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Introduction

The main purpose of this article is to announce and provide supporting evidence
for two conjectures about the characters of the Hecke algebra Hn(q) of type An−1,
evaluated at elements of its Kazhdan–Lusztig basis. In addition, we prove a conjec-
tured immanant inequality for Jacobi–Trudi matrices (definitions below) and show
how our conjectures would imply stronger inequalities of a similar kind.

The immanant inequalities belong to the combinatorial theory of symmetric
functions and consequently have gained considerable attention in algebraic combi-
natorics since their introduction by Goulden and Jackson [9]; see [10], [29], [30].
The Hecke algebra conjectures presented here are, however, independent of the ap-
plication which led to their discovery, and because of their striking and unexpected
nature they should be of interest to a broader audience. In particular, they appear
to reflect aspects of the geometry of the flag variety that cannot yet be understood
using available geometric machinery. It has also been discovered that Hecke algebras
of type An−1 arise naturally in the study of knots [7], [14], quantum groups [13],
and Von Neumann algebras [15], [34]. Their character theory in particular plays
an important role, via the Ocneanu trace and the commutant relationship between
Hn(q) and the quantum group UGLn(q). Thus there are important reasons to seek
a better understanding of the characters.

The first of our conjectures asserts that certain virtual characters, i.e., integral
linear combinations of irreducible characters, take values on the Kazhdan–Lusztig
basis which are polynomials in q with non-negative, symmetric and unimodal in-
teger coefficients. A corresponding assertion for the irreducible characters follows
from the theory of intersection homology and perverse sheaves for Schubert vari-
eties [3], [27], together with the fact that the Kazhdan–Lusztig cell representations
[17] are irreducible for type An−1. This fact is a weaker statement than our con-
jecture, however, since the irreducible characters are non-negative combinations of
the virtual characters we consider. In fact, the conjecture for these virtual charac-
ters is best possible: any virtual character for which the assertion holds must be a
non-negative combination of these.

The second conjecture asserts that for purposes of character evaluation, most
Kazhdan–Lusztig basis elements are reducible to sums of certain of the simplest
possible ones. To be precise, we pick out certain permutations, called co-dominant,
whose corresponding Schubert varieties are smooth and very simple to describe.
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Consequently, the corresponding Kazhdan–Lusztig basis elements also have an ex-
tremely simple description. The conjecture then states that for each Kazhdan–
Lusztig basis element C ′

w, there is a sum C ′
w1

+ · · ·+C ′
wk

of basis elements with wi

co-dominant, such that

χ(C ′
w) = χ(C ′

w1
+ · · ·+ C ′

wk
)

for every Hecke algebra character χ. In particular, the second conjecture would
reduce the first conjecture to its special case for co-dominant elements, thus elimi-
nating Kazhdan–Lusztig polynomials from the problem.

We will make clear in our later discussion why there are good reasons to expect
deep connections between these conjectures and the geometry of the flag variety.
Unfortunately, even the powerful machinery of perverse sheaves and intersection
homology appears, at least for the moment, to provide inadequate information for
a solution of the conjectures.

We are able to prove various special cases of the conjectures. Several authors
[19], [24], [33] have considered the problem of evaluating characters of Hn(q) at
elements of its natural basis, a problem which is the q-analog of determining the
character table of the symmetric group Sn. We have made use of these results in
order to prove a special case of our first conjecture in Section 4. It is conceivable
that a similar approach could be used to resolve the first conjecture for co-dominant
elements. To do so, one would have to prove a q-analog of Proposition 5.1, without
the restriction assumed there on the co-dominant permutation wf . The problem
of evaluating characters at arbitrary elements of the Kazhdan–Lusztig basis is in
general much more difficult since little explicit information is known about the
Kazhdan–Lusztig polynomials, which appear as the coefficients expressing this basis
in terms of the natural one.

In addition to the two aforementioned conjectures, this paper contains some
theorems, whose relevance we now explain, along with the overall organization of
the paper.

The present investigation originated with the author’s discovery that Kazhdan–
Lusztig theory for the Hecke algebra Hn(q) is the natural setting for the immanant
inequalities conjectured by Goulden and Jackson [9] and extended by Stembridge,
Stanley, and Greene [10], [29], [30]. It turns out that all these immanant inequal-
ities would follow from our first Hecke algebra conjecture, combined with a the-
orem proved here (Theorem 1.5) relating a generating function for immanants to
the Kazhdan–Lusztig basis for Hn(q). Even without the Hecke algebra conjec-
ture, Theorem 1.5 implies an immanant inequality stronger than the one proved by
Greene.

Since many readers will not be familiar with the subject of immanant inequalities
(or even the word ‘immanant’), we give a brief historical review of the topic in
Section 1, and explain how our results and conjectures apply. As the main theorem
of the section, Theorem 1.5, has a rather technical proof, using the Kazhdan–Lusztig
conjecture on composition series of Verma modules, we defer its proof to the end
of the paper, in Section 7.

