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Abstract
We prove the Extended Delta Conjecture of Haglund, Remmel, and Wilson, a combinatorial formula
for ∆hl∆

′
eken, where ∆′ek and ∆hl are Macdonald eigenoperators and en is an elementary symmetric

function. We actually prove a stronger identity of infinite series of GLm characters expressed in terms
of LLT series. This is achieved through new results in the theory of the Schiffmann algebra and its
action on the algebra of symmetric functions.
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1. Introduction

We prove the Extended Delta Conjecture of Haglund, Remmel and Wilson [14] by adapting
methods from our work in [2] on a generalized Shuffle Theorem and proving new results about
the action of the elliptic Hall algebra on symmetric functions. As in [2], we reformulate the
conjecture as the polynomial truncation of an identity of infinite series of GLm characters,
expressed in terms of LLT series. We then prove the stronger infinite series identity using a
Cauchy identity for non-symmetric Hall-Littlewood polynomials.

The conjecture stemmed from studies of the diagonal coinvariant algebra DRn in two sets
of n variables, whose character as a doubly graded Sn module has remarkable links with
both classical combinatorial enumeration and the theory of Macdonald polynomials. It was
shown in [17] that this character is neatly given by the formula ∆′en−1

en, where en is the n-th
elementary symmetric function, and for any symmetric function f , ∆′f is a certain eigenoperator
on Macdonald polynomials whose eigenvalues depend on f .

The Shuffle Theorem, conjectured in [13] and proven by Carlsson and Mellit in [4], gives a
combinatorial expression for ∆′en−1

en in terms of Dyck paths—that is, lattice paths from (0, n)
to (n, 0) that lie weakly below the line segment connecting these two points.

An expanded investigation led Haglund, Remmel and Wilson [14] to the Delta Conjecture,
a combinatorial prediction for ∆′eken, for all 0 ≤ k < n. This led to a flurry of activity
(e.g. [6, 11, 14, 15, 16, 21, 22, 23, 26, 28]), including a conjecture by Zabrocki [27] that ∆′eken
captures the character of the super-diagonal coinvariant ring SDRn, a deformation of DRn

involving the addition of a set of anti-commuting variables.
The Delta Conjecture has been extended in two directions. One gives a Compositional

generalization, recently proved by D’Adderio and Mellit [7]. The other involves a second
eigenoperator ∆hl , where hl is the l-th homogeneous symmetric function. The Extended Delta
Conjecture [14, Conjecture 7.4] is, for l ≥ 0 and 1 ≤ k ≤ n,

∆hl∆
′
ek−1

en = 〈zn−k〉
∑

λ∈Dn+l

P∈Ln+l,l(λ)

qdinv(P )tarea(λ)xwt+(P )
∏

i : ri(λ)=ri−1(λ)+1

(
1 + z t−ri(λ)

)
, (1)

in which λ is a Dyck path and P is a certain type of labelling of λ (see § 2 for full definitions).
D’Adderio, Iraci and Wyngaerd proved the Schröder case and the t = 0 specialization of the
conjecture [5, 6]; Qiu and Wilson [21] reformulated the conjecture and established the q = 0
specialization as well.

Let us briefly outline the steps by which we prove (1).
Feigin–Tsymbaliuk [8] and Schiffmann–Vasserot [25] constructed an action of the elliptic Hall

algebra E of Burban and Schiffmann [3] on the algebra of symmetric functions. The operators
∆f and ∆′f are part of the E action. In Theorem 4.4.1, we use this to reformulate the left hand
side of (1) as the polynomial part of an explicit infinite series of virtual GLm characters with
coefficients in Q(q, t). The proof of Theorem 4.4.1 relies on a symmetry (Proposition 4.3.3)
between distinguished elements of E introduced by Negut [19] and their transposes.
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In Theorem 5.1.1, we also reformulate the right hand side of (1) as the polynomial part of an
infinite series, in this case expressed in terms of the LLT series introduced by Grojnowski and
Haiman in [12]. This given, we ultimately arrive at Theorem 6.3.6—an identity of infinite series
of GLm characters which implies the Extended Delta Conjecture by taking the polynomial part
on each side.

Although the Extended Delta Conjecture and the Compositional Delta Conjecture both
imply the Delta Conjecture, they generalize it in different directions and our methods are
quite different from those of D’Adderio and Mellit. It would be interesting to know whether a
common generalization is possible.

2. The Extended Delta Conjecture

The Extended Delta Conjecture equates a “symmetric function side,” involving the action of
a Macdonald operator on an elementary symmetric function, with a “combinatorial side.” We
begin by recalling the definitions of these two quantities.

2.1. Symmetric function side

Integer partitions are written λ = (λ1 ≥ · · · ≥ λl), sometimes with trailing zeroes allowed. We
set |λ| = λ1 + · · ·+ λl and let `(λ) be the number of non-zero parts. We identify a partition λ
with its French style Ferrers shape, the set of lattice squares (or boxes) with northeast corner
in the set

{(i, j) | 1 ≤ j ≤ `(λ), 1 ≤ i ≤ λj}. (2)

The shape generator of λ is the polynomial

Bλ(q, t) =
∑

(i,j)∈λ

qi−1 tj−1. (3)

Let Λ = Λk(X) be the algebra of symmetric functions in an infinite alphabet of variablesX =
x1, x2, . . ., with coefficients in the field k = Q(q, t). We follow the notation of Macdonald [18]
for the graded bases of Λ. Basis elements are indexed by a partition λ and have homogeneous
degree |λ|. Examples include the elementary symmetric functions eλ = eλ1

· · · eλk , complete
homogeneous symmetric functions hλ = hλ1 · · ·hλk , power-sums pλ = pλ1 · · · pλk , monomial
symmetric functions mλ, and Schur functions sλ.

As is conventional, ω : Λ→ Λ denotes the k-algebra involution defined by ωsλ = sλ∗ , where
λ∗ denotes the transpose of λ, and 〈−,−〉 denotes the symmetric bilinear inner product such
that 〈sλ, sµ〉 = δλ,µ.

The basis of modified Macdonald polynomials, H̃µ(X; q, t), is defined [9] from the integral
form Macdonald polynomials Jµ(X; q, t) of [18] using the device of plethystic evaluation. For
an expression A in terms of indeterminates, such as a polynomial, rational function, or formal
series, pk[A] is defined to be the result of substituting ak for every indeterminate a occurring
in A. We define f [A] for any f ∈ Λ by substituting pk[A] for pk in the expression for f as a
polynomial in the power-sums pk, so that f 7→ f [A] is a homomorphism. The variables q, t from
our ground field k count as indeterminates. The modified Macdonald polynomials are defined
by

H̃µ(X; q, t) = tn(µ)Jµ

[
X

1− t−1
; q, t−1

]
, (4)
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where

n(µ) =
∑
i

(i− 1)µi . (5)

For any symmetric function f ∈ Λ, let f [B] denote the eigenoperator on the basis {H̃µ} of Λ
such that

f [B] H̃µ = f [Bµ(q, t)] H̃µ . (6)

The left hand side of (1) is expressed in the notation of [14], where ∆f = f [B] and ∆′f =
f [B − 1]. Hence, the symmetric function side of the Extended Delta Conjecture is

hl[B]ek−1[B − 1]en . (7)

2.2. The combinatorial side

The right hand side of the Extended Delta Conjecture (1) is a combinatorial generating function
that counts labelled lattice paths.

Definition 2.2.1. A Dyck path is a south-east lattice path lying weakly below the line segment
connecting the points (0, N) and (N, 0). The set of such paths is denoted DN . The staircase
path δ is the Dyck path alternating between south and east steps.

Each λ ∈ DN has area(λ) = |δ/λ| defined to be the number of lattice squares lying above λ
and below δ. Let ri(λ) be the area contribution from squares in the i-th row, numbered from
north to south; in other words, ri is the distance from the i-th south step of λ to the i-th south
step of δ. Note that

r1(λ) = 0, ri(λ) ≤ ri−1(λ) + 1 for i > 1, and

N∑
i=1

ri(λ) = |δ/λ| . (8)

Definition 2.2.2. A labelling P = (P1, . . . , PN ) ∈ NN attaches a label in N = {0, 1, . . .} to
each south step of λ ∈ DN so that the labels increase from north to south along vertical runs
of south steps, as shown in Figure 1. The set of labellings is denoted by LN (λ), or simply L(λ).
Given 0 ≤ l < N , a partial labelling of λ ∈ DN is a labelling where 0 occurs exactly l times
and never on the run at x = 0. We denote the set of these partial labellings by LN,l(λ).

Each labelling P ∈ L(λ) is assigned a statistic dinv(P ), defined to be the number of pairs
(i < j) such that either {

ri(λ) = rj(λ) and Pi < Pj or

ri(λ) = rj(λ) + 1 and Pi > Pj .
(9)

The weight of a labelling P is defined so zero labels do not contribute, by

xwt+(P ) =
∏

i∈[N ] : Pi 6=0

xPi . (10)

This is equivalent to letting x0 = 1 in xwt(P ) :=
∏
i∈[N ] xPi .

The above defines the right hand side of (1), with 〈zn−k〉 denoting the coefficient of zn−k.

Remark 2.2.3. In [14], a Dyck path is a north-east lattice path lying weakly above the line
segment connecting (0, 0) and (N,N), and labellings increase from south to north along vertical
runs. After reflecting the picture about a horizontal line, our conventions on paths, labellings,
and the definition of dinv(P ) match those in [14]. Separately, [13] uses the same conventions
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Figure 1. A path λ and partial labelling P ∈ L11,2(λ), with area(λ) = 10, dinv(P ) = 15,
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that we do for Dyck paths, but defines labellings to increase from south to north, and defines
dinv(P ) with the inequalities in (9) reversed. However, since the sum∑

P∈L(λ)

qdinv(P )xwt(P ) (11)

is a symmetric function [13], it is unchanged if we reverse the ordering on labels, after which
the conventions in [13] agree with those used here.

We prefer another slight modification based on the following lemma which was mentioned
in [14] without details.

Lemma 2.2.4. For any Dyck path λ ∈ DN , we have∏
1<i≤N

ri(λ)=ri−1(λ)+1

(
1 + z t−ri(λ)

)
=

∏
1<i≤N

ci(λ)=ci−1(λ)+1

(1 + z t−ci(λ)) , (12)

where ci(λ) = ri(λ
∗) is the contribution to |δ/λ| from boxes in the i-th column, numbered from

right to left.

