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Abstract. We introduce a “hybrid” basis {CTw} of the Hecke algebra of an arbitrary
symmetrizable Kac-Moody algebra, depending on the choice of a standard parabolic sub-
group WJ of the Weyl group W . We prove that the operator of right multiplication by any
Kazhdan-Lusztig basis element has positive matrix coefficients with respect to the hybrid
basis. When WJ = W or WJ = {1}, this reduces, respectively, to a theorem of Springer and
Lusztig for the Kazhdan-Lusztig basis, or of Dyer and Lehrer for the standard basis. Our
theorem also implies an improvement of the positivity theorem of Kashiwara and Tanisaki
for Deodhar’s parabolic Kazhdan-Lusztig polynomials, by removing the restriction that WJ

be finite.
In the affine An case, we obtain as a consequence of our theorem the full positivity

theorem for the q-symmetric functions introduced by Lascoux, Leclerc and Thibon, known
as LLT polynomials. Special cases of LLT positivity had been proven earlier by Leclerc
and Thibon, using the positivity theorem for Deodhar’s polynomials. Our result, combined
with the combinatorial formula of Haglund, Haiman and Loehr for Macdonald polynomials,
yields a new proof of the positivity theorem for Macdonald polynomials. Our methods also
provide a definition and positivity theorem for LLT polynomials of other types.

We also give a formula for the expansion of LLT polynomials in terms of generalized
Hall-Littlewood polynomials. In certain cases our formula equates a single generalized Hall-
Littlewood polynomial with an LLT polynomial. In particular, we prove a conjecture of
Shimozono and Weyman equating generalized Hall-Littlewood polynomials indexed by rect-
angular Young diagrams with LLT polynomials for GLn.

1. Introduction

Let us briefly recall two well-known positivity theorems in Kazhdan-Lusztig theory. One
is the theorem of Springer and Lusztig [19], [25] that the operator of multiplication by
a Kazhdan-Lusztig basis element Cv has positive matrix coefficients with respect to the
Kazhdan-Lusztig basis {Cw} of the Hecke algebra associated to any symmetrizable Kac-
Moody Lie algebra. These matrix coefficients are polynomials in q±1, so by positive we
mean coefficient-wise. The second theorem we wish to recall is that of Dyer and Lehrer [4],
which asserts (in the finite case, but it is true in general) that the matrix coefficients of the
operator Cv with respect to the standard basis {Tw} of the Hecke algebra are also positive.
In particular, the positivity of Kazhdan-Lusztig polynomials is a special case.
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2 I. GROJNOWSKI AND M. HAIMAN

In this paper we prove a new positivity theorem—Theorem 3.2—which generalizes both of
the two aforementioned theorems. Our theorem asserts that the operator of right multipli-
cation by Cv has positive matrix coefficients with respect to a hybrid basis {CTw}, defined in
§3.1, which depends on the choice of a standard parabolic subgroup WJ of the Weyl group
W , and interpolates between the standard basis (when WJ = 1) and the Kazhdan-Lusztig
basis (when WJ = W ).

We give two applications of our positivity theorem. The first is a new proof and strength-
ening of a theorem of Kashiwara and Tanisaki [11] on the positivity of Deodhar’s parabolic
Kazhdan-Lusztig polynomials.

The second and more important application is a proof of the positivity conjecture for LLT
polynomials, which were defined combinatorially by Lascoux, Leclerc and Thibon in [16].
Combined with the results of Haglund, Loehr and the second author in [6], this yields a
second proof of the Macdonald positivity conjecture, different from the one based on Hilbert
schemes in [8]. These results make use of our positivity theorem for the affine Hecke algebra
associated to GLn. By considering other affine Hecke algebras as well, we discover a natural
definition of LLT polynomials associated with any reductive Lie group G, whose coefficients
are always positive by our main theorem.

The proof of our positivity theorem uses geometric methods which have been standard in
Kazhdan-Lusztig theory for many years. Nevertheless, it seems that both the theorem and
the applications are new.

After briefly reviewing some of the required geometric tools in §2, we define the hybrid basis
and state and prove our main theorem in §3. The application to parabolic Kazhdan-Lusztig
polynomials is in §4. In §5 we define LLT polynomials associated to any reductive Lie group
G, then show in §6 that when G = GLn, these essentially coincide with the combinatorial ones
defined by Lascoux, Leclerc and Thibon, obtaining the positivity theorems for combinatorial
LLT polynomials and Macdonald polynomials as corollaries.

The last section, §7, contains results which are independent of our positivity theorem, but
fit naturally into the context of the rest of the paper. Here we give a formula expressing LLT
polynomials associated to G in terms of generalized Hall-Littlewood polynomials associated to
the same group. We also give a criterion which in certain instances implies that a particular
generalized Hall-Littlewood polynomial is equal to an LLT polynomial. In the case G = GLn,
this enables us to prove a conjecture of Shimozono and Weyman [24] that the generalized
Hall-Littlewood polynomial attached to a sequence of rectangular Young diagrams coincides
with an LLT polynomial indexed by the same sequence of diagrams.

2. Preliminaries on mixed Hodge modules

2.1. LetDM(X) denote the derived category of mixed Hodge modules on a complex algebraic
variety X. We will only use the formal properties of the standard functors between these
categories, and their interactions with weights, as explained in [23]. A reader who prefers
l-adic étale sheaves and Deligne’s Weil conjecture machinery will readily transfer things to
that context.
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A mixed Hodge module A consists of a perverse sheaf Arat with Q coefficients, a weight
filtration in Arat, and a filtered structure on the corresponding D-module RH(Arat ⊗Q C),
called the Hodge filtration, satisfying certain compatibilities. A mixed Hodge module is
pure if its weight filtration is concentrated in a single weight m. An object A of DM(X) is
pure of weight m if its i-th cohomology module H i(A) (corresponding to the i-th perverse
cohomology of Arat) is pure of weight m + i for all i.

Let X, Y be varieties, f : X → Y a morphism. There are functors D : DM(X) → DM(X)
(Verdier dual), f∗, f! : DM(X) → DM(Y ) (direct image; same with proper supports),
f ∗, f ! : DM(Y ) → DM(X) (inverse image and its dual), and � : DM(X) × DM(Y ) →
DM(X × Y ) (outer product) which lift their counterparts on the underlying derived cat-
egories of constructible sheaves. As usual one defines ⊗ : DM(X) × DM(X) → DM(X) by
A⊗A′ = δ∗(A � A′), where δ : X → X ×X is the diagonal morphism. The functors f ! and
f∗ raise weights, f! and f ∗ lower weights, D reverses weights, and � adds weights.

2.2. Given a smooth variety X of dimension d and a local system V on X carrying an
admissible, polarizable variation of mixed Hodge structure (VMHS), there is a corresponding
object V H in DM(X) such that V H

rat = V , with weight and Hodge filtrations induced from
those of V . The shift V H [d] is a mixed Hodge module, pure of weight m + d if V is pure of
weight m.

Given any variety X, let Z ⊆ X be an irreducible closed subvariety, U ⊆ Z a smooth
open subvariety, and V an irreducible (hence pure) VMHS on U . Then V H [dim(Z)] extends
uniquely to an irreducible mixed Hodge module IC Z(V ) on Z, whose underlying perverse
sheaf IC Z(V )rat is the intersection complex of the local system V . Every irreducible mixed
Hodge module on X is of the form (iZ)∗ IC Z(V ), which we also denote by IC Z(V ). We write
QU for the trivial VMHS on U , so IC Z(QU) is the standard intersection complex on Z.

Define A(n) = A � Q(n), where Q(n) is the one-dimensional Hodge module on a point
with Hodge structure of type (−n,−n). A mixed Hodge module A is Tate if all its compo-
sition factors are of the form IC Z(V )(n), where V is an irreducible local system with trivial
Hodge structure. An object in DM(X) is Tate if its cohomology modules are Tate. The
Grothendieck group of Tate mixed Hodge modules on X is a free Z[q±1]-module with basis
given by the objects IC Z(V )[− dim(Z)], where q acts as the Tate twist A 7→ A(−1). Note
that IC Z(V )[− dim(Z)], which extends V H , is pure of weight 0. If A is a pure Tate object
of even weight in DM(X), it is immediate that the coefficients of its class with respect to
the basis objects IC Z(V )[− dim(Z)] are polynomials in q±1 with non-negative coefficients.

2.3. Let C∗ act algebraically on a quasi-projective variety X, and assume that X possesses a
C∗-equivariant ample line bundle, or equivalently, that there exists an equivariant immersion
X ↪→ P(V ), where C∗ acts linearly on V . Let Z be a connected component of the fixed-point
locus XC∗ . Recall [1] that the points x ∈ X such that π(x) = limt→0 t · x exists and belongs
to Z form a subvariety Y ⊆ X called the attracting variety to Z, and that the attracting
map π : Y → Z is a morphism.
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We will need the following basic result on the purity of hyperbolic localization. For a
proof, see [2, Theorem 1, eq. (1), and Remark (4)]. The existence of an equivariant quasi-
projective embedding suffices in place of the normality hypothesis in [2], by the paragraph
following [2, Lemma 5].

Proposition 2.4. Let X be a quasi-projective variety with a C∗ action and an equivariant
ample line bundle. Let Z be a connected component of XC∗, Y the attracting variety to Z,
π : Y → Z the attracting map, and i : Y → X the inclusion. Let A be a C∗-equivariant object
of DM(X). If A is pure of weight n, then so is π!i

∗A.

3. Positivity theorem for Hecke algebras

3.1. Let g be a symmetrizable Kac-Moody Lie algebra, W its Weyl group, with Coxeter
generators S = {s1, . . . , sn} and Bruhat order ≤. The Hecke algebra of g is the Z[q±1]-
algebra H, free as a Z[q±1]-module, with basis {Tw : w ∈ W} satisfying the relations

(1)
TvTw = Tvw if l(vw) = l(v) + l(w)

(Tsi
− q)(Tsi

+ 1) = 0.

There is a Z-linear involution · of H such that q = q−1 and Tw = T−1
w−1 . The Kazhdan-Lusztig

basis1 {Cw : w ∈ W} is uniquely determined by the properties [13]

(i) Cw = q−l(w)Cw,
(ii) Cw = Tw +

∑
v<w Pv,w(q)Tv for polynomials Pv,w(q) ∈ Z[q] of degree < 1

2
(l(w)− l(v)).

Fix a subset J ⊆ S and the standard parabolic subgroup WJ ⊆ W generated by J . Each
right coset WJ x has a unique minimum-length representative x, which is also minimal in the
Bruhat order. Let JW denote the set of these minimal coset representatives. Each w ∈ W
factors uniquely as w = vx, v ∈ WJ , x ∈ JW . We define the hybrid basis {CTw} of H by

CTw = CvTx,

so it interpolates between the bases {Tw}, when WJ = {1}, and {Cw}, when WJ = W .

