in our rigidity circuit S ∪ T , and this polynomial
belongs to I(Sn).

Theorem 3.2. The determinants DS∪T enjoy the following properties:
(1) Up to sign, DS∪T depends only on the union S ∪ T , and not on the decomposition into trees S, T .
(2) Every term of DS∪T is a square-free monomial ±

∏
e∈S′ me, where S′ is a spanning tree in S ∪ T

whose complement is also a spanning tree.
(3) DS∪T is irreducible if and only if S∪T is a rigidity circuit, and in that case it generates the principal

ideal of algebraic dependencies among the slope variables me for e ∈ S ∪ T .

One particularly simple class of rigidity circuits consists of the wheels. A wheel is a graph consisting of
a cycle (the rim) and one additional vertex (the hub) with edges to all the rim vertices (the spokes). With
this terminology established, we can state Martin’s main theorem.

Theorem 3.3. The polynomials DW for W a wheel generate I(Sn). In fact, they form a Gröbner basis
for this ideal, with respect to the graded lexicographic term order on the obvious lexicographic ordering of
the variables mij. Moreover, the initial ideal in(I(Sn)), and hence also I(Sn) itself, is Cohen-Macaulay, of
dimension 2n− 3 and degree

M2n−4 = (2n− 5)(2n− 7) · · · 3 · 1.

Let us say just a few words about the proof of this theorem, which involves a beautiful interplay of
commutative algebra and combinatorics. By Theorem 3.2, the initial term of DW is a square-free “tree
monomial” mT =

∏
e∈T me, for some tree. Martin proves first that for wheels, the initial terms belong, not

to arbitrary trees, but to trees which are paths, of the following special form.

Definition 3.1. A Martin path in the graph Kn on vertices {1, . . . , n} is a path Q = (x, v, . . . , w, y) such
that (1) x and y are the two largest vertices of Q, and (2) assuming without loss of generality that x < y,
then v < w.
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Now the initial ideal in(DW ) of the ideal generated by wheel polynomials DW is the square-free monomial
ideal generated by monomials MQ for Q a Martin path. Hence

R∆ = C[m]/ in(DW )

is the Stanley-Reisner ring of the simplicial complex ∆ on the edge set of Kn, whose faces are those subgraphs
H ⊆ Kn that contain no Martin path. Martin proves next that this simplicial complex has the most optimal
properties one could desire.

Proposition 3.2. Every maximal subgraph of Kn containing no Martin path—that is, every facet of the
simplicial complex ∆—has 2n− 3 edges. The number of these facets is M2n−4. Moreover the complex ∆ is
shellable.

Shellability is a combinatorial property of a simplicial complex which implies in particular that it is
Cohen-Macaulay, i.e., the link of each face has only one non-zero reduced homology group. By a theorem of
Hochster (see [18]), the latter property is equivalent to the Stanley-Reisner ring being Cohen-Macaulay. So
Proposition 3.2 shows that the ideal

J = in(DW : all wheels W )

is Cohen-Macaulay, of dimension 2n− 3 and degree M2n−4.
Finally, Martin uses a geometric argument to give a lower bound on the degree of the slope variety Sn.

Proposition 3.3. The slope variety Sn has dimension 2n− 3 and degree at least M2n−4.

Let us see where the above results leave us. We have two ideals, J = in(DW ), and I = in I(Sn), and from
the facts established so far we have:

(i) J ⊆ I,
(ii) J is unmixed (since it is Cohen-Macaulay),
(iii) dim J = dim I,
(iv) deg J ≤ deg I.

Together, these imply J = I, and Theorem 3.3 follows.
To close, I’ll mention a striking combinatorial fact, which Martin left as a conjecture at the end of his

thesis, but has since proved. The number M2n−4 is the number of matchings on 2n − 4 vertices, that is,
graphs in which every vertex is the endpoint of exactly one edge. The Hilbert series of the slope variety may
be written

hn(q)
(1− q)2n−3

,

where hn(q) is a polynomial with positive integer coefficients (because the ring is Cohen-Macaulay) and
hn(1) = M2n−4. Hence

hn(q) = a0 + a1q + a2q2 + · · ·
is a q-analog of the number of matchings M2n−4. It turns out that it coincides with a combinatorial q-analog
studied long ago by Kreweras and Poupard [13].

Theorem 3.4. The coefficient al in the polynomial hn(q) is the number of matchings on the integers
{1, . . . , 2n− 4} with l long edges, where an edge i, j is long if |i− j| 6= 1.
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