Proof. The condition ri(λ) = ri−1(λ) + 1 means that λ has consecutive south steps in rows
i − 1 and i with no intervening east step. Similarly, ci(λ) = ci−1(λ) + 1 if and only if λ has
consecutive east steps in columns i−1 and i (numbered right to left). Consider the word formed
by listing the steps in λ in the southeast direction from (0, N) to (N, 0), as shown here for the
example in Figure 1.

S S S E S E E S S E E E S E S E S S E S E E

Treating south and east steps as left and right parentheses, each south step pairs with an east
step to its right, and we have ri(λ) = cj(λ) if the i-th south step (numbered left to right) pairs
with the j-th east step (numbered right to left). Furthermore, the leftmost member of each
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double south step pairs with the rightmost member of a double east step, as indicated in the
word displayed above.

Since each index i − 1 such that ri(λ) = ri−1(λ) + 1 pairs with an index j − 1 such that
cj(λ) = cj−1(λ) + 1, we have∏

1<i≤N
ri(λ)=ri−1(λ)+1

(1 + z t−ri−1(λ)−1) =
∏

1<j≤N
cj(λ)=cj−1(λ)+1

(1 + z t−cj−1(λ)−1) . (13)

Now (12) follows.

Setting N = n+ l and m = k+ l, the right hand side of (1), or the combinatorial side of
the Extended Delta Conjecture, is equal to

〈zN−m〉
∑
λ∈DN

P∈LN,l(λ)

t|δ/λ| qdinv(P ) xwt+(P )
∏

1<i≤N
ci(λ)=ci−1(λ)+1

(1 + z t−ci(λ)) . (14)

3. Background on the Schiffmann algebra E

From work of Feigin and Tsymbaliuk [8] and Schiffmann and Vasserot [25], we know that
the operators f [B] in (7) form part of an action of the elliptic Hall algebra E of Burban and
Schiffmann [3, 24], or Schiffmann algebra for short, on the algebra of symmetric functions.
In [2], we used this action to express the symmetric function side of a generalized Shuffle
Theorem as the polynomial part of an explicit infinite series of GLl characters. Here we derive
a similar expression (Theorem 4.4.1) for the symmetric function side (7) of the Extended Delta
Conjecture.

For this purpose, we need a deeper study of the Schiffmann algebra than we did in [2],
where a fragment of the theory was enough. We start with a largely self-contained description
of E and its action on Λ, although we occasionally refer to [2] for the restatements of results
from [3, 24, 25] in our notation, and for some proofs. A precise translation between our notation
and that of [3, 24, 25] can be found in [2, eq. (25)]. In the presentation of E and its action
on Λ, we freely use plethystic substitution, defined in §2.1. Indeed, the ability to do so is a
principal reason why we prefer the notation used here to that in the foundational papers on
the Schiffmann algebra.

3.1. Description of E

Let k = Q(q, t), as in §2. The Schiffmann algebra E is generated by a central Laurent polynomial
subalgebra F = k[c±11 , c±12 ] and a family of subalgebras ΛF (Xm,n) isomorphic to the algebra
of symmetric functions ΛF (X) over F , one for each pair of coprime integers (m,n). These are
subject to defining relations spelled out below.

For any algebra A containing a copy of Λ, there is an adjoint action of Λ on A arising from
the Hopf algebra structure of Λ. Using two formal alphabets X and Y to distinguish between
the tensor factors in Λ ⊗ Λ ∼= Λ(X)Λ(Y ), the coproduct and antipode for the Hopf algebra
structure are given by the plethystic substitutions

∆f = f [X + Y ], S(f) = f [−X]. (15)

The adjoint action of f ∈ Λ on ζ ∈ A is then given by

(Ad f) ζ =
∑
i

fi ζ gi, where f [X − Y ] =
∑
i

fi(X)gi(Y ), (16)
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since the formula on the right is another way to write (1⊗S)∆f =
∑
i fi⊗ gi. More explicitly,

we have

(Ad pn) ζ = [pn, ζ] and (Adhn) ζ =
∑

j+k=n

(−1)khj ζ ek. (17)

The last formula can be expressed for all n at once as a generating function identity

(Ad Ω[zX]) ζ = Ω[zX] ζ Ω[−zX], (18)

where

Ω(X) =

∞∑
n=0

hn(X). (19)

We fix notation for the quantities

M = (1− q)(1− t), M̂ = (1− (q t)−1)M, (20)

which play a role in the presentation of E and will be referred to again later.

3.1.1. Basic structure and symmetries

The algebra E is Z2 graded with the central subalgebra F in degree (0, 0) and f(Xm,n) in
degree (dm, dn) for f(X) of degree d in Λ(X).

The universal central extension ŜL2(Z)→ SL2(Z) acts on the set of tuples

{(m,n, θ) ∈ (Z2 \ 0)× R | θ is a value of arg(m+ in)}, (21)

lifting the SL2(Z) action on pairs (m,n), with the central subgroup Z generated by the ‘rotation

by 2π’ map (m,n, θ) 7→ (m,n, θ+2π). The group ŜL2(Z) acts on E by k-algebra automorphisms,
compatibly with the action of SL2(Z) on the grading group Z2. Before giving the defining

relations of E , we specify how ŜL2(Z) acts on the generators.
For each pair of coprime integers (m,n), we introduce a family of alphabets Xm,n

θ , one for
each value θ of arg(m+ in), related by

Xm,n
θ+2π = cm1 c

n
2X

m,n
θ . (22)

We make the convention that Xm,n without a subscript means Xm,n
θ with θ ∈ (−π, π]. For com-

parison, the implied convention in [2] is θ ∈ [−π, π). The subalgebra ΛF (Xm,n) = ΛF (Xm,n
θ )

only depends on (m,n) and so does not depend on the choice of branch for the angle θ. When we
refer to a subalgebra Λk(Xm,n), which does depend on the branch, the convention θ ∈ (−π, π]
applies.

The ŜL2(Z) action is now given by ρ · f(Xm,n
θ ) = f(Xm′,n′

θ′ ) for f(X) ∈ Λk(X) where

ρ ∈ ŜL2(Z) acts on the indexing data in (21) by ρ · (m,n, θ) = (m′, n′, θ′). Note that if m,n
are coprime, then so are m′, n′. The action on F factors through the action of SL2(Z) on the
group algebra k · Z2 ∼= F .

For instance, the ‘rotation by 2π’ element ρ ∈ ŜL2(Z) fixes F , and has ρ · f(Xm,n
θ ) =

f(Xm,n
θ+2π) = f [cm1 c

n
2X

m,n
θ ]. Thus ρ coincides with multiplication by cr1c

s
2 in degree (r, s), and

automatically preserves all relations that respect the Z2 grading.
We now turn to the defining relations of E . Apart from the relations implicit in F =

k[c±11 , c±12 ] being central and each ΛF (Xm,n) being isomorphic to ΛF (X), these fall into three
families: Heisenberg relations, internal action relations and axis-crossing relations.
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3.1.2. Heisenberg relations

Each pair of subalgebras ΛF (Xm,n) and ΛF (X−m,−n) in degrees along opposite rays in Z2

satisfy Heisenberg relations

[pk(X−m,−nθ ), pl(X
m,n
θ+π)] = δk,l k pk[(cm1 c

n
2 − 1)/M̂ ], (23)

where M̂ is given by (20). As an exercise, the reader can check, using (22), that the relations
in (23) are consistent with swapping the roles of ΛF (Xm,n) and ΛF (X−m,−n).

3.1.3. Internal action relations

The internal action relations describe the adjoint action of each ΛF (Xm,n) on E . For sim-
plicity, we write these relations, and also the axis-crossing relations below, with ΛF (X1,0)
distinguished. The full set of relations is understood to be given by closing the stated relations

under the ŜL2(Z) action.
Bearing in mind that Xm,n means Xm,n

θ with θ ∈ (−π, π], the relations for the internal
action of ΛF (X1,0) are:

(Ad f(X1,0)) p1(Xm,1) = (ωf)[z]
∣∣∣zk 7→ p1(Xm+k,1)

(Ad f(X1,0)) p1(Xm,−1) = (ωf)[−z]
∣∣∣zk 7→ p1(Xm+k,−1)

(24)

3.1.4. Axis-crossing relations

Again distinguishing ΛF (X1,0) and taking angles on the branch θ ∈ (−π, π], the final set of

relations is the closure under the ŜL2(Z) action of

[p1(Xb,−1), p1(Xa,1)] = −ea+b[−M̂X1,0]

M̂
for a+ b > 0. (25)

More generally, rotating this relation by π determines [p1(Xb,−1), p1(Xa,1)] for a+ b < 0, and
the Heisenberg relations determine it when a+ b = 0. Combining these gives

[p1(Xb,−1), p1(Xa,1)] = − 1

M̂


ea+b[−M̂X1,0] a+ b > 0

1− c−b1 c2 a+ b = 0

−c−b1 c2e−(a+b)[−M̂X−1,0] a+ b < 0 .

(26)

3.1.5. Further remarks

Define upper and lower half subalgebras E∗,>0, E∗,<0 ⊆ E to be generated by the ΛF (Xm,n) with

n > 0 or n < 0, respectively. Using the ŜL2(Z) image of the relations in (25), one can express

any ek[−M̂Xm,n] for n > 0 in terms of iterated commutators of the elements p1(Xa,1). This
shows that {p1(Xa,1) | a ∈ Z} generates E∗,>0 as an F -algebra. Similarly, {p1(Xa,−1) | a ∈ Z}
generates E∗,<0.

The internal action relations give the adjoint action of ΛF (X1,0) on the space spanned by
{p1(Xa,±1) | a ∈ Z}. Using the formula (Ad f)(ζ1ζ2) =

∑
((Ad f(1))ζ1)((Ad f(2))ζ2), where

∆f =
∑
f(1) ⊗ f(2) in Sweedler notation, this determines the adjoint action of ΛF (X1,0) on

E∗,>0 and E∗,<0. The Heisenberg relations give the adjoint action of ΛF (X1,0) on ΛF (X−1,0),
while ΛF (X1,0) acts trivially on itself, with (Ad f) g = f [1] g.

Together these determine the adjoint action of ΛF (X1,0) on the whole algebra E . By
symmetry, the same holds for the adjoint action of any ΛF (Xm,n).
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3.1.6. Anti-involution

One can check from the defining relations above that E has a further symmetry given by an
involutory anti-automorphism (product reversing automorphism)

Φ: E → E
Φ(g(c1, c2)) = g(c−12 , c−11 ), Φ(f(Xm,n

θ )) = f(Xn,m
π/2−θ).