Theorem 3.2. The matrix coefficients of right multiplication by Cw with respect to the hybrid
basis, that is, the coefficients cw

uv(q) in the expansion

CTu Cw =
∑

v

cw
uv(q) CTv,

are polynomials in q±1 with non-negative coefficients.

Theorem 3.2 generalizes theorems of Springer and Lusztig [19], [25] in the case WJ = W ,
and Dyer and Lehrer [4] in the case WJ = {1} and dim(g) < ∞. We give the proof in
§§3.5–3.7, after reviewing the geometric interpretation of the Hecke algebra as a convolution
algebra on the flag variety.

1For simplicity, we write Cw for what would be ql(w)/2C ′
w in the notation of [13].
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3.3. Let F denote the (thin) flag variety of g in the sense of Peterson-Kac [22] and Tits [27],
[28]. We recall its construction and that of the associated Kac-Moody group G.

Fix an integrable highest-weight module V = V (λ) of g with λ regular. Let g = u−⊕h⊕u+

be the triangular decomposition, and set b = h + u+. The algebraic torus T = exp(h) acts
diagonally on the weight spaces Vµ, and for each index i, the subalgebra 〈ei, hi, fi〉 integrates
to an action φi : SL2 → GL(V ). Let û+ =

∏
n≥1(u+)n be the completion of u+ with respect

to the grading deg(ei) = 1. Given any v ∈ V , we have (u+)≥nv = 0 for some n. Hence
there is a well-defined exponential map from û+ onto a subgroup U ⊆ GL(V ). We define
G ⊆ GL(V ) to be the group generated by T , U and the φi(SL2); N to be the subgroup
generated by T and the elements s̃i = φi([

0 1
−1 0 ]), so W = N/T ; and B = T n U . These form

a Tits system with Bruhat decomposition

G =
⊔

w∈W

BwB.

For each w ∈ W , the space Dw = bVw(λ) is finite-dimensional and B-invariant, with B acting
through a homomorphism B → Bw onto a solvable algebraic group Bw ⊆ GL(Dw). Since
Vw(λ) is one-dimensional, it defines a distinguished, T -fixed point ew ∈ P(Dw). The orbit

Yw = Bew is an affine Schubert cell of dimension l(w), whose closure Xw = Yw is a Schubert
variety. For v ≤ w, we have Dv ⊆ Dw, and these inclusions identify Xv with a closed
subvariety of Xw. Then Xw =

⊔
v≤w Yv as a union of (locally closed) B-orbits. The flag

variety is defined to be the ind-variety

(2) F = lim−→
w

(Xw).

Different choices of λ yield the same varieties Xw, F . The only thing that changes is the
ample line bundle O(1) associated with the projective embedding Xw ⊆ P(Dw).

Note that the inductive system in (2) is filtered because every two elements u, v ∈ W have
an upper bound in the Bruhat order. In fact, there is a monoid structure (W, ∗) on W such
that u ∗ v = uv if l(uv) = l(u) + l(v), and the Coxeter generators si are idempotent. Then
u, v ≤ u ∗ v.

For w > siw, Dw and Xw are φi(SL2)-invariant, hence G acts on F . The unique point
e1 ∈ X1 ⊆ F has stabilizer equal to B, identifying F with G/B. Then ew = w(e1) and
Yw = BwB/B. Let Gu =

⋃
v≤u BvB be the preimage of Xu by G → G/B = F and Kw

the kernel of B → Bw, for any w ≥ u. Then Gu/Kw is naturally an algebraic variety and a
principal Bw-bundle over Xu. We also have GuGv ⊆ Gu∗v.

3.4. The canonical immersion i : Xv ↪→ Xw for v ≤ w induces an equivalence i∗ of DM(Xv)
onto the full subcategory of objects of DM(Xw) supported in Xv. We define DM(F) =
lim−→w

DM(Xw). An object in DM(F) is B-equivariant if it is Bw-equivariant on any Xw

containing its support. The category DM(F) is really just an organizing device for objects
defined on Schubert varieties, so there is no need to invoke a more general theory of mixed
Hodge modules on infinite-dimensional varieties. One defines DM(F × F) analogously.
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The Grothendieck group K of B-equivariant Tate mixed Hodge modules on F is a free
Z[q±1]-module (§2.2) with two bases indexed by the elements of W , namely

(3)
Cw = IC Xw(QYw)[−l(w)],

Tw = (iYw)!QH
Yw

,

where iYw : Yw → F is the inclusion. Convolution on K is defined in terms of the diagram

(4)

F F × F
π1oo π2 // F

G

q

OO

G×FπG

oo

r=q×1F

OO

o| η : (g,hB)↪→(g,g−1hB)
��

G×F
πG

ccFFFFFFFFF

πF
// F ,

essentially by the formula

A1 · A2 = (π2)!(π
∗
1(A1)⊗ r[η

∗π∗F(A2)) = (π2)!r[η
∗(q∗(A1) � A2),

where r[ denotes B-equivariant descent. When dim(g) = ∞, some care is required to make
sense of this definition, since the individual tensor factors in the middle formula do not
exist as objects of DM(F × F). The last formula, however, makes sense if interpreted in
terms of the following approximation by finite-dimensional algebraic varieties: suppose A1,
A2 supported in Xu, Xv, respectively, and let w ≥ u ∗ v. Replace the two factors F in the
first two rows of (4) with Xu and Xw, the F in the bottom row with Xu−1∗w, and G with
Gu/Ku−1∗w (cf. §3.3). The resulting object A1 · A2 is independent of the choices of u, v, w,
and this construction defines an associative, Z[q±1]-bilinear operation on the Grothendieck
group of B-equivariant objects of DM(F). Note that the isomorphism of ind-schemes η
becomes an immersion in the finite-dimensional approximation, so the functor η∗ is still a
weight-preserving equivalence (with inverse η∗) when restricted to objects supported in the
image of η, among them q∗(A1) � A2.

Since π2 is proper and q is smooth, convolution commutes with the duality functor D
and adds weights. One checks directly that the classes of the objects Tw in (3) satisfy the
defining relations (1) of H. This shows in particular that the convolution product preserves
the Grothendieck group of Tate objects K, and gives K the structure of an algebra which we
can and will identify with H. One also checks that Csi

= Tsi
+1 in K and D(Cw) = q−l(w)Cw,

from which it follows that D corresponds to the involution · of H and that the objects Cw

satisfy the defining properties (i), (ii) of the Kazhdan-Lusztig basis in §3.1. In particular,
Cu ·Cv is pure of weight zero, hence (§2.2) its coefficients with respect to the basis Cw belong
to N[q±1]. This is the mixed Hodge module version of the proof of the theorem of Springer
and Lusztig.

3.5. As in §3.1, fix J ⊆ S and let l ⊆ g be the Levi subalgebra generated by h and
{ei, fi : i ∈ J}, with Weyl group WJ . The Kac-Moody group of l in the sense of §3.3 is the
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subgroup L ⊆ G generated by T , exp(û+(l)), and the φi(SL2) for i ∈ J . Let

P = LB =
⋃

w∈WJ

BwB

be the corresponding parabolic subgroup. The P -invariant subspace VL =
⋃

w∈WJ
Dw ⊆ V is

an integrable highest-weight module for l. There is a semidirect decomposition P = L n UP

such that P acts on VL through the canonical homomorphism P → L. We have BL = B ∩L
and hence an isomorphism FL → P/B ⊆ F , gBL 7→ gB. More generally, if x ∈ JW ,
the stabilizer xB of xB satisfies BL = xB ∩ L, giving an isomorphism ix : FL → LxB/B,
gBL 7→ gxB.

Let γ : C∗ → T be a dominant co-weight γ whose stabilizer in W is equal to WJ ; then
γ(C∗) centralizes L. The connected components of the fixed locus Fγ(C∗) are the copies
ix(FL) = LxB/B of FL, for x ∈ JW (this means that the intersections Xw ∩ ix(FL) are the

connected components of X
γ(C∗)
w for each w; in what follows, such interpretations will be left

to the reader). The attracting variety to ix(FL) is PxB/B =
⋃

v∈WJ
Yvx, with attracting

map πx : PxB/B → LxB/B induced by the homomorphism P → L. Let jx : PxB/B → F
be the inclusion.

3.6. The subalgebra HJ ⊆ H spanned by {Tw : w ∈ WJ} consists of the classes supported
in FL and and is naturally identified with the Hecke algebra of l. For x ∈ JW , the map
HJ → H induced by the functor (jx)!π

∗
x(ix)∗ is just convolution on the right by Tx, as

one sees by applying it to the standard basis objects Tv, v ∈ WJ . In particular, we have
CvTx = (jx)!C, where C = π∗x(ix)∗Cv is an irreducible object pure of weight zero on PxB/B,
since πx is smooth.

Now, F is the disjoint union of the loci PxB/B for x ∈ JW . Hence we deduce from the
above description that for any A ∈ H, the coefficient 〈CvTx〉A of CvTx in the expansion of
A with respect to the hybrid basis is equal to q−l(x)〈Cv〉i∗x(πx)!j

∗
xA. The Tate twist q−l(x)

appears because πx has relative dimension l(x).

3.7. Fix u, v ∈ WJ , x, y ∈ JW , and w ∈ W . The object A = r[η
∗(q∗(CuTy) � Cw) on

F × F is the extension by zero of a pure object A′ of weight zero on (PyB/B) × F , and
we have CuTyCw = (π2)!A = (π2)!A

′ (this last object is not pure, however, since PyB/B is
not proper). For simplicity we write π2 here and below for the second projection from any
product. Define

j = (1× jx) : (PyB/B)× (PxB/B) → (PyB/B)×F ,

π = (πy × πx) : (PyB/B)× (PxB/B) → (LyB/B)× (LxB/B).

Using base-change and the identity π2π = πxπ2, we obtain (πx)!j
∗
x(π2)!A

′ = (π2)!π!j
∗A′. Now

(LyB/B)× (LxB/B) is a component of the fixed locus ((PyB/B)×F)γ(C∗), with attracting
variety (PyB/B)× (PxB/B) and attracting map π, and A′ is equivariant for the diagonal
action of T and hence of γ(C∗). Note that the defining projective embedding Xw ↪→ P(Dw) of
any Schubert variety is T -equivariant. By Proposition 2.4, therefore, π!j

∗A′ is pure of weight
zero, and since LyB/B is proper, so is (π2)!π!j

∗A′. We have shown that (πx)!j
∗
x(CuTyCw) is
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pure of weight zero. By §3.6 and §2.2, this implies that 〈CvTx〉CuTyCw ∈ N[q±1], completing
the proof of Theorem 3.2.