We then turn to the presentation of our two central conjectures and some general
remarks about them, followed by sections dealing with computational and special
case evidence for the conjectures with q general, with q = 1, and with q = 0,
respectively. If desired, the paper may be read beginning with Section 2, except
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for the definition (1.2) of monomial characters, since the Hecke algebra conjectures
and related results do not depend on the application to immanants.

We have included an appendix covering definitions and results from Kazhdan–
Lusztig theory, most of which are standard by now, but which may not be familiar
to all readers, especially from the combinatorial audience. Otherwise unexplained
notation and facts stated without citation refer either to the appendix, or, where
symmetric functions and Young tableaux are concerned, to the book of Macdonald
[23].

1. Immanants

We begin with the definition of immanants and a review of conjectured inequal-
ities involving them. A much more complete survey may be found in [30].

Let χ be an irreducible character of Sn, or more generally any class function,
and let A be an n× n matrix. Littlewood’s immanants [22] are matrix functionals
generalizing the determinant and the permanent, defined by

Immχ(A) =
∑

w∈Sn

χ(w)a1,w(1) · · ·an,w(n). (1.1)

When χ = χλ is the irreducible character indexed by the partition λ of n, we abbre-
viate Immχλ

(A) to Immλ(A). In particular, the determinant and the permanent
are the immanants Imm(1n)(A) and Imm(n)(A) corresponding to the sign character
and the trivial character, respectively.

The rule of thumb for immanant inequalities is that if a matrix has non-negative
minors in some suitable sense, then its irreducible immanants, or certain linear
combinations of them, ought to be non-negative.

The oldest branch of the subject, going back to Schur, involves immanants of
positive definite Hermitian matrices, typified by the ‘Schur dominance theorem’
and ‘Lieb permanental dominance conjecture,’ which state the following.

Theorem 1.1. (Schur [25]) If A is positive definite, then Immλ(A)−fλ det(A) ≥ 0
for all λ.

Conjecture 1.1. (Lieb [21]) If A is positive definite, then fλ per(A)− Immλ(A) ≥
0.

In each of these statements fλ = χλ(1) is the degree of the irreducible character
χλ.

The more recent branches concern immanants of totally positive matrices (A
is totally positive if every minor of A is non-negative) and Jacobi–Trudi matri-
ces (defined below). In their strongest forms the conjectured inequalities concern
monomial immanants, which we now define.

From the theory of symmetric functions, the irreducible characters of Sn are
given by χλ(w) = 〈sλ, pτ(w)〉, where sλ denotes a Schur function, pτ(w) is the
power-sum symmetric function indexed by the partition τ (w) corresponding to the
decomposition of w into cycles, and 〈sλ, sµ〉 = 〈mλ, hµ〉 = δλµ. Here hµ and mλ

denote the complete and the monomial symmetric functions, respectively.
Thus we have a natural linear correspondence mapping the Schur functions of

degree n to the irreducible characters of Sn. Under this correspondence the mono-
mial symmetric function mλ is carried to a ‘monomial’ virtual character φλ given
by

φλ(w) = 〈mλ, pτ(w)〉. (1.2)
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The corresponding monomial immanants are the immanants Immφλ
(A). Since the

Schur functions are non-negative linear combinations of monomial symmetric func-
tions, non-negativity statements for monomial immanants are in general stronger
than their counterparts for irreducible immanants.

For totally positive matrices we have the following analogs of Schur dominance
and permanental dominance. Actually, Conjecture 1.2 is a stronger statement which
implies both permanental dominance and Theorem 1.2. No correspondingly strong
statement holds for positive definite matrices.

Theorem 1.2. (Stembridge [32]) If A is totally positive, then Immλ(A)−fλ det(A) ≥
0 for all λ.

Conjecture 1.2. (Stembridge [32]) If A is totally positive, then Immφλ
(A) ≥ 0

for all λ.

Our main concern will be with the third and most combinatorial branch of
the subject, immanant inequalities for Jacobi–Trudi matrices. Let hn denote the
complete homogeneous symmetric function of degree n in countably many variables
X = (x1, x2, . . . ). By convention, hn = 0 for n < 0 and h0 = 1. Let µ and ν be
partitions with n parts, written in descending order as (µ1 ≥ µ2 ≥ · · · ≥ µn). We
allow 0 as a part. Jacobi–Trudi matrices are of the form

Hµ/ν(X) =
[
hµi−νj

(X)
]n

i,j=1
. (1.3)

The classical Jacobi–Trudi matrix would be Hµ+δ/ν+δ in this notation, where δ =
(n−1, . . . , 1, 0). The Jacobi–Trudi identity expresses the (skew) Schur functions in
terms of homogeneous symmetric functions as

sµ/ν = det(Hµ+δ/ν+δ). (1.4)

We have altered the notation in order to include the possibility that Hµ/ν may have
repeated rows or columns, which is a relevant case for immanants other than the
determinant.