(27)

Note that Φ is compatible with reflecting degrees in Z2 about the line x = y. Together with

ŜL2(Z) it generates a ĜL2(Z) action on E for which ρ ∈ ĜL2(Z) is an anti-automorphism if

ĜL2(Z)→ GL2(Z)
det→ {±1} sends ρ to −1.

3.2. Action of E on Λ

We write f• for the operator of multiplication by a function f to better distinguish between
operator expressions such as (ωf)• and ω · f•. For f a symmetric function, f⊥ denotes the
〈−,−〉 adjoint of f•.

Here and again later on, we use an overbar to indicate inverting the variables in any
expression; for example

M = (1− q−1)(1− t−1). (28)

We extend the notation in (6) accordingly, setting

f [B] H̃µ = f [Bµ(q−1, t−1)] H̃µ . (29)

Proposition 3.2.1 ([2, Prop 3.3.1]). There is an action of E on Λ characterized uniquely by
the following properties.
(i) The central parameters c1, c2 act as scalars

c1 7→ 1, c2 7→ (q t)−1. (30)

(ii) The subalgebras Λk(X±1,0) act as

f(X1,0) 7→ (ωf)[B − 1/M ], f(X−1,0) 7→ (ωf)[1/M −B]. (31)

(iii) The subalgebras Λk(X0,±1) act as

f(X0,1) 7→ f [−X/M ]•, f(X0,−1) 7→ f(X)⊥. (32)

We will make particular use of operators representing the action on Λ of elements p1(Xa,1)
and p1(X1,a) in E . For the first we need the operator ∇, defined in [1] as an eigenoperator on
the modified Macdonald basis by

∇H̃µ = tn(µ)qn(µ
∗)H̃µ, (33)

where n(µ) is given by (5) and µ∗ denotes the transpose partition.
For the second, we introduce the doubly infinite generating series

D(z) = ωΩ[z−1X]•(ωΩ[−zMX])⊥ , (34)

where Ω(X) is given by (19).
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Definition 3.2.2. For a ∈ Z, we define operators on Λ = Λk(X):

Ea = ∇ae1(X)•∇−a, (35)

Da = 〈z−a〉D(z). (36)

The operators Da are the same as in [2] and differ by a sign (−1)a from those in [1, 10].

Proposition 3.2.3. In the action of E on Λ given by Proposition 3.2.1:
(i) the element p1[−MX1,a] = −Mp1(X1,a) ∈ E acts as the operator Da;
(ii) the element p1[−MXa,1] = −Mp1(Xa,1) ∈ E acts as the operator Ea.

Proof. Part (i) is proven in [2, Prop 3.3.4].
By (32), p1[−MX0,1] acts on Λ as multiplication by p1[X] = e1(X). It was shown in [2,

Lemma 3.4.1] that the action of E on Λ satisfies the symmetry ∇f(Xm,n)∇−1 = f(Xm+n,n).
More generally, this implies ∇af(Xm,n)∇−a = f(Xm+an,n) for every integer a. Hence,
p1[−MXa,1] acts as ∇ap1[−MX0,1]∇−a = ∇ae1(X)•∇−a.

3.3. GLl characters and the shuffle algebra

As usual, the weight lattice of GLl is Zl, with Weyl group W = Sl permuting the coordinates.
A weight λ is dominant if λ1 ≥ · · · ≥ λl. A polynomial weight is a dominant weight λ such that
λl ≥ 0. In other words, polynomial weights of GLl are integer partitions of length at most l.

As in [2], §2.3, we identify the algebra of virtual GLl characters over k with the algebra of
symmetric Laurent polynomials k[x±11 , . . . , x±1l ]Sl . If λ is a polynomial weight, the irreducible
character χλ is equal to the Schur function sλ(x1, . . . , xl). Given a virtual GLl character f(x) =
f(x1, . . . , xl) =

∑
λ cλχλ, the partial sum over polynomial weights λ is a symmetric polynomial

in l variables, which we denote by f(x)pol (this is different from the polynomial terms of f(x)
considered as a Laurent polynomial). We use the same notation for infinite formal sums f(x)
of irreducible GLl characters, in which case f(x)pol is a symmetric formal power series.

The Weyl symmetrization operator for GLl is

σ(φ(x1, . . . , xl)) =
∑
w∈Sl

w

(
φ(x)∏

i<j(1− xj/xi)

)
. (37)

For dominant weights λ, the Weyl character formula can be written χλ = σ(xλ). More generally,
if φ(x) = φ(x1, . . . , xl) is a Laurent polynomial over any field k, then σ(φ(x)) is a virtual GLl
character over k.

The Hall-Littlewood symmetrization operator is defined by

Hl
q(φ(x)) = σ

(
φ(x)∏

i<j(1− q xi/xj)

)
. (38)

If φ(x) = φ(x1, . . . , xl) is a rational function over a field k containing Q(q), then Hl
q(φ(x))

is a symmetric rational function over k. If φ(x) is a Laurent polynomial, we can also regard
Hl
q(φ(x)) as an infinite formal sum of GLl characters with coefficients in k, by interpreting the

factors 1/(1− q xi/xj) as geometric series 1 + q xi/xj + (q xi/xj)
2 + · · · . We always understand

Hl
q(φ(x)) in this sense when taking the polynomial part Hl

q(φ(x))pol.
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We also use the two-parameter symmetrization operator

Hl
q,t(φ(x)) = Hl

q

φ(x)
∏
i<j

(1− q t xi/xj)
(1− t xi/xj)

 = σ

(
φ(x)

∏
i<j(1− q t xi/xj)∏

i<j

(
(1− q xi/xj)(1− t xi/xj)

)) . (39)

Again, if φ(x) is a rational function over k = Q(q, t), then Hl
q,t(φ(x)) is a symmetric rational

function over k, while if φ(x) is a Laurent polynomial, or more generally a Laurent polynomial
times a rational function which has a power series expansion in the xi/xj for i < j, we can also
interpret Hl

q,t(φ(x)) as an infinite formal sum of GLl characters, similarly to (39). This series

interpretation always applies when taking Hl
q,t(φ(x))pol.

Fixing k = Q(q, t) once again, let T = T (k[z±1]) be the tensor algebra on the Laurent poly-
nomial ring in one variable, that is, the non-commutative polynomial algebra with generators
corresponding to the basis elements za of k[z±1] as a vector space. Identifying Tm = Tm(k[z±1])
with k[z±11 , . . . , z±1m ], the product in T is given by ‘concatenation,’

f · g = f(z1, . . . , zk)g(zk+1, . . . , zk+l), for f ∈ T k, g ∈ T l. (40)

The Feigin-Tsymbaliuk shuffle algebra [8] is the quotient S = T/I, where I is the graded two-
sided ideal whose degree l component I l ⊆ T l is the kernel of the symmetrization operator
Hl
q,t in variables z1, . . . , zl, as explained further in [2, §3.5].
Let E+ ⊆ E be the subalgebra generated by the Λk(Xm,n) for m > 0. We leave out the

central subalgebra F , since the relations of E+ (as we will see in a moment) do not depend on
the central parameters.

The image of E+ under the anti-automorphism Φ in §3.1.6 is the subalgebra Φ(E+) generated
by the Λk(Xm,n) for n > 0. Note that our convention θ ∈ (−π, π] when the subscript is
omitted yields Φ(f(Xm,n)) = f(Xn,m) for Λk(Xm,n) ⊆ E+, since the branch cut is in the
third quadrant.

Schiffmann and Vasserot [25] proved the following result. See [2, §3.5] for more details on
the translation of their theorem into our notation.

Proposition 3.3.1 ([25, Theorem 10.1]). There is an algebra isomorphism ψ : S → E+ and an
anti-isomorphism ψop = Φ ◦ ψ : S → Φ(E+), given on the generators by ψ(za) = p1[−MX1,a]
and ψop(za) = p1[−MXa,1].

To be clear, on monomials in m variables, representing elements of tensor degree m in S,
the maps in Proposition 3.3.1 are given by

ψ(za11 · · · zamm ) = p1[−MX1,a1 ] · · · p1[−MX1,am ] (41)

ψop(za11 · · · zamm ) = p1[−MXam,1] · · · p1[−MXa1,1] (42)

Later we will need the following formula for the action of ψ(φ(z)) on Λ(X).

Proposition 3.3.2 ([2, Proposition 3.5.2]). Let φ(z) = φ(z1, . . . , zl) be a Laurent polynomial
representing an element of tensor degree l in S, and let ζ = ψ(φ(z)) ∈ E+ be its image under
the map in (41). With E acting on Λ as in Proposition 3.2.1, we have

ω(ζ · 1)(x1, . . . , xl) = Hl
q,t(φ(x))pol. (43)
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4. Schiffmann algebra reformulation of the symmetric function side

4.1. Distinguished elements Db and Ea

Negut [19] defined a family of distinguished elements Db ∈ E+, indexed by b ∈ Zl, which in
the case l = 1 reduce to the elements in Proposition 3.2.3(i). Here a remarkable symmetry
between these elements and their images Ea under the anti-involution Φ will play a crucial
role. After defining the Negut elements, we derive this symmetry in Proposition 4.3.3 with the
help of a commutator formula of Negut [20].

Definition 4.1.1 (see also [2, §3.6]). Given b = (b1, . . . , bl) ∈ Zl, set

φ(z) =
zb11 · · · z

bl
l∏l−1

i=1(1− q t zi/zi+1)
. (44)

and let ν(z) = ν(z1, . . . , zl) be a Laurent polynomial satisfying Hl
q,t(ν(z)) = Hl

q,t(φ(z)). Such a
ν(z) exists by [19, Proposition 6.1], and represents a well-defined element of the shuffle algebra
S. The Negut element Db and the transposed Negut element Ea, where a = (bl, . . . , b1) is the
reversed sequence of indices, are defined by

Db = Db1,...,bl = ψ(ν(z)) ∈ E+ (45)

Ea = Ebl,...,b1 = Φ(Db) = ψop(ν(z)) ∈ Φ(E+). (46)

We should point out that, strictly speaking, the Negut elements in the case l = 1 are defined
to be elements Da = p1[−MX1,a] and Ea = p1[−MXa,1] of E , while in Definition 3.2.2, we
used the notation Da and Ea for operators on Λ. However, by Proposition 3.2.3, these Negut
elements act as the operators with the same name, so no confusion should ensue.

Later we will use the following product formulas, which are immediate from Definition 4.1.1.