3.8. Fix notation as in §3.1 and let W J be the set of elements x ∈ W such that x is minimal
in its left coset xWJ . Define

TCw = TxCv,

where w factors uniquely as w = xv, with x ∈ W J , v ∈ WJ . There is an anti-automorphism
Ψ(Tw) = Tw−1 of H, which commutes with · and hence satisfies Ψ(Cw) = Cw−1 . Applying
Ψ yields the following equivalent form of Theorem 3.2, which is more convenient when one
wants to regard H as a left rather than a right module over itself.

Corollary 3.9. The coefficients dw
vu(q) in the expansion

(5) Cw TCu =
∑

v

dw
vu(q) TCv

are polynomials in q±1 with non-negative coefficients.

4. Application to parabolic Kazhdan-Lusztig polynomials

4.1. Fix H, J , W , WJ and W J as in §§3.1, 3.8, and HJ ⊆ H as in §3.6. Let ε(Tw) = (−1)l(w)

be the one-dimensional “sign” representation of HJ . The induced representation IndHHJ
(ε)

is then He−J , where the generator e−J satisfies

(6) (Tsi
+ 1)e−J = 0 for i ∈ J .

The sets {Twe−J } and {Cwe−J } form Z[q±1]-bases ofHe−J as w runs through W J . The parabolic
Kazhdan-Lusztig polynomials P J−

vw (q) of Deodhar [3] are the coefficients in the expansion

Cwe−J =
∑

v

P J−
vw (q) Tve

−
J .

For w ∈ W J we have TCwe−J = Twe−J by definition, while for w 6∈ W J we have TCwe−J = 0
as a consequence of (6). In other words, He−J

∼= H/N , where N = ann(e−J ) is spanned by
{TCw : w 6∈ W J}. Hence P J−

vw is equal to the coefficient of TCv in the expansion (5) of
Cw TC1, yielding the following result.

Corollary 4.2. The parabolic Kazhdan-Lusztig polynomials P J−
vw (q) have non-negative coef-

ficients.

When WJ is finite, Corollary 4.2 is a theorem of Kashiwara and Tanisaki [11].

4.3. Deodhar also defined inverse parabolic Kazhdan-Lusztig polynomials QJ−
vw (q), which

up to a factor (−1)l(w)−l(v) are the coefficients in the expansion of Tve
−
J through the basis

elements Cwe−J , as well as analogous polynomials P J+
vw , QJ+

vw for the induced representation
He+

J such that (Tsi
− q)e+

J = 0 for i ∈ J . When WJ is finite, the theorem of Kashiwara and
Tanisaki applies to all four variants. Of these, P J−

vw (q) and QJ+
vw (q) are the interesting ones,

since P J+
vw (q) (for WJ finite) and QJ−

vw (q) (always) are equal to ordinary Kazhdan-Lusztig
and inverse Kazhdan-Lusztig polynomials, respectively.
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The positivity of P J+
vw and QJ+

vw remains an open problem for WJ infinite.

5. LLT polynomials associated to a reductive Lie group

We now apply the results of §3 in the special case that H is the affine Hecke algebra
associated to a complex reductive group G. Using Theorem 3.2, we will deduce that certain
formal q-characters of G, which can be naturally interpreted as LLT polynomials associated
to G, have non-negative coefficients.

5.1. In what follows, we take the ground ring for Hecke algebras to be Z[u±1], with · acting
by u 7→ u−1,and define q = u2 (any commutative ground ring and involutory automorphism
such that u = u−1 would do, provided that 1 + q = 1 + u2 is not a zero-divisor). The
traditional ·-invariant Kazhdan-Lusztig basis is then C ′

w = u−l(w)Cw. The correspondingly
renormalized standard basis will be denoted T ′

w = u−l(w)Tw.

5.2. Fix the Cartan data specifying a complex reductive Lie group G, i.e., the weight and
co-weight lattices X, X∨ and the sets of simple roots and co-roots αi ∈ X, α∨i ∈ X∨, such
that aij = 〈α∨i , αj〉 is a Cartan matrix of finite type. Let (Wf , Sf = {s1, . . . , sn}) be the
Weyl group of G, acting on X. The extended affine Weyl group is the semidirect product

(7) W = Wf n X.

We write τ(λ) for the element of W corresponding to translation by λ ∈ X.
Let Q ⊆ X be the root lattice and let θ be the dominant short root (so θ∨ is the highest

co-root). The unextended affine Weyl group Wa = Wf n Q is the Weyl group of the affine
Kac-Moody algebra ĝl, where gl is Langlands dual to g = Lie(G). It is generated as a Coxeter
group by Sf and the reflection s0 = τ(θ)sθ through the hyperplane 〈α∨0 , λ〉 = 0, where α∨0 is
the affine-linear function 〈α∨0 , λ〉 = 〈θ∨, λ〉 − 1. The basic alcove is the fundamental domain

A0 = {x : 〈α∨i , x〉 ≥ 0 for all i = 0, 1, . . . , n} ⊆ XR = X ⊗Z R
for the action of Wa on XR. The stabilizer Π of A0 in W acts on Wa, permuting the simple
reflections (which correspond to the walls of A0). We have W = Π n Wa and Π ∼= X/Q.
One defines l(w) = lWa(v), where w = πv with π ∈ Π, v ∈ Wa.

The extended affine Hecke algebra H is the twisted group algebra Π · H(Wa) with multi-
plication law

(πa)(π′b) = ππ′ · π′−1(a)b.

It has a standard basis Tw = πTv and a Kazhdan-Lusztig basis Cw = πCv, where again
w = πv. Extending the involution · of H(Wa) to H by the rule π = π, the Kazhdan-Lusztig
basis is characterized by the same properties as in §3.1.

Fix J ⊆ Sf and the parabolic subgroup WJ ⊆ Wf ⊆ W , and define the extended hybrid
basis {TCw = πTCv} of H, where {TCv} is the basis of H(Wa) from §3.8, and w = πv as
before. Then Corollary 3.9 is also valid in the extended setting, since we have

(πCw)(π′TCu) =
∑

v∈Wa

dπ′−1(w)
vu (q) ππ′TCv
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with the same coefficients as in (5).

5.3. We recall Bernstein’s presentation of the affine Hecke algebra H and description of
its center [14, (4.4)]. Let X+ ⊆ X be the cone of dominant weights. For λ ∈ X+, define
Y λ = T ′

τ(λ), and extend the definition to all λ ∈ X by setting Y λ = Y µ(Y ν)−1, where

λ = µ− ν with µ, ν ∈ X+. The Y λ are well-defined and satisfy

(8) Y λY µ = Y λ+µ

for all λ, µ ∈ X, because (8) holds for λ, µ ∈ X+ to begin with. The elements Y λT ′
w for

λ ∈ X, w ∈ Wf form a basis of H. The multiplication law is given in terms of this basis by
(8), the multiplication in H(Wf ), and the relations

(9) T ′
si
Y λ − Y si(λ)T ′

si
= (u− u−1)

Y λ − Y si(λ)

1− Y −αi
(i 6= 0).

The commutative subalgebra Y = Z[u±1]Y X ⊆ H inherits an action of Wf from its identifi-
cation with the group algebra Z[u±1]X.

Proposition 5.4. The center of H is the subalgebra of Wf -invariants Z(H) = YWf .

The characters χλ of G belong to (ZX)Wf ⊆ (Z[u±1]X)Wf ∼= YWf = Z(H). In what
follows, we identify χλ with an element of Z(H). Let w0 be the longest element of Wf , and
define

e+ = C ′
w0

= u−l(w0)
∑

w∈Wf

Tw.

The elements w0τ(λ), λ ∈ X+ are the maximal representatives of the double cosets WfwWf ,
hence the Kazhdan-Lusztig basis elements C ′

w0τ(λ) form a basis of e+He+.

Proposition 5.5 (Lusztig [18]). There holds the identity e+χλ = χλe
+ = C ′

w0τ(λ).

The following corollary will be used in §6 and §7.

Corollary 5.6. Regarded as elements of Z(H), the characters χλ of G satisfy χλ = χλ.

Proof. Proposition 5.5 implies that there is a linear isomorphism φ : Z(H) → e+He+ given

by φ(χ) = e+χ. Since e+ = e+, φ commutes with ·. By Proposition 5.5, φ(χλ) = φ(χλ),
hence χλ = χλ. �

5.7. Let wJ
0 be the longest element of WJ and define

(10) e−J = u−l(wJ
0 )
∑

w∈WJ

(−q)l(wJ
0 )−l(w)Tw.

Equivalently, e−J is the signed Kazhdan-Lusztig basis element denoted CwJ
0

in the traditional

notation of [13]. It has the property that Z[u±1]e−J is a two-sided HJ -submodule of H, on
which HJ acts (on either side) by the sign representation ε. We have He−J

∼= IndHHJ
(ε),

making the notation in §4 consistent with (10).
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The space e−JHe+ is a Z(H)-module. In order to describe a basis of this module, we
introduce the following terminology. A double coset WJ wWf is regular if it is a regular orbit
of the (left)×(right) action of WJ × Wf on W , or equivalently, if the orbit of wWf (resp.
WJ w) is regular for the left action of WJ on W/Wf (resp. the right action of Wf on WJ\W ).

Lemma 5.8. (i) If WJ wWf is not regular, then e−J Twe+ = 0.
(ii) If WJ wWf is regular, v is its minimal element, and w = xvy for (unique) x ∈ WJ ,

y ∈ Wf , then e−J Twe+ = (−1)l(x)ql(y)e−J Tve
+.

(iii) As w ranges over the minimal representatives of regular double cosets WJ wWf , the
elements e−J Twe+ form a basis of e−JHe+.

Proof. (i) We may assume that w is minimal in WJ wWf . The non-regularity implies that
there exist indices j ∈ J and 1 ≤ i ≤ n such that sjw = wsi, and hence Tsj

Tw = TwTsi
.

Acting on left and right by e−J , e+ gives −e−J Twe+ = qe−J Twe+, hence e−J Twe+ = 0.
(ii) The factorization w = xvy is reduced, e−J Tx = (−1)l(x)e−J , and Tye

+ = ql(y)e+.
(iii) It follows from (i) and (ii) that the set in question spans e−JHe+. For indices w

belonging to distinct double cosets, it is clear that the elements e−J Twe+ are independent. �

The basis described in Lemma 5.8 (iii) is the standard basis of the module e−JHe+.

Theorem 5.9. The matrix coefficients of the operator χλ ∈ Z(H) with respect to the standard
basis of e−JHe+, that is, the coefficients in the expansion

(11) χλ e−J Twe+ =
∑

v

P λ
vw(u) e−J Tve

+,

have the property that ulP λ
vw(u) is a polynomial in q±1 with non-negative coefficients, for

some integer l.