Db1,...,bl Dbl+1,...,bn = Db1,...,bn − q tDb1,...,bl+1,bl+1−1,...,bn , (47)

Ean,...,al+1
Eal,...,a1 = Ean,...,a1 − q tEan,...,al+1−1,al+1,...,a1 . (48)

As noted in §3.1.5, the internal action relations determine the action of Λk(X0,1) on Φ(E+).
Using the anti-isomorphism between Φ(E+) and the shuffle algebra we can make this more
explicit.

Lemma 4.1.2. Let φ(z) = φ(z1, . . . , zn) be a Laurent polynomial representing an element of
tensor degree n in S. Then

(Ad f(X1,0))ψop(φ(z)) = ψop
(
(ωf)(z1, . . . , zn) · φ(z)

)
. (49)

As a particular consequence, we have

(Ad f(X1,0))Ean,...,a1 = ψop

(
(ωf)(z1, . . . , zn) · za11 · · · zann∏n−1

i=1 (1− q t zi/zi+1)

)
. (50)

Proof. This follows immediately from the rule in §3.1.5 for Ad f acting on a product.

4.2. Commutator identity

We use a formula for the commutator of elements Da and Db, and a similar identity for Ea
and Eb. This commutation relation was proved geometrically by Negut in [20], but to keep
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things self-contained, we provide an elementary algebraic proof. It is convenient to express the
formula using the notation

b∑
i=a

#fi =


∑b
i=a fi for a ≤ b+ 1

−
∑a−1
i=b+1 fi for a ≥ b+ 1.

(51)

As a mnemonic device, note that both cases can be interpreted as
∑∞
i=a fi −

∑∞
i=b+1 fi.

Proposition 4.2.1 ([20, Proposition 4.7]). For any a ∈ Z and b = (b1, . . . , bl) ∈ Zl, we have

[Da, Db1,b2,...,bl ] = −M
l∑
i=1

bi∑
k=a+1

#Db1,...,bi−1,k,a+bi−k,bi+1,...,bl (52)

[Ebl,...,b2,b1 , Ea] = −M
l∑
i=1

bi∑
k=a+1

#Ebl,...,bi+1,a+bi−k,k,bi−1,...,b1 . (53)

We will need the following lemma for the proof. The notation Ω(X) is defined in (19). Since
plethystic substitution into Ω(X) is characterized by

Ω[a1 + a2 + · · · − b1 − b2 − · · · ] =

∏
i(1− bi)∏
i(1− ai)

, (54)

we have

Ω[Mz] =
(1− q z)(1− t z)
(1− z)(1− q t z)

and Ω[−Mz] =
(1− z)(1− q t z)
(1− q z)(1− t z)

. (55)

Lemma 4.2.2. For any f(z) = f(z1, . . . , zm) antisymmetric in zi and zi+1, we have

Hm
q,t

(
Ω[M zi/zi+1]f(z)

)
= 0 . (56)

Proof. The definition of Hm
q,t and (55) imply that

Hm
q,t

(
Ω[M zi/zi+1]f(z)

)
=
∑
w∈Sm

w

f(z)
∏
j 6=k

1

1− zj/zk

∏
j<k

(j,k) 6=(i,i+1)

Ω[−M zj/zk]

 , (57)

which vanishes since f(z) is antisymmetric in zi and zi+1.

Proof of Proposition 4.2.1. Identity (53) for [Ebl,...,b1 , Ea] follows from (52) by applying the
anti-homomorphism Φ, so we only prove (52), which can be written

DaDb −DbDa +M

l∑
i=1

bi∑
k=a+1

#Db1,...,bi−1,k,a+bi−k,bi+1,...,bl = 0. (58)

Using Definition 4.1.1 and the isomorphism ψ : S → E+, we can prove (58) by showing that a
rational function representing the left hand side is in the kernel of the symmetrization operator
Hl+1
q,t . For this we can work directly with the rational functions φ(z) in (44); there is no need

to replace them explicitly with Laurent polynomials having the same symmetrization.
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Let φ(z) be the function in (44) for Db, and set

φ(ẑi) = φ(z1, . . . , zi−1, zi+1, . . . , zl+1) =
zb11 · · · z

bi−1

i−1 z
bi
i+1 · · · z

bl
l+1

(1− q t zi−1/zi+1)
∏

1≤j≤l
j 6=i,i−1

(1− q t zj/zj+1)
. (59)

To prove (58), we want to show

Hl+1
q,t

(
za1φ(ẑ1)− φ( ˆzl+1)zal+1 +M

l∑
i=1

bi∑
k=a+1

#zb11 · · · z
bi−1

i−1 z
k
i z
a+bi−k
i+1 z

bi+1

i+2 · · · z
bl
l+1∏l

j=1(1− q t zj/zj+1)

)
= 0 . (60)

Since zai φ(ẑi)− φ(ẑi+1)zai+1 is antisymmetric in zi and zi+1, Lemma 4.2.2 implies

l∑
i=1

Hl+1
q,t

(
Ω[M zi/zi+1](zai φ(ẑi)− φ(ẑi+1)zai+1)

)
= 0 (61)

The first formula in (55) is algebraically the same as

Ω[M z] = 1− M

(1− z−1)(1− q t z)
.

After substituting this into (61), the linearity of Hl+1
q,t gives

Hl+1
q,t

( l∑
i=1

(
zai φ(ẑi)− φ( ˆzi+1)zai+1 −M

zai φ(ẑi)− φ( ˆzi+1)zai+1

(1− zi+1/zi)(1− q t zi/zi+1)

))
= 0. (62)

The terms zai φ(ẑi)− φ( ˆzi+1)zai+1 telescope, reducing this to

Hl+1
q,t

(
za1φ(ẑ1)− φ( ˆzl+1)zal+1 −M

l∑
i=1

zai φ(ẑi)− φ( ˆzi+1)zai+1

(1− zi+1/zi)(1− q t zi/zi+1)

)
= 0. (63)

If we use the convention z0 = 0 and zl+2 =∞, collecting terms in zai φ(ẑi) and some further
algebra manipulations give

l∑
i=1

zai φ(ẑi)− φ( ˆzi+1)zai+1

(1− zi+1

zi
)(1− q t zi

zi+1
)

=

l+1∑
i=1

[
1

(1− zi+1

zi
)(1− q t zi

zi+1
)
− 1

(1− zi
zi−1

)(1− q t zi−1

zi
)

]
zai φ(ẑi)

=

l+1∑
i=1

zai φ(ẑi)(1− q t zi−1

zi+1
)

(1− q t zi−1

zi
)(1− q t zi

zi+1
)

( 1

1− zi+1

zi

− 1

1− zi
zi−1

)

=

l+1∑
i=1

zai φ(ẑi)(1− q t zi−1

zi+1
)

(1− q t zi−1

zi
)(1− q t zi

zi+1
)
−
zai+1φ( ˆzi+1)(1− q t zi

zi+2
)

(1− q t zi
zi+1

)(1− q t zi+1

zi+2
)

1− zi+1

zi

.

Expanding the definition (59) of φ(ẑi) for each i yields

zai φ(ẑi)(1− q t zi−1/zi+1)

(1− q t zi−1/zi)(1− q t zi/zi+1)
=
zb11 · · · z

bi−1

i−1 z
a
i z
bi
i+1 · · · z

bl
l+1∏l

j=1(1− q t zj/zj+1)
,
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so that

l∑
i=1

zai φ(ẑi)− φ( ˆzi+1)zai+1

(1− zi+1/zi)(1− q t zi/zi+1)
=

∑l
i=1 z

b1
1 · · · z

bi−1

i−1 ·
zai z

bi
i+1 − z

bi
i z

a
i+1

1− zi+1/zi
· zbi+1

i+2 · · · z
bl
l+1∏l

j=1(1− q t zj/zj+1)

=

−
∑l
i=1 z

b1
1 · · · z

bi−1

i−1 ·
( bi∑
k=a+1

#zki z
a+bi−k
i+1

)
· zbi+1

i+2 · · · z
bl
l+1∏l

j=1(1− q t zj/zj+1)

Identity (60) follows by substituting this back into (63).

4.3. Symmetry identity for Db and Ea

Next we will prove an identity between certain instances of the Negut elements Db ∈ E+ and
transposed Negut elements Ea ∈ Φ(E+). Before stating the identity we need to describe how
the indices a and b will correspond.

Definition 4.3.1. A south-east lattice path γ from (0, n) to (m, 0), for positive integers m,n,
is admissible if it starts with a south step and ends with an east step; that is, γ has a step
from (0, n) to (0, n − 1) and one from (m − 1, 0) to (m, 0). Define b(γ) = (b1, . . . , bm) by
taking bi = (vertical run of γ at x = i− 1) for i = 1, . . . ,m and a(γ) = (an, . . . , a1) with
aj = (horizontal run of γ at y = j − 1) for j = 1, . . . , n. Set Dγ = Db(γ) and Eγ = Ea(γ).

Note that if γ∗ is the transpose of an admissible path γ with b(γ) = (b1, . . . , bm) and a(γ) =
(an, . . . , a1), as above, then a(γ∗) = (bm, . . . , b1) and b(γ∗) = (a1, . . . , an), and Eγ = Φ(Dγ∗).

Example 4.3.2. Paths γ and γ∗ below are both admissible. γ is from (0, 8) to (4, 0) with
b(γ) = (2, 1, 3, 2) and a(γ) = (0, 1, 1, 0, 0, 1, 0, 1), whereas γ∗ is from (0, 4) to (8, 0) and has
a(γ∗) = (2, 3, 1, 2) and b(γ∗) = (1, 0, 1, 0, 0, 1, 1, 0).

γ

γ∗

Proposition 4.3.3. For every admissible path γ we have Dγ = Eγ .

Proof. Let γ be an admissible path γ from (0, n) to (m, 0), where m,n are positive integers.
We first establish the case when n = 1. In this case, Eγ = Em = p1[−MXm,1] and

Dγ = D10m−1 . If m = 1, these are E1 = D1 = p1[−MX1,1]. In general, (24) implies Em =
p1[−MXm,1] = (Ad p1(X1,0))m−1p1[−MX1,1] = (Ad p1(X1,0))m−1D1, while (17) and the
commutator identity (52) imply (Ad p1(X1,0))D10k = [p1(X1,0), D10k ] = −(1/M)[D0, D10k ] =
D10k+1 , and therefore (Ad p1(X1,0))m−1D1 = D10m−1 .

Using the involution Φ, we can deduce the m = 1 case from the n = 1 case:

Dγ = Dn = Φ(En) = Φ(D1,0n−1) = E0n−1,1 = Eγ . (64)
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For m,n > 1, we proceed by induction, assuming that the result holds for paths from (0, n′)
to (m′, 0) when m′ ≤ m and n′ ≤ n and (m′, n′) 6= (m,n).

For a given m,n, there are finitely many admissible paths γ, and thus a finite dimensional
space V of linear combinations

∑
γ cγDγ involving these paths. Let V ′ ⊆ V denote the subspace

consisting of linear combinations which form the left hand side of a valid instance of the identity

∑
γ

cγDγ =
∑
γ

cγEγ . (65)

Note that V ′ = V if and only if Dγ = Eγ for all the paths γ in question.
We will use the induction hypothesis to construct enough instances of (65) to reduce each

Dγ modulo V ′ to a scalar multiple of Dγ0 , where γ0 is the path with a south run from (0, n)
to (0, 0) followed by an east run to (m, 0). We will then prove one more instance of (65) for
which the left hand side reduces to a non-zero scalar multiple of Dγ0 , showing that V ′ = V .

Suppose now that γ 6= γ0. Then γ contains an east step from (m1− 1, n2) to (m1, n2) and a
south step from (m1, n2) to (m1, n2−1) for some m1 +m2 = m and n1 +n2 = n. In particular,
γ = ν · η for shorter admissible paths ν and η, where ν · η is defined to be the lattice path
obtained by placing ν and η end to end; thus ν · η traces a copy of ν from (0, n1 + n2) to
(m1, n2) and then traces a copy of η from (m1, n2) to (m1 +m2, 0).

Define γ′ = ν ·′ η to be the admissible path obtained from ν · η by replacing the east-south
corner at (m1, n2) with a south-east corner at (m1 − 1, n2 − 1); γ′ contains a south step from
(m1 − 1, n2) to (m1 − 1, n2 − 1) and an east step from (m1 − 1, n2 − 1) to (m1, n2 − 1).

The product formulas (47) and (48) imply that the elements corresponding to the paths
constructed in this way satisfy

DνDη = Dν·η − q tDν·′η and EνEη = Eν·η − q tEν·′η . (66)

By induction, Dν = Eν and Dη = Eη, so (66) implies Dγ − q tDγ′ = Eγ − q tEγ′ . In other
words, in terms of the space V ′ defined above, we have Dγ ≡ q tDγ′ (mod V ′). Using this
repeatedly, we obtain Dγ ≡ (q t)h(γ)Dγ0 (mod V ′) for every path γ, where h(γ) is the area
enclosed by the path γ and the x and y axes.

To complete the proof it suffices to establish one more identity of the form (65), for which
the congruences Dγ ≡ (q t)h(γ)Dγ0 (mod V ′) reduce the left hand side to a non-zero scalar
multiple of Dγ0 .

We can assume by induction that Dn,0m−2 = E0n−1,m−1, since this case has the same n and
a smaller m. Taking the commutator with p1(X1,0) on both sides gives

− 1

M
[D0, Dn,0m−2 ] = [p1(X1,0), Dn,0m−2 ] = (Ad p1(X1,0))E0n−1,m−1. (67)

Using (52) on the left hand side and (50) on the right hand side gives

n−1∑
k=0

D(n−k,k,0m−2) =

n−1∑
k=0

E(0n−1,m−1)+εn−k . (68)
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Now, for 1 ≤ k ≤ n − 1, we have D(n−k,k,0m−2) = Dγ and E(0n−1,m−1)+εn−k = Eγ for an
admissible path with h(γ) = k, as displayed below.

n− k

k

m− 1

This shows that (68) is an instance of (65). The previous congruences reduce the left hand side
of (68) to (1+q t+ · · ·+(q t)n−1)Dγ0 . Since the coefficient is non-zero, we have now established
a set of instances of (65) whose left hand sides span V .

Corollary 4.3.4. For any indices a1, . . . , al, we have

Eal,...,a2,a1 · 1 = Eal,...,a2,0 · 1. (69)

Proof. To rephrase, we are to show that Eal,...,a2,a1 · 1 does not depend on a1. The symmetry
f(Xm,n) 7→ f(Xm+rn,n) of Φ(E+) sends Eal,...,a1 to Eal+r,...,a1+r. By [2, Lemma 3.4.1], the
action of E on Λ satisfies ∇rf(Xm,n)∇−r = f(Xm+rn,n), and since ∇(1) = 1, this gives
∇rEal,...,a2,a1 · 1 = Eal+r,...,a2+r,a1+r · 1. Hence, we can reduce to the case that ai > 0 for all i.

By [2, Lemma 3.6.2], we have that Db1,...,bn,0,...,0 · 1 is independent of the number of trailing
zeroes. In the case that bi ≥ 0 for all i and b1 > 0, this and Proposition 4.3.3 imply that
Eal,...,a1 ·1 is independent of a1, provided that ai ≥ 0 for all i and a1 > 0. However, we already
saw that this suffices.

4.4. Shuffling the symmetric function side of the Extended Delta Conjecture

We can now give the promised reformulation of (7).

Theorem 4.4.1. For 0 ≤ l < m ≤ N , we have(
ω(hl[B]em−l−1[B − 1]eN−l)

)
(x1, . . . , xm) = Hm

q,t (φ(x))pol , (70)

where

φ(x) =
x1 · · ·xm∏

i(1− q t xi/xi+1)
hN−m(x1, . . . , xm)el(x2, . . . , xm), (71)

and el(x2, . . . , xm) = el(x
−1
2 , . . . , x−1m ) by our convention on the use of the overbar.

Proof. For any symmetric function f set g(X) = (ωf)[X + 1/M ]; then (31) gives an identity
in Λ for every ζ ∈ E

f [B] ζ · 1 = g(X1,0) ζ · 1 =
∑

((Ad g(1)(X
1,0)) ζ) g(2)(X

1,0) · 1, (72)

where g[X + Y ] =
∑
g(1)(X)g(2)(Y ) in Sweedler notation and we used the general formula

g ζ =
∑

((Ad g(1))ζ)g(2). Since g[X + Y ] = (ωf)[X + Y + 1/M ], and h[B] · 1 = h[0] · 1 for any
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h(X), the right hand side of (72) is equal to∑
((Ad (ωf)(1)(X

1,0)) ζ) (ωf)(2)[X
1,0 + 1/M ] · 1

=
∑

((Ad (ωf)(1)(X
1,0)) ζ) (ωf)(2)[0] · 1 = ((Ad (ωf)(X1,0)) ζ) · 1. (73)

Let n = N − l. Taking ζ = Ean,...,a1 and using (50), this gives

f [B]Ean,...,a1 · 1 = f(zn, . . . , z1)
∣∣∣ zrnn · · · zr11 7→ Ean+rn,...,a2+r2,a1+r1 · 1. (74)

By Corollary 4.3.4, the right hand side is a function of f(zn, . . . , z2, 1), since the substitution
for the monomial zr does not depend on the exponent r1. Expressing f(zn, . . . , z2, 1) as f [zn +
· · ·+ z2 + 1] and then substituting f [X − 1] for f(X) yields

f [B − 1]Ean,...,a1 · 1 = f [zn + · · ·+ z2]
∣∣∣ zrnn · · · zr22 7→ Ean+rn,...,a2+r2,a1 · 1. (75)

By [19, Proposition 6.7], E0n = Φ(D0n) = Φ(en[−MX1,0]) = en[−MX0,1] (see also [2,
Proposition 3.6.1]).

Using (75), we therefore obtain

ek−1[B − 1]en = ek−1[zn + · · ·+ z2]
∣∣∣ zrnn · · · zr22 7→ Ern,...,r2,0 · 1

=
∑
|I|=k−1

EεI ,0 · 1 =
∑
|I|=k−1

EεI ,1 · 1 , (76)

where the sum is over subsets I ⊆ [n − 1] and εI =
∑
i∈I εi. The terms in the last sum are

just Ea(ν) · 1 for paths ν from (0, n) to (k, 0) with single east steps on any k − 1 chosen lines
y = j for j ∈ [n − 1], and a final east step at y = 0. Denote the set of these admissible paths
by Pk,n. For instance, with n = 8 and k = 4, the path γ in Example 4.3.2 corresponds to
Eγ = E0,1,1,0,0,1,0,1.

By (74), applying hl[B] to (76) gives

hl[B]ek−1[B − 1]en =
∑

ν∈Pk,n

∑
r∈Nn
|r|=l

Er+a(ν) · 1 . (77)

This last expression is the sum of Eγ ·1 over admissible paths γ from (0, n) to (k+l, 0), together
with a choice of k − 1 indices j ∈ [n − 1] for which γ has at least one east step on the line
y = j. We can consider these indices as distinguishing k − 1 east-south corners in γ. However,
we can also distinguish these corners by their x coordinates, that is, by a set of k − 1 indices
i ∈ [k + l− 1] for which γ has at least one south step on the line x = i. Setting m = k + l and
using Proposition 4.3.3, this yields the identity

hl[B]em−l−1[B − 1]en =
∑

s∈Nm:|s|=n−k
I⊆[2,m],|I|=l

Ds+(1m)−εI · 1 . (78)

Now, since ∑
s∈Nm:|s|=n−k
I⊆[2,m],|I|=l

xs+(1m)−εI = x1 x2 · · ·xmhn−k(x1, . . . , xm)el(x2, . . . , xm) , (79)
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the definition of Db and Proposition 3.3.2 imply that

ω

( ∑
s∈Nm:|s|=n−k
I⊆[2,m],|I|=l

Ds+(1m)−εI · 1
)

(x1, . . . , xm) = Hm
q,t(φ(x))pol (80)

with φ(x) given by (71).

Remark 4.4.2. For any b ∈ Zm, [2, Corollary 3.7.2] gives that the Schur expansion of ω(Db ·1)
involves only sλ(X) with `(λ) ≤ m. Hence, although Theorem 4.4.1 is a statement in m
variables, it determines ω(hl[B]em−l−1[B − 1]eN−l) by (78).

5. Reformulation of the combinatorial side

5.1. Statement of the reformulation

We reformulate (14) by explicitly extracting the coefficient of zN−m. The most natural form
of the resulting expression involves a generating function Nβ/α for q-weighted tableaux rather
than partially labelled paths. For now, we work only with the tableau description of Nβ/α, but
in §6.2 we will see that Nβ/α is a truncation of an LLT series introduced by Grojnowski and
Haiman in [12].