Before giving the proof, we remark that Ψ(e+) = e+, Ψ(e−J ) = e−J , where Ψ is the anti-
automorphism of H defined in §3.8. Using Proposition 5.5 and the fact that (w0τ(λ))−1 =
w0τ(w0(−λ)), we also have Ψ(χλ) = χw0(−λ) = χ∗λ, the contragredient of χλ. Applying Ψ to
(11) therefore yields an equivalent expansion

(12) χλ e+Twe−J =
∑

v

P
w0(−λ)

v−1w−1(u) e+Tve
−
J ,

where v and w range over minimal representatives of regular double cosets Wf wWJ .

Proof of Theorem 5.9. It is equivalent to prove the same thing for the coefficients in (12).
Regard e+He−J as a submodule of He−J . For the latter, take the basis {Twe−J : w ∈ W J} from
§4. For v minimal in a regular double coset Wf vWJ , the basis element Tve

−
J of He−J occurs

with coefficient u−l(w0) in e+Tve
−
J , and with zero coefficient in every other standard basis

element e+Twe−J of e+He−J . Letting 〈−〉 stand for taking a coefficient, we therefore have

〈e+Tve
−
J 〉χλ e+Twe−J = ul(w0)〈Tve

−
J 〉χλ e+Twe−J = ul(w0)−l(w0τ(λ))〈Tve

−
J 〉Cw0τ(λ)Twe−J .

By the same reasoning as in §4, the last expression is equal to ul(w0)−l(w0τ(λ))〈TCv〉Cw0τ(λ)TCw,
and hence has the desired form by Corollary 3.9. �
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Remark 5.10. We can make the factor ul in the conclusion of Theorem 5.9 more explicit,
as follows. The elements of X ∩ A0 are called minuscule weights. Given λ ∈ X, define

lλ = l(τ(λπ)),

where λπ is the unique minuscule weight in the coset λ + Q. Let p be the composite of
the canonical homomorphisms W → W/Wa

∼= Π and Π ↪→ W → W/X ∼= Wf . Then
lλ = l(p(τ(λπ))) = l(p(τ(λ))).

Let 2ρ∨ be the sum of the positive co-roots. For λ ∈ X+ dominant, l(τ(λ)), which is
the number of affine hyperplanes separating A0 from A0 + λ, is equal to 〈2ρ∨, λ〉. Hence
l(τ(λ)) − lλ is even, since λ, λπ are both dominant and λ − λπ ∈ Q. For λ ∈ X+ we also
have that the product w0τ(λ) is reduced, giving l(w0)− l(w0τ(λ)) = −l(τ(λ)). The proof of
Theorem 5.9 then shows that ulλP λ

vw(u) ∈ Z[q±1]. Now, the twisted group algebra structure
H = Π · H(Wa) implies that if P λ

vw(u) 6= 0, then p(τ(λ)) = p(vw−1). Given v and w, we

therefore see that ul(p(vw−1))P λ
vw(u) is a polynomial in q±1 for all λ.

Remark 5.11. Let X++(L) = {λ ∈ X : 〈α∨i , λ〉 > 0 ∀i ∈ J} denote the set of weights
regular and dominant for the Levi subgroup L ⊆ G whose Weyl group is WJ . The definition
(7) canonically identifies W/Wf with X and hence WJ\W/Wf with WJ\X. Regular double
cosets correspond to regular WJ -orbits in X, each of which contains a unique element of
X++(L). Thus there is a canonical bijection

(13) X++(L) → (WJ\W/Wf )reg, λ 7→ WJ τ(λ)Wf .

By a formal q-character of G we shall mean a formal linear combination (typically infinite)
of the characters χλ, with coefficients in Z[q±1]. Given β, γ ∈ X++(L), let v ∈ WJ τ(β)Wf ,
w ∈ WJ τ(γ)Wf be the minimal representatives. Fixing v and w, we collect the coefficients
P λ

vw(u) in (11) for varying λ into a generating function:

LG
L,β,γ(q) = ulβ−γ

∑
λ

P λ
vw(u)χλ.

Since lβ−γ = l(p(vw−1)), Remark 5.10 shows that LG
L,β,γ(q) is a formal q-character.

Definition 5.12. The formal q-characters LG
L,β,γ(q) are LLT polynomials associated to G

(this terminology will be justified in §6).

Remark 5.13. Specializing at u = 1 identifies He+ = Ye+ with the group algebra ZX. We
denote λ ∈ X by the multiplicative notation yλ when regarded as an element of ZX. Fix
ρL ∈ X such that 〈α∨i , ρL〉 = 1 for i ∈ J , so X++(L) = X+(L) + ρL. Given β ∈ X+(L), let v
be the minimal representative of WJ τ(β + ρL)Wf . Then e−J Tve

+ specializes at u = 1 to

aβ+ρL
=
def

∑
w∈WJ

(−1)l(wJ
0 )−l(w)yw(β+ρL) = χβ(L)aρL

.

It follows that the coefficient P λ
vw(1) of χλ in LG

L,β+ρL,γ+ρL
(1) is equal to the multiplicity of

χβ(L) in χγ(L)⊗ (χλ|L), a fact which can be interpreted as an identity of formal characters

LG
L,β+ρL,γ+ρL

(1) = IndG
L(χβ(L)⊗ χγ(L)∗).
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We should point out that for β, γ ∈ X+(L) fixed, the q-character LG
L,β+ρL,γ+ρL

(q) depends

on the choice of ρL, even though LG
L,β+ρL,γ+ρL

(1) does not. In §7, we will see how to express

LG
L,β,γ(q) as a finite linear combination, depending on ρL, of certain other formal induced

q-characters IndG
L,q−1(χµ(L)) for µ ∈ X+(L), whose definition does not involve ρL.

6. Comparison with combinatorial LLT polynomials

In this section we show that the LLT polynomials LG
L,β,γ(q) for G = GLn coincide (after

minor adjustments) with the polynomials defined combinatorially by Lascoux, Leclerc and
Thibon (LL&T) [16]. In view of Theorem 5.9, it follows that the coefficients in the Schur
polynomial expansion of any combinatorial LLT polynomial are positive, as had been proven
in a special case by Leclerc and Thibon [17] and conjectured in general. Most of the ideas
used below can already be found in [16], [17], but we provide a self-contained exposition for
the reader’s convenience and in order to bring out those aspects which also apply to groups
other than GLn.

6.1. We shall describe a procedure (Corollary 6.4 and the discussion thereafter) for com-
puting the coefficients P λ

vw(u) in (11). To do this, we first need an alternative system for
indexing double cosets Wf wWJ . The notation here and below is the same as in §5.2.

Let η ∈ −X+ be an anti-dominant weight such that StabWf (η) = WJ and let k be an
integer such that

(a) k > −〈θ∨, η〉;
(b) Wf η ∩ (η + kX) = {η}.

Since Wf η is finite, any sufficiently large k satisfies these conditions. We indicate with a
raised dot the level −k action of W on X, in which Wf acts as usual, but translations are
dilated so that τ(λ) ·µ = µ−kλ. Condition (b) ensures that StabW (η) = WJ for this action.
Identify the coset space W/WJ with the orbit W · η. Then Wf\W/WJ is identified with the
set of Wf -orbits in W · η, regular double cosets correspond to regular orbits, and we get a
bijection

X++ ∩ (W · ν) → (Wf\W/WJ)reg, µ = w(η + kβ) 7→ Wf τ(−β)WJ .

The expression µ = w(η + kβ) = τ(w(−β))w · η is unique if we require w ∈ W J .
This bijection is related to the bijection X++(L) → (WJ\W/Wf )reg in (13) as follows.

Since µ ∈ X++, w ∈ W J , and 〈α∨i , η〉 = 0 for all i ∈ J , we see that β ∈ X++(L). Composing
our two bijections with the canonical bijection (Wf\W/WJ)reg

∼= (WJ\W/Wf )reg given by
Wf wWJ ↔ WJ w−1Wf , we have

µ ↔ Wf τ(−β)WJ ↔ WJ τ(β)Wf ↔ β.

6.2. Fix WJ , η and k as in §6.1. Given µ = w(η + kβ) ∈ W · η, where w ∈ W J , set
λ = w(−β), so µ = τ(λ)w · η, and define

V (µ) = Y λT ′
we−J ∈ He−J , |µ〉 = e+V (µ) ∈ e+He−J .
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It is clear from the Bernstein presentation (§5.3) that the V (µ) form a basis of He−J . Their
images |µ〉 span e+He−J and satisfy linear relations described by the following proposition.

Proposition 6.3. (i) For µ = w(η+kβ) ∈ X++∩(W ·η), where w ∈ W J , and v the minimal
element of Wf τ(−β)WJ , we have τ(w(−β))w = w0v and |µ〉 = ul(w0)e+T ′

ve
−
J .

(ii) The elements |µ〉 for all µ ∈ W ·η satisfy the following straightening relations. Assume
〈α∨i , µ〉 ≤ 0 for some i 6= 0 and set −〈α∨i , µ〉 = pk + r, where 0 ≤ r < k. Then

(14)


|µ〉 = 0 if p = r = 0, i.e., if siµ = µ

|µ〉 = −|siµ〉 if r = 0 and p > 0

|µ〉 = u−1|siµ〉 if r 6= 0 and p = 0

|µ〉 = u−1|siµ〉+ u−1|µ + rαi〉 − |siµ− rαi〉 if r 6= 0 and p > 0.

Proof. (i) Set λ = w(−β). Condition (a) in §6.1 implies that 〈α∨i , w(η)〉 < k for all i, and
since µ = w(η)− kλ is dominant, it follows that λ ∈ −X+. The product τ(λ)w is therefore
reduced for all w ∈ Wf , and consequently τ(λ)w is minimal in τ(λ)wWJ for w ∈ W J .
Condition (a) in §6.1 also implies that −η/k ∈ A0, hence −µ/k ∈ τ(λ)w(A0). Now −µ/k
is an interior point of −(XR)+, so τ(λ)w(A0) ⊆ −(XR)+, and therefore τ(λ)w is maximal
in Wf τ(λ)w as well as minimal in τ(λ)wWJ . Equivalently, τ(λ)w = w0v, where v is the
minimal element in Wf τ(λ)wWJ = Wf τ(−β)WJ , as claimed. Moreover, since −λ ∈ X+,

we have Y λ = T ′−1
τ(−λ) = T ′

τ(λ). In the equation τ(λ)w = w0v, each side is a reduced product,

hence V (µ) = T ′
τ(λ)we−J = T ′

w0
T ′

ve
−
J and |µ〉 = e+T ′

w0
T ′

ve
−
J = ul(w0)e+T ′

ve
−
J .