The q-weight in our reformulation involves two auxiliary statistics: for η, τ ∈ Nm, define

d(η, τ) =
∑

1≤j<r≤m

∣∣[ηj , ηj + τj ] ∩ [ηr, ηr + τr − 1]
∣∣ , (81)

with [a, b] = {a, . . . , b} and [b] = [1, b], and for a vector η of length n and I ⊆ [n], define

hI(η) = |{(r < s) : r ∈ I, s 6∈ I, ηs = ηr + 1}| , (82)

where (r < s) denotes a pair of positions (r, s) in η with 1 ≤ r < s ≤ n.
Our reformulation of (14) is stated in the following theorem, proven at the end of this section.

Theorem 5.1.1. For 0 ≤ l < m ≤ N , we have

〈zN−m〉
∑
λ∈DN

P∈LN,l(λ)

t|δ/λ|
∏

1<i≤N
ci(λ)=ci−1(λ)+1

(1 + z t−ci(λ))qdinv(P )xwt+(P )

=
∑

J⊆[m−1]
|J|=l

∑
τ,(0,a)∈Nm
|τ |=N−m

t|a|qd((0,a),τ)+hJ (a)N((0,a)+(1m)+τ)/((a,0)+εJ )(X; q) , (83)

where Nβ/α is given by Definition 5.2.1, below.

5.2. Definition of Nβ/α

For α, β ∈ Zl such that αj ≤ βj for all j, define β/α to be the tuple of single row skew shapes
(βj)/(αj) such that the x coordinates of the right edges of boxes a in the j-th row are the
integers αj + 1, . . . , βj . The boxes just outside the j-th row, adjacent to the left and right ends
of the row, then have x coordinates αj and βj + 1. We consider these two boxes to be adjacent
to the ends of an empty row, with αj = βj , as well.

Given a tuple of skew row shapes β/α, three boxes (u, v, w) form a w0-triple when box v is
in row r of β/α, boxes u and w are in or adjacent to a row j with j > r, and the x-coordinates
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S =

−∞ ∞1 3 4

−∞ ∞0

−∞ ∞

−∞ ∞3 5

−∞ ∞

−∞ ∞

−∞ ∞2

−∞ ∞1

−∞ ∞0 6

−∞ ∞4

−∞ ∞

Figure 2. For β = (12211123233), α = (11000121220), there are hw0(β/α) = 29 w0-triples in
β/α. The row strict tableau S of shape β/α has hw0(S) = 15 increasing w0-triples, xwt+(S) =
x21x2x

2
3x

2
4x5x6, and xwt(S) = x20x

2
1x2x

2
3x

2
4x5x6.

iu, iv, iw of these boxes satisfy iu = iv and iw = iv + 1. These triples are a special case of σ-
triples defined for any σ ∈ Sl in [2]. We denote the number of w0-triples in β/α by hw0

(β/α).
The reader can verify that

hw0
(β/α) =

∑
r<j

∣∣[αr + 1, βr] ∩ [αj , βj ]
∣∣ . (84)

For a totally ordered alphabet A, a row strict tableau of shape β/α is a map S : β/α → A
that is strictly increasing on each row. The set of these maps is denoted by RST(β/α,A). For
convenience, given α, β ∈ Zl with some αj > βj , we set RST(β/α,A) = ∅.

A w0-triple (u, v, w) is an increasing w0-triple in S if S(u) < S(v) < S(w), with the con-
vention that S(u) = −∞ if u is adjacent to the left end of a row of β/α, and S(w) = ∞ if w
is adjacent to the right end of a row. Let hw0

(S) be the number of increasing w0-triples in S.
For S ∈ RST(β/α,N), define

xwt+(S) =
∏

u∈β/α, S(u) 6=0

xS(u) and xwt(S) =
∏

u∈β/α

xS(u) . (85)

Definition 5.2.1. For α, β ∈ Nm, define

Nβ/α = Nβ/α(X; q) =
∑

S∈RST(β/α,Z>0)

qhw0
(S)xwt(S) . (86)

Note that if αj > βj for any j then Nβ/α = 0 by our convention that RST(β/α,A) = ∅.

Remark 5.2.2. It is shown in [2, Proposition 4.5.2] and its proof that, for α, β ∈ Nm, ωNβ/α is
a symmetric function whose Schur expansion involves only sλ where `(λ) ≤ m.
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5.3. Transforming the combinatorial side

To prove (83), we first associate each Dyck path with a tuple of row shapes recording vertical
runs.

Definition 5.3.1. The LLT data associated to a path λ ∈ DN is

β = (1, c2(λ) + 1, . . . , cN (λ) + 1) and α = (c2(λ), . . . , cN (λ), 0) ,

where ci(λ) counts lattice squares between λ and the line segment connecting (0, N) to (N, 0)
in column i, numbered from right to left, as in Lemma 2.2.4.

Figure 2 shows the LLT data β, α associated to the path λ in Figure 1. Note that βi (resp.
αi) is the furthest (resp. closest) distance from the diagonal to the path λ on the line x = N−i,
so that βi − αi is the number of south steps of λ on that line.

This association allows us to relate q-weighted sums over partial labellings to the Nβ/α.

Lemma 5.3.2. For λ ∈ DN and its associated LLT data α, β, we have∑
P∈LN,l(λ)

qdinv(P )xwt+(P ) =
∑

I⊆[N−1]
|I|=l

qhI(α)Nβ/(α+εI)(X; q) . (87)

Proof. There is a natural weight-preserving bijection mapping P ∈ LN (λ) to S ∈ RST(β/α,N),
where the labels of column x = i of P , read north to south, are placed into row N − i of β/α,
west to east. See Figures 1 and 2. Moreover, dinv(P ) = hw0

(S). To see this, let P̂ be the same
labelling as P but with the ordering on letters taken to be 0 > 1 > 2 · · · . It is proven in [2,
Proposition 6.1.1] that dinv1(P̂ ) = hw0

(S), where dinv1(P̂ ) was introduced in [13] and matches
dinv(P ) as discussed in Remark 2.2.3. The bijection restricts to a bijection from LN,l(λ) to the
subset of tableaux S ∈ RST(β/α,N) with exactly l 0’s, none in row N . This gives∑

P∈LN,l(λ)

qdinv(P )xwt+(P ) =
∑

I⊆[N−1]
|I|=l

∑
S∈RST(β/α,N)
0 in rows i∈I

qhw0
(S)xwt+(S) . (88)

The claim then follows from Definition 5.2.1 and the following Lemma.

Lemma 5.3.3. For α, β ∈ NN and S ∈ RST(β/α,N), let I ⊆ [N ] be the rows of S containing
a zero and let T be the tableau in RST(β/(α+ εI),Z>0) obtained by deleting all zeros from S.
Then

hw0
(T ) = hw0

(S)− hI(α) , (89)

where hI(α) is defined in (82).

Proof. Consider an increasing w0-triple (u, v, w) of S; the entries satisfy S(u) < S(v) < S(w),
v lies in some row r, and both u and w lie in a row j > r. When r 6∈ I, either j 6∈ I so that
(u, v, w) is an increasing w0-triple of T with the same entries as S, or j ∈ I and S(u) = 0
changes to T (u) = −∞ where still (u, v, w) is an increasing w0-triple of T . However, if r ∈ I,
S(v) = 0 changes to T (v) = −∞ and thus (u, v, w) is not an increasing w0-triple of T . Note
the increasing condition implies that this happens only when j 6∈ I and αr = αj − 1 since
S(u) < 0 < S(w). Thus (89) follows.

Definition 5.3.4. Given a = (a1, . . . , am−1) ∈ Nm−1 and τ = (τ1, . . . , τm) ∈ Nm, we define
two sequences βaτ and αaτ of length |τ |+m as follows.

The sequence βaτ is the concatenation of sequences (1, 2, . . . , τ1 + 1) and (ai−1 + 1, ai−1 +
2, . . . , ai−1+τi+1) for i = 2, . . . ,m. The sequence αaτ is the same as βaτ except in the positions
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corresponding to the ends of the concatenated subsequences. In these positions, we change the
entries τ1 + 1, a1 + τ2 + 1, . . . , am−1 + τm + 1 in βaτ to a1, a2, . . . , am−1, 0. Equivalently, αaτ

is the same as the sequence obtained by subtracting 1 from all entries of βaτ and shifting one
place to the left, deleting the first entry and adding a zero at the end.

Example 5.3.5. For a = (130012) and τ = (2311022),

(0,a) + (1m) + τ = ( 3 5 5 2 1 4 5)
βaτ = (1 2 3 2 3 4 5 4 5 1 2 1 2 3 4 3 4 5)
αaτ = (1 2 1 2 3 4 3 4 0 1 0 1 2 3 2 3 4 0)

(a, 0) = ( 1 3 0 0 1 2 0)

. (90)

The wider spaces show the division into blocks of size τi + 1. The last entry of αaτ in each
block is ai, and the next block in αaτ and βaτ starts with ai + 1.

Lemma 5.3.6. For 0 ≤ l < m ≤ N ,

〈zN−m〉
∑
λ∈DN

P∈LN,l(λ)

t|δ/λ|
∏

1<i≤N
ci(λ)=ci−1(λ)+1

(1 + z t−ci(λ)) qdinv(P )xwt+(P )

=
∑

I⊆[N−1]
|I|=l

∑
τ, (0,a)∈Nm
|τ |=N−m

t|a|qhI(αaτ )Nβaτ/(αaτ+εI)(X; q) . (91)

Proof. Use Lemma 5.3.2 to rewrite the left hand side of (91) as

〈zN−m〉
∑
λ∈DN

t|δ/λ|
∏

1<i≤N
ci(λ)=ci−1(λ)+1

(1 + z t−ci(λ))
∑

I⊆[N−1]
|I|=l

qhI(α)Nβ/(α+εI) (92)

where β = (1N ) + (0, c2(λ), . . . , cN (λ)), α = (c2(λ), . . . , cN (λ), 0) are the LLT data for λ. Note
that a tuple c = (c1, c2, . . . , cN ) ∈ NN is the sequence of column heights ci(λ) of a path λ ∈ DN

if and only if cs ≤ cs−1 + 1 for all s > 1 and c1 = 0; in this case, |δ/λ| = |c|. Replace DN

in (92) by these tuples, and expand the product to obtain

〈zN−m〉
∑

A⊆[N ]\{1}

∑
ci≤ci−1+1 ∀i

ci=ci−1+1 ∀i∈A

t|c|−
∑
i∈A ci z|A|

∑
I⊆[N−1]
|I|=l

qhI(α)Nβ/(α+εI)

=
∑

{1}⊆J⊆[N ]
|J|=m

∑
cj=cj−1+1 ∀j /∈J

t
∑
j∈J cj

∑
I⊆[N−1]
|I|=l

qhI(α)Nβ/(α+εI) , (93)

where the equality comes from re-indexing with J = [N ] \A and noting that we can drop the
condition cj ≤ cj−1 + 1 ∀j ∈ J because Nβ/(α+εI) = 0 if any (α+ εI)j ≥ αj > βj .

If we replace the sum over J by a sum over {τ ∈ Nm : |τ | = N −m} using J = {1, τ1 +
2, τ1 + τ2 + 3, . . . , τ1 + · · · + τm−1 + m}, then, for fixed J (or fixed τ), the sum over c can be
replaced by a sum over

c = (0, 1, 2, . . . , τ1, a1, a1 + 1, . . . , a1 + τ2, a2, . . . , am−1 + τm) (94)

for a ranging over Nm−1. Note that
∑
j∈J cj = |a|. With this encoding of c, we have β/α =

βaτ/αaτ in the notation of Definition 5.3.4, and (93) becomes the right hand side of (91).
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((0,a) + (1m) + τ)/(a, 0)

r

r − 1

.

.

.

j

βaτ/αaτ

r↑

y

(r − 1)↑

.

.

.

j↑

τr

Figure 3. Comparing the tuples of rows βaτ/αaτ and ((0,a) + (1m) + τ)/(a, 0) for a ∈ Nm−1
and τ ∈ Nm. Here aj = 2, ar−1 = 0, ar = 3, and τr = 5.

We make a final adjustment to the right hand side of (91). This sum runs over tuples
βaτ/(αaτ + εI) with |τ | necessarily empty rows which can be removed at the cost of a q factor.
We introduce some notation depending on a given a ∈ Nm−1, τ = (τ1, . . . , τm) ∈ Nm, and the
associated βaτ/αaτ from Definition 5.3.4. First we set j↑ = j +

∑
x≤j τx for j ∈ [m], so the

entry of βaτ in position j↑ is aj−1 + τj + 1, or τ1 + 1 if j = 1, and the entry of αaτ in the
same position is aj , or 0 if j = m. For a subset J ⊆ [m], we set J↑ = {j↑ : j ∈ J}. In positions
i 6∈ [m]↑, the sequences βaτ and αaτ agree, so row i is empty in βaτ/αaτ . The tuple of row
shapes obtained by deleting these empty rows from βaτ/αaτ is ((0,a) + (1m) + τ)/(a, 0), where
row j ∈ [m] corresponds to row j↑ of βaτ/αaτ ; note that rows (j − 1)↑ and j↑ are separated by
τj empty rows. See Figure 3.

Lemma 5.3.7. For J ⊆ [m], a ∈ Nm−1 and τ ∈ Nm, let I = J↑. Then

Nβaτ/(αaτ+εI) = qd((0,a),τ)−h
′
J (a,τ)N((0,a)+(1m)+τ)/((a,0)+εJ ) , (95)

where h′J(a, τ) = |{(j < r) : j ∈ J, r ∈ [m], aj ∈ [ar−1, ar−1 + τr − 1]}| with a0 = 0, and
d((0,a), τ) is defined by (81).

Proof. Set a0 = 0. We can assume aj + (εJ)j ≤ aj−1 + τj + 1 for all j ∈ [m] since otherwise
both sides of (95) vanish by Definition 5.2.1. Hence, each side is a q-generating function for
row strict tableaux on tuples of single row skew shapes; rows of βaτ/(αaτ +εI) on the left hand
side differ from the right hand side only by the removal of empty rows r 6∈ [m]↑. Thus, the two
sides agree up to a factor qd, where d counts w0-triples of βaτ/(αaτ +εI) involving one of these
empty rows.

To evaluate d, consider such an empty row (b)/(b), coming from b ∈ {ar−1+1, . . . , ar−1+τr}
for some r ∈ [m]. The adjacent boxes on the left and right of this empty row form a w0-
triple, increasing in every tableau, with one box in each non-empty lower row j↑, of the form
(aj−1 + τj + 1)/(aj + (εJ)j), such that b ∈ [aj + (εJ)j + 1, aj−1 + τj + 1]. Hence,

d =
∑

1≤j<r≤m

∣∣[aj + (εJ)j , aj−1 + τj ] ∩ [ar−1, ar−1 + τr − 1]
∣∣

=
∑

1≤j<r≤m

∣∣[aj , aj−1 + τj ] ∩ [ar−1, ar−1 + τr − 1]
∣∣− ∑

1≤j<r≤m
j∈J

∣∣{aj} ∩ [ar−1, ar−1 + τr − 1]
∣∣.
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The sum after the minus sign is h′J(a, τ). To prove that the remaining sum is d((0,a), τ), first
rewrite it as∑
1≤j<r≤m

(∣∣[aj ,∞) ∩ [ar−1, ar−1 + τr − 1]
∣∣− ∣∣[aj−1 + τj + 1,∞) ∩ [ar−1, ar−1 + τr − 1]

∣∣) , (96)

using the fact that aj ≤ aj−1 + τj + 1 by assumption. Next observe that since a0 = 0 ≤ ar−1,

∣∣[ar−1,∞) ∩ [ar−1, ar−1 + τr − 1]
∣∣ =

∣∣[a0,∞) ∩ [ar−1, ar−1 + τr − 1]
∣∣.

Adding
∑

1<j<r

∣∣[aj−1,∞) ∩ [ar−1, ar−1 + τr − 1]
∣∣ to both sides, it follows that

∑
1≤j<r

∣∣[aj ,∞) ∩ [ar−1, ar−1 + τr − 1]
∣∣ =

∑
1≤j<r

∣∣[aj−1,∞) ∩ [ar−1, ar−1 + τr − 1]
∣∣.

Hence (96) is unchanged upon replacing [aj ,∞) with [aj−1,∞) and is thus equal to

∑
1≤j<r≤m

∣∣[aj−1, aj−1 + τj ] ∩ [ar−1, ar−1 + τr − 1]
∣∣ = d((0,a), τ).

Proof of Theorem 5.1.1. Consider a summand t|a|qhI(αaτ )Nβaτ/(αaτ+εI) on the right hand side
of identity (91) for I ⊆ [N−1], a ∈ Nm−1, τ ∈ Nm. It vanishes unless I = J↑ for some J ⊆ [m−
1], sinceNβ/(α+εI) = 0 when (α+εI)i > βi for some index i. For I = J↑, we can use Lemma 5.3.7

to replace this summand with t|a|qd((0,a),τ)+hI(αaτ )−h′J (a,τ)N((0,a)+(1m)+τ)/((a,0)+εJ ).
It now suffices to prove that for α = αaτ ,

hI(α) = h′J(a, τ) + hJ(a) . (97)

We recall that N = m↑ and note that [N ]\I = ([N ]\[m]↑)t([m]↑\I) = ([N ]\[m]↑)t([m]\J)↑.
Hence, hI(α) = |{(x < y) : x ∈ I, y ∈ [N ] \ I, αy = αx + 1}| = |S1|+ |S2| for

S1 = {(x < y) : x ∈ J↑, y ∈ [N ] \ [m]↑, αy = αx + 1} ,
S2 = {(x < y) : x ∈ J↑, y ∈ ([m] \ J)↑, αy = αx + 1} .

Since αm↑ = 0 implies (x < m↑) 6∈ S2 for all x < m↑, we use that au = αu↑ for every u ∈ [m−1]
to see that

hJ(a) =
∣∣S2

∣∣ =
∣∣{(j < r) : j ∈ J, r ∈ [m− 1] \ J, ar = aj + 1}

∣∣ . (98)

Furthermore, {(j < r) : j ∈ J, r ∈ [m], ar−1+1 ≤ aj+1 ≤ ar−1+τr} and S1 are equinumerous,
as we can see by letting a pair (j < r) in the first set correspond to the pair (j↑ < y) in S1,
where y is the unique row index in the range (r−1)↑ < y < r↑ such that αy = αj↑+1 = aj +1,
as illustrated in Figure 3.
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6. Stable Unstraightened Extended Delta theorem

6.1. Overview

By Theorems 4.4.1 and 5.1.1, the Extended Delta Conjecture is equivalent to

Hm
q

(∏
i+1<j≤m(1− q t xi/xj)∏
i<j≤m(1− t xi/xj)

x1 · · ·xmhN−m(x1, . . . , xm)el(x2, . . . , xm)

)
pol

=
∑

J⊆[m−1]
|J|=l

∑
(0,a),τ∈Nm
|τ |=N−m

t|a|qd((0,a),τ)+hJ (a)
(
ωNβ/α

)
(x1, . . . , xm; q) , (99)

where β = (0,a) + (1m) + τ , α = (a, 0) + εJ , and
(
ωNβ/α

)
(x1, . . . , xm; q) is ωNβ/α(X; q)

evaluated in m variables.
Although this is an identity in only m variables, it does amount to the Extended Delta

Conjecture by Remarks 4.4.2 and 5.2.2: both ω(hl[B]em−l−1[B− 1]eN−l) and ωNβ/α(X; q) for
the α, β arising in (99) are linear combinations of Schur functions sλ with `(λ) ≤ m.

By Proposition 6.2.2 (below, proven in [2]), the functions ωNβ/α on the right hand side
of (99) are the polynomial parts of ‘LLT series’ introduced in [12], making each side of (99) the
polynomial part of an infinite series of GLm characters. We then prove (99) as a consequence
of a stronger identity between these infinite series.

Hereafter, we use x to abbreviate the alphabet x1, . . . , xm.

6.2. LLT series

We will work with the (twisted) non-symmetric Hall-Littlewood polynomials as in [2]. For a
GLm weight λ ∈ Zm and σ ∈ Sm, the twisted non-symmetric Hall-Littlewood polynomial
Eσλ (x; q) is an element of Z[q±1][x±11 , . . . , x±1m ] defined using an action of the Hecke algebra on
this ring; we refer the reader to [2, §4.3] for the precise definition, citing properties as needed.
We also have their variants

Fσλ (x; q) = Eσw0

−λ (x; q) , (100)

recalling that f(x1, . . . , xm; q) = f(x−11 , . . . , x−1m ; q−1).
For any weights α, β ∈ Zm and a permutation σ ∈ Sm, the LLT series Lσβ/α(x; q) =

Lσβ/α(x1, . . . , xm; q) is defined in [2, §4.4] by

〈χλ〉Lσ
−1

β/α(x; q−1) = 〈Eσβ 〉χλ · Eσα . (101)

Alternatively, [2, Proposition 4.4.2] gives the following expression in terms of the Hall-
Littlewood symmetrization operator in (38):

Lσβ/α(x; q) = Hm
q (w0(Fσ

−1

β (x; q)Eσ−1

α (x; q))) , (102)

where w0 denotes the permutation of maximum length here and after. We will only need the
LLT series for σ = w0 and σ = id, although most of what follows can be generalized to any σ.