(ii) Using (9) one verifies that T ′
si

commutes with Y λ+Y si(λ) and that T ′
si
(Y λ+Y si(λ)+αi) =

(Y si(λ) + Y λ−αi)T ′−1
si

for all λ ∈ X. Since e+(T ′
si
− u) = 0, this yields the identities

e+(Y λ + Y si(λ))(T ′
si
− u)T ′

we−J = 0(15)

e+
(
(Y si(λ) + Y λ−αi)T ′−1

si
− u(Y λ + Y si(λ)+αi)

)
T ′

we−J = 0.(16)

The straightening relations follow by applying (15) for µ = w(η) − kλ such that siw > w,
and (16) for µ such that siw < w. �

For G = GLn, Proposition 6.3 is [17, Propositions 5.2, 5.9]. We alert the reader that our

u is −q in [17], our Y β is Y β, and our τ(λ) is yλ.
Using (12) and Proposition 6.3(i), we get the following expression for P λ

vw(u).

Corollary 6.4. Fix WJ , η and k as in §6.1.
(i) The elements |µ〉 for µ ∈ X++ ∩ (W · η) form a basis of e+He−J .
(ii) Let v, w be the minimal elements of regular double cosets WJ vWf , WJ wWf , and set

µ = w0v
−1 · η, ν = w0w

−1 · η. Then µ and ν belong to X++, and the coefficients in (11) are
given by

P λ
vw(u) = ul(w)−l(v)Qλ

µν(u), where χ∗λ |ν〉 =
∑

µ∈X++∩(W ·η)

Qλ
µν(u) |µ〉.
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To see how this is useful, note that if ν ∈ W ·η is not in X++, the straightening relations (14)
express |ν〉 in terms of elements |µ〉 such that µ < ν in the partial ordering on X = W/Wf

induced by the Bruhat order on W . Given χ =
∑

aλY
λ ∈ Z(H) = YWf with coefficients

aλ ∈ Z, we have χ = χ =
∑

aλY λ by Corollary 5.6, and hence

(17) χ |ν〉 =
∑

aλ |ν − kλ〉.

The right-hand side can now be expressed in terms of the basis {|µ〉 : µ ∈ X++ ∩ (W · η)} by
applying (14) recursively. When χ = χ∗λ, this computes the coefficients Qλ

µν in Corollary 6.4.

6.5. We now recall the combinatorially defined LLT polynomials from [16], [17]. A k-ribbon
is a connected skew Young diagram of size k, containing no 2 × 2 square. The spin of a
k-ribbon is the number of rows in it, less one. A horizontal k-ribbon strip is a skew shape κ
which can be tiled by k-ribbons in such a way that the bottom-right box in each ribbon is
the bottom box in a column of κ (we picture Young diagrams in the French orientation, with
the largest part of a partition in the bottom row of its diagram). The spin of κ is the sum
of the spins of the ribbons in its tiling, which is unique. A semistandard k-ribbon tableau of
shape µ/ν is a sequence of skew diagrams

ν = ν0 ⊆ ν1 ⊆ ν2 ⊆ · · · ⊆ µ

such that each νi/νi−1 is a (possibly empty) horizontal k-ribbon strip and νi = µ for some
i. One thinks of the ribbons in the tiling of νi/νi−1 as labelled with the integer i. The
set of semistandard k-ribbon tableaux of shape µ/ν is denoted SSRTk(µ/ν). Given T ∈
SSRTk(µ/ν), define

spin(T ) =
∑

i

spin(νi/νi−1),

xT = xβ1

1 xβ2

2 · · ·xβl

l where |νi/νi−1| = kβi.

For examples, see [17, Figs. 2–5].

Definition 6.6. Combinatorial LLT polynomials are the ribbon tableau generating functions

G
(k)
µ/ν(x; u) =

∑
T∈SSRTk(µ/ν)

uspin(T )xT .

6.7. Take G = GLn, X = Zn, so Wf = Sn acts by permuting coordinates. The dominant
weights λ such that λn ≥ 0 are just integer partitions (λ1 ≥ · · · ≥ λn) with possible trailing
zeroes. Their corresponding characters χλ are the polynomial characters.

Let WJ ⊆ Wf = Sn be a standard parabolic subgroup, i.e., a Young subgroup Sr1×· · ·×Srl
,

where J = {r1, r1 + r2, . . . , n− rl}. Suppose η ∈ X and k ∈ Z+ are such that

(18) −k < η1 = · · · = ηr1 < ηr1+1 = · · · = ηr1+r2 < · · · < ηn−rl+1 = . . . = ηn ≤ 0.

Then η, k and WJ satisfy the conditions in §6.1. Moreover, given k, every weight µ belongs
to W · η for some η satisfying (18)—namely, reduce µ (mod k) to a vector with entries in
[1− k, 0] and sort this into increasing order to get η.
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Define ρn = (0,−1, . . . , 1−n). If ν ⊆ µ are partitions with at most n parts such that µ/ν
is a k-ribbon, then µ + ρn is a permutation of ν + ρn + kεi for some unit vector εi. It follows
more generally that if µ/ν can be tiled by k-ribbons, then µ + ρn and ν + ρn belong to the
same orbit W · η.

Proposition 6.8. Let ν ⊆ µ be partitions with at most n parts such that µ/ν can be tiled by
k-ribbons. Put µ + ρn = v(η + kβ), ν + ρn = w(η + kγ), with η as in (18) and v, w ∈ W J ,
where WJ = StabSn(η) (if WJ = Sr1 × · · · × Srl

, this gives β, γ ∈ X++(L), where L =
GLr1 × · · · ×GLrl

). Setting q = u2 as always, we have

(19) G
(k)
µ/ν(x; u−1) = ul(vτ(−β))−l(wτ(−γ))−lβ−γLGLn

L,β,γ(q)pol,

where (
∑

λ aλχλ)pol =
∑

λn≥0 aλχλ denotes the truncation of a formal GLn character to poly-
nomial characters, and the polynomial character χλ is identified with the Schur polynomial
sλ(x).

Proposition 6.8 will be proven in §6.13. In the statement, x stands for an infinite alphabet

x1, x2, . . ., as it does also in the definition of G
(k)
µ/ν(x; u). Although it is more natural to identify

χλ with the Schur polynomial sλ(x1, . . . , xn) in n variables, the distinction is unimportant,

since in fact G
(k)
µ/ν(x, u) belongs to the vector space spanned by Schur polynomials sλ(x) such

that λ is a partition with at most n parts (this follows either from Proposition 6.8 itself or
from Lemma 6.12).

Corollary 6.9. The coefficients in the Schur polynomial expansion

u−mG
(k)
µ/ν(x; u) =

∑
λ

gλ,k
µ/ν(q)sλ(x),

where m = minT∈SSRTk(µ/ν)(spin(T )), are polynomials in q with non-negative coefficients.

This was conjectured in [16] and proved in [17, Theorem 4.1] in the case when ν is empty,
and more generally when ν is a k-core [7, Proposition 3.5.1].

Corollary 6.10. The coefficients K̃λµ(q, t) in the Schur polynomial expansion of the trans-
formed Macdonald polynomials (see, e.g., [8, §2] for definitions)

H̃µ(x; q, t) =
∑

λ

K̃λµ(q, t)sλ(x)

are polynomials in q and t with non-negative integer coefficients.

This follows from Corollary 6.9 and the expression for H̃µ(x; q, t) in terms of LLT poly-
nomials given in [6, Theorem 2.2, Proposition 3.4, and eq. (23)]. It was first proved in [8]
using a different method based on the geometry of Hilbert schemes.

6.11. As in [21], let ω be the involutory automorphism of the algebra of symmetric functions
in infinitely many variables such that ω(er) = hr and ω(sλ) = sλ′ , where er and hr denote,
respectively, the elementary and complete homogeneous symmetric functions of degree r,
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and λ′ denotes the transpose of a partition λ. The argument in the proof of [17, Theorem
6.4] also proves the following lemma.

Lemma 6.12. There holds the identity

ωG
(k)
µ/ν(x; u) = u(k−1)|µ/ν|/kG

(k)
µ′/ν′(x; u−1).

6.13. Proof of Proposition 6.8. Let Yi = Y εi , where εi is a unit vector, and denote er(Y
−1) =

er(Y
−1
1 , . . . , Y −1

n ) =
∑

|I|=r Y −εI , where we define εI =
∑

i∈I εi for any subset I ⊆ {1, . . . , n}.
By (17), we have

er(Y
−1) |ν + ρn〉 =

∑
|I|=r

|ν + ρ + kεI〉.

The vector ν̃ = ν + ρn + kεI satisfies ν̃j < ν̃i + k for all i < j. It follows that |ν̃〉 can
be straightened using only those relations in (14) for which p = 0. As in [16], a simple
combinatorial argument then yields∑

|I|=r

|ν + ρn + kεI〉 =
∑

µ

u−(k−1)r+spin(µ′/ν′) |µ + ρn〉,

where the last sum ranges over µ such that µ/ν is a horizontal k-ribbon strip of size kr. The

coefficient of any monomial xλ in G
(k)
µ′/ν′(x; u) is therefore given by

u−(k−1)|µ/ν|/k 〈xλ〉G(k)
µ′/ν′(x; u) =

〈
|µ + ρn〉

〉
eλ(Y

−1) |ν + ρn〉,

where eλ = eλ1 · · · eλm (this is the proof in [16] that G
(k)
µ′/ν′(x; u) is symmetric). De-

note the monomial symmetric functions by mλ. Using Lemma 6.12, the Cauchy identity∑
λ mλ(x)eλ(y) =

∑
λ sλ′(x)sλ(y) and the identification χ∗λ = sλ(Y

−1), we obtain

G
(k)
µ/ν(x; u−1) = u−(k−1)|µ/ν|/kωG

(k)
µ′/ν′(x; u) = ω

∑
λ

mλ(x)
〈
|µ + ρn〉

〉
eλ(Y

−1) |ν + ρn〉

=
∑

λ

sλ(x)
〈
|µ + ρn〉

〉
χ∗λ |ν + ρn〉.

Equation (19) then follows using Corollary 6.4(ii). �

6.14. We now recall an alternative combinatorial description of LLT polynomials from [7],
which we shall see leads to a more natural way to formulate Proposition 6.8.