In addition to the above formulas, we have the following combinatorial expressions for the
polynomial truncations of LLT series as tableau generating functions with q weights that count
triples. As usual, a semistandard tableau on a tuple of skew row shapes ν = β/α is a map
T : ν → [m] which is weakly increasing on rows. Let SSYT(ν) denote the set of these, and
define xwt(T ) =

∏
b∈ν xT (b).



26 Blasiak, Haiman, Morse, Pun, and Seelinger

Proposition 6.2.1 ([2, Remark 4.5.5 and Corollary 4.5.7]). If αi ≤ βi for all i, then

Lw0

β/α(x; q)pol =
∑

T∈SSYT(β/α)

qh
′
w0

(T )xwt(T ) , (103)

where h′w0
(T ) is the number of w0-triples (u, v, w) of β/α such that T (u) ≤ T (v) ≤ T (w).

Proposition 6.2.2 ([2, Proposition 4.5.2]). For any α, β ∈ Zm,

Lw0

β/α(x; q)pol =
(
ωNβ/α

)
(x; q) . (104)

6.3. Extended Delta Theorem

We now give several lemmas on non-symmetric Hall-Littlewood polynomials, then conclude by
using the Cauchy formula for these polynomials to prove Theorem 6.3.6, below, yielding the
stronger series identity that implies (99).

Lemma 6.3.1. For a ∈ Nm−1 and w0 ∈ Sm and w̃0 ∈ Sm−1 the permutations of maximum
length, we have

Ew0

(a,0)(x1, . . . , xm; q) = Ew̃0
a (x1, . . . , xm−1; q) (105)

Fw0

(0,a)(x1, . . . , xm; q) = F w̃0
a (x2, . . . , xm; q) . (106)

Proof. By [2, Lemma 4.3.4], we have Ew0

(a,0)(x1, . . . , xm; q) = Ew̃0
a (x1, . . . , xm−1; q)Eid(0)(xm; q)

and Eid(0,−a)(x1, . . . , xm; q) = Eid(0)(x1; q)Eid−a(x2, . . . , xm; q). The claim then follows from the

definition Fσa = Ew0σ
−a and noting that Eid(0)(xm; q) = 1 = F id(0)(x1; q).

Inverting all variables and specializing σ = w0 in [2, Lemma 4.5.1] yields the following
lemma.

Lemma 6.3.2. For l ≤ m, a ∈ Zm, we have

el(x)Ew0
a (x; q) =

∑
I⊆[m]:|I|=l

qhI(a)Ew0
a+εI (x; q) , (107)

where hI(a) = |{(i < j) | aj = ai + 1, i ∈ I, j /∈ I}|, as defined in (82).

Lemma 6.3.3. For every λ ∈ Zm and σ ∈ Sm, we have

Fσλ (x; q) = w0E
w0σ
w0λ

(x; q−1). (108)

Proof. The desired identity follows from

w0E
σ
λ (x−11 , . . . , x−1m ; q) = Ew0σw0

−w0λ
(x; q) (109)

by applying w0 to both sides, substituting σ 7→ σw0, λ 7→ −λ, and q 7→ q−1, and using the
definition of Fσλ .

To prove (109), we use the characterization of Eσλ (x; q) by the recurrence [2, (77)] and initial
condition Eσλ = xλ for λ dominant. The change of variables xµ 7→ x−w0(µ) replaces the Hecke
algebra operator Ti = Tsi in the recurrence with Tw0siw0

, giving a modified recurrence satisfied
by the left hand side of (109). It is straightforward to verify that the right hand side of (109)
satisfies the same modified recurrence. Since both sides reduce to x−w0(λ) for λ dominant, (109)
holds.
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Lemma 6.3.4. Given α, β ∈ Zm and a symmetric Laurent polynomial f(x1, . . . , xm), we have,
for any σ ∈ Sm,

〈Ew0σw0

w0β
(x; q−1)〉 f(x) · Ew0σw0

w0α (x; q−1) = 〈Fσ−α(x; q)〉 f(x) · Fσ−β(x; q). (110)

Proof. In fact, we will show that

〈Ew0σw0

w0β
(x; q−1)〉 f(x) · Ew0σw0

w0α (x; q−1) = 〈Fσ−α(x; q)〉w0(f(x)) · Fσ−β(x; q), (111)

even if we do not assume that f(x) is symmetric. By Lemma 6.3.3, the right hand side of (111)
is equal to

〈Ew0σ
−w0α(x; q−1)〉 f(x) · Ew0σ

−w0β
(x; q−1). (112)

By [2, Proposition 4.3.2], the functions Eσλ (x; q) and Eσw0

−λ (x; q) are dual bases with respect to
to the inner product 〈−,−〉q defined there. Moreover, it is immediate from the construction of
the inner product that multiplication by any f(x) is self-adjoint. This gives

〈f(x)Ew0σw0
w0α (x; q−1), Ew0σ

−w0β
(x; q−1)〉q−1 = 〈Ew0σw0

w0α (x; q−1), f(x)Ew0σ
−w0β

(x; q−1)〉q−1 , (113)

in which the left hand side is equal to the left hand side of (111), and the right hand side is
equal to (112).

Lemma 6.3.5. For w0 the maximum length permutation in Sm and η ∈ Nm, we have

hl(x)Fw0
η (x; q) =

∑
τ∈Nm
|τ |=l

qd(η,τ)Fw0
η+τ (x; q) , (114)

recalling from (81) that d(η, τ) =
∑
j<r

∣∣[ηj , ηj + τj ] ∩ [ηr, ηr + τr − 1]
∣∣.

Proof. Set α = −η − τ and β = −η. By (101) and Lemma 6.3.4 (with σ = w0), we have

〈hl(x)〉 Lw0

w0(β/α)
(x; q) = 〈Ew0

w0β
(x; q−1)〉hl(x)Ew0

w0α(x; q−1) = 〈Fw0
−α(x; q)〉hl(x)Fw0

−β(x; q). (115)

By specializing all but one variable in (103) to zero, Proposition 6.2.1 implies that the coefficient

of hl in Lw0

w0(β/α)
(x; q)pol is qh

′
w0

(T ) for T the semistandard tableau of shape w0(β/α) filled with

a single letter, where h′w0
(T ) is the number of w0-triples of w0(β/α) = w0(−η/(−η − τ)). By

(84), this number is d(η, τ).

Theorem 6.3.6. For 0 ≤ l < m ≤ N and w0 ∈ Sm the maximum length permutation, we have∏
i+1<j≤m(1− qtxi/xj)∏
i<j≤m(1− txi/xj)

x1 · · ·xmhN−m(x1, . . . , xm)el(x2, . . . , xm)

=
∑

(0,a),τ∈Nm
I⊆[m−1]

|τ |=N−m,|I|=l

t|a|qd((0,a),τ)+hI(a) w0

(
Fw0

(0,a)+τ+(1m)(x1, . . . , xm; q)Ew0

(a,0)+εI
(x1, . . . , xm; q)

)
.

Proof. Our starting point is the Cauchy formula [2, Theorem 5.1.1] for the twisted non-
symmetric Hall-Littlewood polynomials associated to any σ̃ ∈ Sm−1:∏

i<j<m(1− q t xi yj)∏
i≤j<m(1− t xi yj)

=
∑

a∈Nm−1

t|a|Eσ̃a (x1, . . . , xm−1; q−1)F σ̃a (y1, . . . , ym−1; q) . (116)
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Take σ̃ = w̃0 the maximum length permutation in Sm−1, replace xi by x−1i , and then let
yj = xj+1 to get∏

i+1<j≤m(1− q t xj/xi)∏
i<j≤m(1− t xj/xi)

=
∑

a∈Nm−1

t|a|F w̃0
a (x2, . . . , xm; q)Ew̃0

a (x1, . . . , xm−1; q) . (117)

By (106) and the definition of Fσ,

(x1 · · ·xm)F w̃0
a (x2, . . . , xm; q) = (x1 · · ·xm)Fw0

(0,a)(x1, . . . , xm; q) = Fw0

(0,a)+(1m)(x1, . . . , xm; q)

for w0 ∈ Sm. Hence,∏
i+1<j≤m(1− q t xj/xi)∏
i<j≤m(1− t xj/xi)

(x1 · · ·xm)

=
∑

a∈Nm−1

t|a|Fw0

(0,a)+(1m)(x1, . . . , xm; q)Ew̃0
a (x1, . . . , xm−1; q) .

Multiplying by hN−m(x1, . . . , xm) with the help of Lemma 6.3.5 yields∏
i+1<j≤m(1− q t xj/xi)∏
i<j≤m(1− t xj/xi)

(x1 · · ·xm)hN−m(x1, . . . , xm)

=
∑

(0,a),τ∈Nm
|τ |=N−m

t|a|qd((0,a),τ)Fw0
η+τ (x1, . . . , xm; q)Ew̃0

a (x1, . . . , xm−1; q) ,

where η = (1m) + (0,a) and we have used that d(η, τ) = d((0,a), τ) by (81). Now multiply by
el(x1, . . . , xm−1) and apply (107) to get∏

i+1<j≤m(1− q t xj/xi)∏
i<j≤m(1− t xj/xi)

(x1 · · ·xm)el(x1, . . . , xm−1)hN−m(x1, . . . , xm)

=
∑

(0,a),τ ∈Nm
|τ |=N−m

∑
|I|=l

t|a|qd((0,a),τ)+hI(a)Fw0
η+τ (x1, . . . , xm; q)Ew̃0

a+εI (x1, . . . , xm−1; q) , (118)

where I ⊆ [m− 1]. The result then follows by using (105) on the right hand side and applying
w0 ∈ Sm to both sides, noting that w0(el(x2, . . . , xm)) = el(x1, . . . , xm−1).

Proof of the Extended Delta Conjecture. It suffices to prove the reformulation in (99); this fol-
lows by applying Hm

q and (102) to the identity of Theorem 6.3.6, taking the polynomial part,
and using Proposition 6.2.2.
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