We identify any skew Young diagram with a subset of Z × Z, and define the content
of the box (i, j) in row j, column i to be c((i, j)) = i − j. A skew shape with contents
is an equivalence class of skew Young diagrams up to content-preserving translations. Let
β = (β(1), . . . , β(k)) be a tuple of skew shapes with contents. Let

SSYT(β) = SSYT(β(1))× · · · × SSYT(β(k)).

be the set of tuples T = (T1, . . . , Tk), where Ti is a semistandard Young tableau of shape
β(i). We call T a semistandard Young tableau on the tuple of shapes β. Identifying β with
the disjoint union

⊔
i β

(i), we regard T as a function T : β → N. Its inversion number inv(T )
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is the number of pairs of boxes x ∈ β(i), y ∈ β(j) such that T (x) > T (y) and either: i < j
and c(x) = c(y), or j < i and c(y) = c(x) + 1. As usual, the weight of a tableau T is

xT =
∏
z∈β

xT (z).

Definition 6.15. New variant combinatorial LLT polynomials are the generating functions

Gβ(x; q) =
∑

T∈SSYT(β)

qinv(T )xT .

6.16. In order to relate the new variant LLT polynomials to the ones in Definition 6.6, we
must first recall something about k-cores and k-quotients. For additional information, see
[10], [21], [26].

A partition or its diagram µ is a k-core if there is no diagram ν ⊆ µ such that µ/ν is a
k-ribbon. Starting with any partition µ and then removing as many k-ribbons in succession
as possible leaves a k-core corek(µ), which depends only on µ and not on the order in which
ribbons are removed. Define the content of a k-ribbon to be the content of its lower-right box
(the box of maximal content). Given any k-core ν, there are exactly k partitions µ such that
µ/ν is a k-ribbon, and for each i = 1, . . . , k, there is one with content ci ≡ i− 1 (mod k).

If corek(µ) = ν, there is a unique k-tuple β = quotk(µ) of skew shapes with contents,
called the k-quotient of µ, such that (i) each β(i) is a partition diagram translated so that
the box at the origin has content (ci− i+1)/k, and (ii) the multiset of integers kc(x)+ i− 1
for i = 1, . . . , k and x ∈ β(i) is equal to the multiset of contents of the ribbons in any k-ribbon
tiling of µ/ν.2

If µ/ν can be tiled by k-ribbons, then corek(µ) = corek(ν) and quotk(ν) ⊆ quotk(µ), allow-
ing us to define quotk(µ/ν) = (β(1)/γ(1), . . . , β(k)/γ(k)), where β = quotk(µ), γ = quotk(ν).
As a tuple of skew shapes with contents, quotk(µ/ν) depends only on the skew shape with
contents µ/ν, not on the specific partitions µ and ν. The Stanton-White correspondence
[26] gives a weight-preserving bijection Q : SSRTk(µ/ν) → SSYT(quotk(µ/ν)). In [7] it was
shown that there is a constant e depending only on µ/ν such that spin(S) = −2 inv(Q(S))+e
for all S ∈ SSRTk(µ/ν), yielding the following result.

Proposition 6.17. Suppose µ/ν can be tiled by k-ribbons, and let quotk(µ/ν) = β/γ. Then
there is an integer e such that (with q = u2)

Gβ/γ(x; q) = ueG
(k)
µ/ν(x; u−1)

In particular, Gβ/γ(x; q) is a symmetric function, and by Corollary 6.9, the coefficients in
its Schur polynomial expansion are polynomials in q with non-negative coefficients.

The next proposition is [21, I, 1, Ex. 8(b)], adapted to our notational conventions.

Proposition 6.18. Define ρr = (0,−1, . . . , 1−r). Let µ be a partition with at most n parts,
set ν = corek(µ), and let c1, . . . , ck be the contents associated to ν as in §6.16. Let ri be

2Some authors define k-quotients using different conventions.
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the number of entries of µ + ρn that are congruent to i (mod k), and let η = (η1, . . . , ηn) be
the weakly increasing vector with ri entries equal to i− k, for each i = 1, . . . , k. With these
notations, we have:

(i) The numbers ri and the vector η depend only on corek(µ).
(ii) Let β = quotk(µ). Then β(i) is a translate of the diagram of a partition α(i) with at

most ri parts.
(iii) Let ai = (ci − i + 1)/k, so β(i) = ((ari

i ) + α(i))/(ari
i ). The concatenated vector

β̃ = (α(1) +(ar1
1 )+ρr1) | · · · | (α(k) +(ark

k )+ρrk
) has the property that µ+ρn is a permutation

of η + kβ̃.

Using Propositions 6.17 and 6.18, we can reformulate Proposition 6.8 as follows.

Corollary 6.19. Let G = GLn, Wf = Sn, WJ = Sr1 × · · · ×Srk
, so L = GLr1 × · · · ×GLrk

.
Define ρL = ρr1| · · · |ρrk

, where ρr = (0,−1, . . . , 1 − r). Given β, γ ∈ X+(L), write β =
β(1)| · · · |β(k), γ = γ(1)| · · · |γ(k), where β(i), γ(i) are weakly decreasing integer vectors of length
ri. Then there is an integer m such that

G(β(1)/γ(1),...,β(k)/γ(k))(x; q) = qmLGLn
L,β+ρL,γ+ρL

(q)pol.

Remark 6.20. Proposition 6.8 and Corollary 6.19 express combinatorial LLT polynomials
in terms of the formal q-characters LGLn

L,β,γ(q). This is also reversible. The coefficient of χλ

in LGLn
L,β,γ(q) is non-zero only when |λ| = |β| − |γ|, and it is clear from the structure of the

extended affine Hecke algebra that these coefficients coincide with those of LSLn

L′,β,γ(q), for the
Levi subgroup L′ of SLn with the same Weyl group WJ as L. Since the weight lattice of SLn

is the quotient of the weight lattice Zn of GLn by the subgroup of constant vectors (rn), it
follows that upon identifying χλ with sλ(x1, . . . , xn), we get an identity of LLT q-characters
for every integer s:

LGLn
L,β,γ(q) = (x1 · · ·xn)−sLGLn

L,β+(sn),γ(q).

Using Corollary 6.19, this yields a formula

LGLn
L,β,γ(q) = lim

s→∞

(
(x1 · · ·xn)−sqm(s)G((β(1)+(sr1 ))/γ(1),...,(β(k)+(srk ))/γ(k))(x1, . . . , xn; q)

)
.

The factors qm(s) are determined, up to an overall common factor qm, by the requirement
that the coefficient of each Schur polynomial sλ(x1, . . . , xn) in the argument of the limit is
eventually constant for large s.

7. Relation between LLT and generalized Hall-Littlewood polynomials

In this section we derive a formula (Theorem 7.6) expressing the LLT polynomial LG
L,β,γ(q),

for any G and L, as a finite linear combination of q-induced characters IndG
L,q−1(χµ(L))

known as generalized Hall-Littlewood polynomials (when L = T , the latter are dual forms of
the ordinary Hall-Littlewood polynomials associated to G). Our formula is well suited to
explicit calculation, and shows in particular that LG

L,β,γ(q) belongs to the space spanned by
dual Hall-Littlewood polynomials.
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We also give a criterion which in certain cases implies that an LLT polynomial
LG

L,β+ρL,γ+ρL
(q) is equal to a generalized Hall-Littlewood polynomial IndG

L,q−1(χβ(L) ⊗
χγ(L)∗). For G = GLn, we use this criterion to prove the conjecture of Shimozono and
Weyman mentioned in the introduction.

The methods of this section are purely algebraic and independent of the contents of §§2–4.
We make no use of our positivity theorems or the geometric realization of the affine Hecke
algebra H.

7.1. Fix G and L as in §5, with Weyl groups Wf ⊇ WJ and weight lattice X. We use the
multiplicative notation yλ for a weight λ ∈ X regarded as an element of the group algebra
Z[q±1]X. Let R+(L) be the set of positive roots of L, and define

∆L
q =

∏
α∈R+(L)

(1− qy−α), ∆L = ∆L
1 , ∆q = ∆G

q , ∆ = ∆1.

Let ∗ denote the involutory ring automorphism of Z[q±1]X such that

q∗ = q−1, (yλ)∗ = y−λ.

We assume that X contains a weight ρL such that

(20) 〈α∨i , ρL〉 = 1 for all i ∈ J.

The choice of ρL is unique modulo WJ -invariant weights. We will mostly refer to ρL in
expressions which are independent of this choice, mentioning any exceptions explicitly.

Definition 7.2. Generalized Hall-Littlewood polynomials are the formal q-characters of G

(21) IndG
L,q−1(χµ(L)) =

∑
w∈Wf

w

(
yµ (∆L

q )∗

∆ ∆∗
q

)
,

where µ ∈ X+(L). We extend IndG
L,q−1(χ) linearly to all (virtual) characters χ of L.

Remarks 7.3. (a) It is conventional to extend the Weyl character formula and define

(22) χµ(L) =
∑

w∈WJ

w(yµ/∆L)

for all µ ∈ X. Then χµ(L) = 0 if µ + ρL is not regular for L, otherwise χµ(L) =
(−1)wχw(µ+ρL)−ρL

(L), where w ∈ WJ and w(µ + ρL) ∈ X++(L).
Since ∆L(∆L

q )∗/(∆ ∆∗
q) is WJ -invariant, the right-hand side of (21) is a function of the

expression in (22). In other words, the identity

IndG
L,q−1(

∑
w∈WJ

w(f/∆L)) =
∑

w∈Wf

w

(
f (∆L

q )∗

∆ ∆∗
q

)
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holds for f = yµ, hence for all f . If g is WJ -invariant, it follows that

(23) IndG
L,q−1(χµ(L) g) =

∑
w∈Wf

w

(
yµ g (∆L

q )∗

∆ ∆∗
q

)
.

(b) It is immediate that IndG
L,q−1(χµ(L)) is a formal power series in q−1 with finite G-

characters as coefficients.

(c) Define the generalized q-Kostant partition function by

PG
L (λ; q) =

def
〈y−λ〉

(
∆L

q /∆q

)
.

Then PG
L (λ; q) is the generating function enumerating multisets M of roots in R+(G)\R+(L)

such that λ =
∑

M , with weight q|M |. By the Weyl character formula, the coefficient of χλ

in IndG
L,q−1(χµ(L)) for any λ ∈ X+ is given by

(24) 〈χλ〉 IndG
L,q−1(χµ(L)) =

∑
w∈Wf

(−1)l(w)PG
L (w(λ + ρG)− ρG − µ; q−1).

In particular, since the sum is finite, IndG
L,q−1(χµ(L)) is a formal q-character, as asserted.

(d) The expression in (24) specializes at q = 1 to the multiplicty of χµ(L) in the restriction
χλ(G)|L. It is therefore natural to regard IndG

L,q−1(χµ(L)) as a q-induced character from L
to G, as our notation suggests.

(e) When L = T and µ ∈ X+, the expression in (24) is Lusztig’s q-analog of weight
multiplicity Kλµ(q−1). By Kato [12], the Kλµ(q) are the coefficients in the expansion of χλ

through the usual Hall-Littlewood polynomials Pµ(y; q) for G. In other words, the formal q-
characters IndG

T,q(y
µ) for µ ∈ X+ are the dual basis to the polynomials Pµ(y; q), with respect

to the standard inner product such that 〈χλ, χν〉 = δλν .

(f) Using the fact that (1− qy−αi)/∆q is si-invariant, one easily verifies the identity

IndG
T,q−1(yµ − q−1yµ+αi + ysi(µ)−αi − q−1ysi(µ)) = 0.

If 〈α∨i , µ〉 < 0, this expresses IndG
T,q−1(yµ) as a linear combination of other terms IndG

T,q−1(yν)
such that ν < µ in the Bruhat order on X = W/Wf . For every µ ∈ X, it follows that
IndG

T,q−1(yµ) lies in the subspace of all formal q-characters of G spanned by the dual Hall-

Littlewood polynomials IndG
T,q−1(yν) for ν ∈ X+. Expanding the factor (∆L

q )∗ in the numer-

ator of (21), we see that IndG
L,q−1(χµ(L)) also lies in this subspace, for every L and every

µ ∈ X.

(g) Let P ⊆ G be a parabolic subgroup with Levi factor L, V (µ) an irreducible L-module
regarded as a P -module, and Vµ the vector bundle G ×P V (µ) on G/P . Let T = T (G/P )
be the tangent bundle. The group G acts equivariantly on Vµ and T , while C∗ acts on T by
homotheties. Identifying the characters of C∗ with powers of q, we have

(25) IndG
L,q−1(χµ(L))∗ =

∑
i

(−1)i ch H i(G/P, V ∗
µ ⊗ Sym(T )),
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where ch denotes the character of a (G× C∗)-module.

(h) When L = T and µ ∈ X+, Hesselink [9] showed that the higher cohomology groups in
(25) vanish, as can also be seen using the Grauert–Riemenschneider vanishing theorem [5].
In particular, the coefficients Kλµ(q−1) = 〈χλ〉 IndG

T,q−1(yµ) for λ, µ ∈ X+ are positive. This

positivity also follows from the theorem of Kato [12] that Kλµ(q−1) is a power of q times
a Kazhdan-Lusztig polynomial for the affine Weyl group W . Our results below generalize
Kato’s theorem—see §7.14.

Broer (see [24, Conjecture 5]) conjectured that for µ ∈ X+, the higher cohomology
groups in (25) vanish for any L, and consequently that the generalized Kostka coefficients
KG

L,λ,µ(q−1) = 〈χλ〉 IndG
L,q−1(χµ(L)) are positive. For G = GLn, Shimozono and Weyman [24]

conjectured an explicit combinatorial rule for these coefficients. These conjectures remain
open.

7.4. Although everything we will define depends only on q = u2, we now take coefficients in
Z[u±1] for compatibility with §5, and keep the notation H, Y λ, Y , e+, e−J introduced there.
We identify Z[u±1]X with the left H-module Ye+, setting yλ = Y λe+. Formula (9) implies
that the H action is given explicitly by the Demazure–Lusztig operators

(26) Tsi
= qsi + (q − 1)

1

1− y−αi
(1− si) (i 6= 0).

For any λ ∈ X, let λ = w(λ+), where λ+ ∈ X+ and w ∈ Wf . Also, let λ = v(λ−), where
λ− ∈ −X+ and v is the minimal element of Wf with this property. Then define

(27)
Eλ = q−l(w)Tw(yλ+)

Fλ = Tv(y
λ−).

These formulae are normalized to make Eλ and Fλ “monic,” i.e., 〈yλ〉Eλ = 〈yλ〉Fλ = 1.
Since q−1Tsi

fixes yµ if siµ = µ, the formula for Eλ does not depend on the choice of w, but
the choice of v does affect the normalization of Fλ.

7.5. Fixing G and L, define

(28) (f ? g) = IndG
L,q−1

(∑
v,w∈WJ

(−1)l(vw)v(f)w(g∗)

∆L(∆L)∗

)
.

With the convention of Remark 7.3(a) about characters indexed by non-dominant weights,
(− ?−) can be characterized as the unique skew-bilinear function from Z[u±1]X × Z[u±1]X
to formal G-characters such that (yβ ?yγ) = IndG

L,q−1(χβ−ρL
(L)⊗χγ−ρL

(L)∗) for all β, γ ∈ X.

Theorem 7.6. With the above notation, there is an integer m (depending on β, γ) such that

(29) LG
L,β,γ(q) = qm(Eβ ? Fγ).

Corollary 7.7. The formal q-characters LG
L,β,γ(q) lie in the subspace spanned by the dual

Hall-Littlewood polynomials IndG
T,q−1(yµ), µ ∈ X+. In particular, LG

L,β,γ(q) is a Laurent series

in q−1 with finite G-characters as coefficients.
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Remark 7.8. It follows from the definitions that Fγ +Fsi(γ) and Eβ +qEsi(β) for 〈α∨i , β〉 ≥ 0
are si-invariant. Since (− ?−) is WJ -antisymmetric in each variable, we therefore have

(30) (Eβ ? Fγ) = (−1)l(v)(−q)l(u)(Eu(β) ? Fv(γ))

for β ∈ X+(L), γ ∈ X, and u, v ∈ WJ . In particular, (29) is equivalent to

(31) LG
L,β,γ(q) = (−1)l(wJ

0 )qm(Eβ ? FwJ
0 (γ)).

The latter is useful for computations because FwJ
0
(γ) typically has fewer terms than Fγ.

7.9. Proof of Theorem 7.6. The proof will be in three steps. First we interpret the coeffi-
cients of LG

L,β,γ(q) as matrix coefficients of χλ on the elements {e−J Fγ}. Next we show that

{Eλ} and {Fλ} are dual bases for a skew-bilinear inner product (−,−) on Z[u±1]X given
by an explicit formula. Finally we give a formula for the operator e−J acting on Z[u±1]X.
Combining these formulas will yield the formula asserted by the theorem.

To avoid bothering with stray powers of u and q in what follows, we write f ∼ g to mean
that f = umg for some integer m. Under the identification yλ = Y λe+, we have

Eλ ∼ Twe+ for w ∈ τ(λ)Wf(32)

Eλ ∼ Fλ.(33)

The first identity follows directly from the definitions, using the fact that for λ+ ∈ X+ and
w ∈ Wf , the product wτ(λ+) is reduced. For the second, let λ = v(λ−) = vw0(λ+), where
we assume that v is minimal. Then Eλ ∼ Tvw0Tτ(λ+)e

+ = TvTw0τ(λ+)e
+ ∼ TvTτ(λ−)e

+, and

(33) follows, since e+ = e+.
By (32), the coefficient 〈χλ〉LG

L,β,γ(q) is equal to the coefficient of e−J Eβ in χλe
−
J Eγ, times

a power of q independent of λ. Now, χλ = χλ by Corollary 5.6, and e−J = e−J , hence (33)
implies

LG
L,β,γ(q

−1) ∼
∑

λ

χλ · 〈e−J Fβ〉(χλ e−J Fγ).

Moreover, since β ∈ X++(L), we have

e−J Fβ = e−J Fβ = (−u)−l(wJ
0 )
∑

w∈WJ

(−q)l(w)T−1
w−1Fβ = (−u)−l(wJ

0 )
∑

w∈WJ

(−q)l(w)Fw(β),

and therefore

(34) LG
L,β,γ(q

−1) ∼ (−1)l(wJ
0 )
∑

λ

χλ · 〈Fβ〉(χλ e−J Fγ).

Next, define a skew-bilinear form (−,−)e on H by setting

(f, g)e = 〈T1〉(g̃ f),

where ·̃ is the Z-algebra anti-automorphism ofH such that ũ = u−1 and T̃w = T−1
w = Tw−1 for

w ∈ W . Define (−,−) to be the restriction of (1/Wf (q
−1))(−,−)e to Z[u±1]X = Ye+ ⊆ H,



24 I. GROJNOWSKI AND M. HAIMAN

where Wf (q
−1) =

∑
w∈Wf

q−l(w) = (e+, e+)e. We claim that

(Eβ, Fγ) = δβγ for all β, γ ∈ X;(35)

(f, g) = 〈1〉 (∆/∆q)
∗ g∗f for all f, g ∈ Z[u±1]X,(36)

where 1/∆∗
q is understood as a formal power series in the elements yαi (i 6= 0). Note that

only a finite number of terms of this series contribute to the value of (f, g).
For (35), recall that 〈T1〉(T ′

vT
′
w) = δv,w−1 in H, which implies (T ′

v, T
′
w)e = δvw. Then (32)

and (33) immediately imply (Eβ, Fγ) = 0 if β 6= γ. The value (Eβ, Fβ) = 1 will follow from
(36), since EβF ∗

β ≡ 1 modulo terms involving only yν with ν ∈ Q+ \ {0}. For a justification
of this last point, see (40)–(41) in §7.11, below.

To prove (36), it suffices to consider the case f = yβ, g = yγ, as both sides are skew-
bilinear. We have

(yβ, y0) = (Eβ, F0) = δβ,0 for β ∈ X+,

since (1, 1) = 1 by the normalization we chose for (−,−). The identity (Tsi
f, Tsi

g)e = (f, g)e
for all i (including i = 0) is immediate from the definition. This unitarity property implies

(yβ, yγ) = (yβ−γ, 1) for all β, γ ∈ X;

q(yλ, 1)− (yλ+αi , 1) + q(ysi(λ)−αi , 1)− (ysi(λ), 1) = 0 for i 6= 0 and all λ ∈ X.

To see this, use the unitarity of Y γ for the first identity, and apply (Tsi
f, 1) = (f, T−1

si
1) =

q(f, 1) with f = yλ(1− yαi) for the second. The three conditions above characterize (yβ, yγ)
uniquely. One checks directly that they also hold for the right-hand side of (36).

The third step in our proof is the following formula for e−J acting on Z[u±1]X:

(37) e−J = (−u)−l(wJ
0 )

∆L
q

∆L

∑
w∈WJ

(−1)l(w) w.

To prove it, first observe that if sif = f for some i ∈ J , or equivalently, Tif = qf , then
the operator on each side of (37) kills f . This given, it suffices to verify that if Tif = −f
for all i ∈ J , then the operator A on the right-hand side of (37) satisfies Af = e−J f =

(−u)−l(wJ
0 )WJ(q)f . One checks that Tif = −f if and only if h = ((1− y−αi)/(1− qy−αi)) f

satisfies sih = −h. This holds for all i ∈ J if and only if g = (∆L/∆L
q )f satisfies sig = −g

for all i ∈ J . Then ∑
w∈WJ

(−1)l(w)w(f) =

(∑
w∈WJ

w(∆L
q /∆L)

)
g = WJ(q) g

by Macdonald’s identity [20, (2.8)], which yields the desired value for Af .
Now we combine the preceding conclusions. First, (34) and (35) imply

LG
L,β,γ(q) ∼ (−1)l(wJ

0 )
∑

λ

χλ · (Eβ, χλe
−
J Fγ).
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Note that q−1 in (34) has been replaced by q because the functional (Eβ,−) is skew-linear.
The desired formula (29) follows once we establish the identity

〈χλ〉 IndG
L,q−1(χβ−ρL

(L)⊗ χγ−ρL
(L)∗) ∼ (−1)l(wJ

0 )(yβ, χλ e−J yγ)

with constant of proportionality independent of λ. To this end, note that the identity

〈χλ〉
∑

w∈Wf

w(f/∆) = 〈1〉(χλ∆)∗f

holds for all f , as one sees by taking f = yµ. Hence for any Wf -invariant g, we have

〈χλ〉 IndG
L,q−1(χµ(L) g) = 〈1〉(∆∆L

q /∆q)
∗χ∗λ yµg

in consequence of (23). Taking µ = β − ρL and g = χγ−ρL
(L)∗, this gives

〈χλ〉 IndG
L,q−1(χβ−ρL

(L)⊗ χγ−ρL
(L)∗) = 〈1〉

(
∆ ∆L

q

∆q ∆L

)∗
yβχ∗λ

∑
w∈WJ

(−1)l(w)y−w(γ)

= (−u)−l(wJ
0 )(yβ, χλ e−J yγ)

by (36) and (37), completing the proof. �

Remark 7.10. We should point out that Eλ and Fλ are non-symmetric Hall-Littlewood
polynomials, and that the argument in §7.9 is in essence a non-symmetric version of the
methods of Kato [12]. The Eλ and Fλ are also specializations of the non-symmetric Mac-
donald polynomials Eλ(y; q, t) as q → 0 or ∞, with t replaced by q−1, which gives another
way to see why (35) holds for the inner product defined by (36).

7.11. We conclude with a sufficient condition for Theorem 7.6 to yield an identity

(38) LG
L,β,γ(q) = qm IndG

L,q−1(χβ−ρL
(L)⊗ χγ−ρL

(L)∗)

between an LLT polynomial and a single generalized Hall-Littlewood polynomial. Let aL

denote the antisymmetrization operator

aLf =
∑

w∈WJ

(−1)l(w)w(f).

Since (f ? g) is a function of aLf and aLg, it is immediate from (31) that (38) will hold if

(39) aLEβ = aLyβ and aLFwJ
0 (γ) = aLywJ

0 (γ).

Our aim is to articulate a more combinatorial criterion that implies (39).
Define the support of an element f ∈ Z[u±1]X to be the set of weights with non-zero

coefficient in f ,

supp(f) = {µ ∈ X : 〈yµ〉f 6= 0}.
Given a subset U ⊆ X, all of whose elements belong to a single coset λ + Q of the root
lattice, let conv(U) denote the convex hull of U in λ + Q. In particular, for any λ ∈ X+, we
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have supp(χλ) = conv(Wλ). From (26) we see that supp(Tsi
yλ) ⊆ conv(λ, si(λ)) for all λ,

which implies

(40) supp(Twyλ) ⊆ conv({v(λ) : v ≤ w})
by induction on l(w). Note also that if λ ∈ X+, we have

(41) conv({v(λ) : v ≤ w}) ⊆ (w(λ) + Q+) ∩ conv(Wλ),

where Q+ ⊆ Q is the submonoid generated by the positive roots, since the set on the right
is convex and contains all the elements v(λ) on the left.

Definition 7.12. A regular dominant weight β ∈ X++(L) for L is L-quasi-dominant if

X++(L) ∩ (β + Q+) ∩ conv(Wβ) = {β}
(in particular, this holds if β is dominant for G).

Note that if (β + Q+) ∩ conv(Wβ) contains a weight µ, then it also contains the unique
weight µ+

L ∈ X+(L) ∩ WJ(µ). If β is L-quasi-dominant, it therefore follows that β is the
only L-regular weight in (β + Q+) ∩ conv(Wβ). Together with (40)–(41), this implies that
aLEβ = aLyβ. Similarly, if −γ is L-quasi-dominant, then aLFγ = aLyγ, yielding the following
result.

Proposition 7.13. Let β, γ ∈ X++(L) be such that β and −wJ
0 (γ) are both L-quasi-

dominant. Then there is an integer m such that

LG
L,β,γ(q) = qm IndG

L,q−1(χβ−ρL
(L)⊗ χγ−ρL

(L)∗).

Remark 7.14. When L = T , we can take γ = ρL = 0 and β ∈ X+ to see that the ordinary
dual Hall-Littlewood polynomial IndG

T,q−1(yβ) is a power of q times the LLT polynomial

LG
T,β,0(q), a result equivalent to Kato’s theorem mentioned in Remark 7.3(h). Our proof in

this case specializes to the one given by Kato.

We now apply the criterion in Proposition 7.13 to prove the following conjecture of Shimo-
zono and Weyman [24, §1, p. 258] equating certain generalized Hall-Littlewood polynomials
for GLn with LLT polynomials.

Theorem 7.15. Let G = GLn, L = GLr1 × · · · × GLrk
. Let µ ∈ X+ be WJ-invariant,

so µ = (mr1
1 , . . . ,mrk

k ), where m1 ≥ · · · ≥ mk, and assume mk ≥ 0. Let β/γ be a k-tuple
of rectangular Young diagrams with contents such that β(i)/γ(i) is a translate of (mri

i ), the
contents ai of the southwest corners of the rectangles β(i)/γ(i) are weakly increasing, and the
contents ai+mi−1 of their southeast corners are weakly decreasing. Then there is an integer
m such that

(42) IndGLn

L,q−1(χµ(L))pol = qmGβ/γ(x; q).

In fact, we will prove something stronger. Fix ρL = ρr1| · · · |ρrk
, where we set ρr =

(0,−1, . . . , 1 − r), as in Corollary 6.19. Let β(i) = (ari
i ) + (mri

i ), γ(i) = (ari
i ), where mi, ai
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are as in the statement of the theorem, and put β = β(1)| · · · |β(k), γ = γ(1)| · · · |γ(k). We will
show that even before trunctation to polynomial characters, there is an m such that

(43) IndGLn

L,q−1(χµ(L)) = qmLGLn
L,β+ρL,γ+ρL

(q)

for this particular choice of ρL. Then Corollary 6.19 gives (42). Note that χβ(L), χγ(L)
and χµ(L) are one-dimensional, and χµ(L) = χβ(L) ⊗ χγ(L)∗. Thus (43) is an immediate
consequence of Proposition 7.13 and the following lemma.

Lemma 7.16. Let G = GLn, let L and ρL = ρr1| · · · |ρrk
be as above, and let β =

(br1
1 )| · · · |(brk

k ), γ = (ar1
1 )| · · · |(ark

k ).
(i) If b1 ≥ · · · ≥ bk, then β + ρL is L-quasi-dominant.
(ii) if a1 ≤ · · · ≤ ak then −wJ

0 (γ + ρL) is L-quasi-dominant.

Proof. A weight λ ∈ X is L-quasi-dominant if and only if −w0(λ) is L1-quasi-dominant,
where L1 = w0(L) = GLrk

× · · · ×GLr1 . Hence (i) with L1 in place of L implies (ii).
For (i), set λ = β + ρL and suppose that µ ∈ X++(L) ∩ (λ + Q+) ∩ conv(Wλ). In

particular, µ ∈ λ+ −Q+, where λ+ is the dominant weight in the orbit Wλ. By hypothesis,
λ1 = maxi(λi) = (λ1)+. Hence µ1 = λ1, since µ ∈ (λ + Q+) ∩ (λ+ − Q+). The condition
µ ∈ X++(L) then implies µi ≤ λ1 − i + 1 = λi for i = 1, . . . , r1. Moreover, µ ∈ (λ + Q+)
implies an opposite inequality, µ1 + · · ·+ µj ≥ λ1 + · · ·+ λj, for all j, whence

(44) (µ1, . . . , µr1) = (λ1, . . . , λr1).

Let W ′ and Q′ be the Weyl group and root lattice of GLn−r1 , and set λ = (λr1+1, . . . , λn)
and µ = (µr1+1, . . . , µn). We claim that (44) implies µ ∈ (λ + Q′

+)∩ conv(W ′λ). This given,
the desired result µ = λ will follow by induction on k.

For the claim, recall that µ ∈ λ+Q+ if and only if |µ| = |λ| and µ1+· · ·+µj ≥ λ1+· · ·+λj

for all j. Then µ ∈ λ + Q′
+ is clear.

After perhaps adding a constant to all components of µ and λ, we can assume that µ+ and
λ+ are partitions. The condition µ ∈ conv(Wλ) is equivalent to µ+ ∈ λ+ − Q+, that is, to
µ+ ≤ λ+ in the standard “dominance” partial ordering on partitions. It is immediate from
the definition that the dominance ordering satisfies ν ≤ θ if and only if ν + (1m) ≤ θ + (1m).
Since transpose reverses dominance—that is, ν ≤ θ if and only if ν ′ ≥ θ′ [21, (1.11)]—it
follows that for any m we have ν ≤ θ if and only if (m, ν)+ ≤ (m, θ)+. Iterating this, we see
that µ+ ≤ λ+ implies µ

+
≤ λ+. Therefore µ ∈ conv(W ′λ), as claimed. �

Remark 7.17. Allowing G and L to be arbitrary once again, let α ∈ X+ be a dominant
weight for G. Suppose that there exists a choice of ρL satisfying (20) such that both α + ρL

and −wJ
0 (ρL) are quasi-dominant for L. In this case, Proposition 7.13 shows that

(45) IndG
L,q−1(χα(L)) = qmLG

L,α+ρL,ρL
(q),

and Theorem 5.9 then implies that the generalized Kostka coefficients 〈χλ〉 IndG
L,q−1(χα(L))

are positive, as predicted by the conjecture of Broer in Remark 7.3(h). However, examples
exist in which (45) does not hold for any choice of ρL.
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One such example is G = GL7, L = GL3 ×GL4, α = (3, 3, 2)|(2, 2, 1, 1). In this example,
even the truncation of (45) to polynomial characters fails for all choices of ρL, as one can
verify with the help of Theorem 7.6 and a computer. This example is not the simplest one
possible, but we have chosen it for its additional interesting property that IndG

L,q−1(χα(L))pol

is a k-split polynomial (with k = 5) in the sense of Lapointe and Morse [15], showing that
even these rather special generalized Hall-Littlewood polynomials do not always coincide
with LLT polynomials.
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