Since the minors of a Jacobi–Trudi matrix are skew Schur functions, they are
‘non-negative’ in the sense either of being non-negative linear combinations of mono-
mial symmetric functions, or of Schur functions.

In their survey of applications of immanants to matrices having combinatorial
significance, Goulden and Jackson [9] conjectured the following result, which has
since been proved by Greene.

Theorem 1.3. (Greene [10]) The irreducible immanants Immλ(Hµ/ν) of Jacobi–
Trudi matrices are non-negative linear combinations of monomial symmetric func-
tions for all λ.

This theorem can be strengthened in either or both of two ways: we can ask for
non-negativity in terms of Schur functions rather than monomials, or we can pass
to monomial immanants. The three conjectures so obtained are due to Stembridge
[30]. Our main application of Kazhdan–Lusztig theory to immanants is the proof
of one of these conjectures. Thus we state the first conjecture as a theorem and the
other two as conjectures, as follows. Note that Conjecture 1.4 implies both of the
others.

Theorem 1.4. If Hµ/ν is a Jacobi–Trudi matrix, then Immλ(Hµ/ν)−fλ det(Hµ/ν)
is a non-negative linear combination of Schur functions.
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Conjecture 1.3. (Stembridge [30]) The monomial immanants Immφλ
(Hµ/ν) of

Jacobi–Trudi matrices are non-negative linear combinations of monomial symmetric
functions for all λ.

Conjecture 1.4. (Stembridge [30]) The monomial immanants Immφλ
(Hµ/ν) of

Jacobi–Trudi matrices are non-negative linear combinations of Schur functions for
all λ.

To conclude this section, we shall explain how Theorem 1.4 can be proven using
Kazhdan–Lusztig theory, as well as how Conjectures 1.2 through 1.4 would follow
from the conjecture on Hecke algebra characters developed in the next section.

It is convenient to introduce the following formal sum, which serves as a kind of
generating function for the immanants of Hµ/ν . Let

Iµ/ν =
∑

w∈Sn

Twhµ−w(ν)(X). (1.5)

This is an element of Hn(1) ⊗ Λ(X), the group algebra of Sn with coefficients
extended to the ring of symmetric functions Λ(X). Extending Sn characters χ in
the obvious way to Λ(X)-linear functionals on Hn(1) ⊗ Λ(X), we may express the
immanants of Jacobi–Trudi matrices as

Immχ(Hµ/ν(X)) = χ(Iµ/ν). (1.6)

With this notation, Theorem 1.4 is an immediate consequence of the following
two statements.

Theorem 1.5. Iµ/ν is a non-negative linear combination of the basis elements
C ′

w(1)sκ(X) for Hn(1)⊗Λ(X), where {C ′
w(q)} is the Kazhdan–Lusztig basis of the

Hecke algebra Hn(q).

Lemma 1.1. Let χλ be an irreducible character of Hn(q), of degree fλ, and let C ′
w

be a Kazhdan–Lusztig basis element. Put χ = χλ − fλχ(1n). Then χ(q`(w)/2C ′
w) is

a polynomial with non-negative integer coefficients. In fact, these coefficients are
unimodal and symmetric about q`(w)/2.

Theorem 1.5 is proven in Section 7; the coefficients which appear have an ex-
plicit interpretation as multiplicities of irreducible composition factors in a certain
infinite-dimensional tensor product of sln modules.

Let us now prove Lemma 1.1.

Proof. First of all, the character χ(1n), which is the sign representation of Hn(q),
vanishes on C ′

w unless w = 1, because the Kazhdan–Lusztig polynomials Pv,w obey
Pv,w = Psv,w for any simple reflection s such that sw < s. Since C ′

1 = T1 = 1, we
have χλ(C ′

1) = fλ and χ(1n)(C
′
1) = 1. Thus χ(C ′

w) is zero if w = 1 and we may
replace χ with χλ otherwise.

Recall that the irreducible Hn(q) module Vλ can be constructed as a cell repre-
sentation: a quotient Eλ/Fλ of submodules Fλ ⊆ Eλ ⊆ Hn(q), where each of Eλ

and Fλ is the linear span of a subset of the Kazhdan–Lusztig basis {C ′
w}. Thus Vλ

has a Kazhdan–Lusztig basis given by those elements C ′
u which are in Eλ but not

Fλ, and a ∈ Hn(q) acts by a matrix whose (u, v) entry is the coefficient of C ′
u in

aC ′
v. In particular, when a = q`(w)/2C ′

w the diagonal entries (whose sum is the trace
χλ(q`(w)/2C ′

w)) are the structure coefficients q`(w)/2fu
w,u(q), which are polynomials

with the required non-negativity, symmetry and unimodality properties. �
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In the same way that Theorem 1.4 follows from Theorem 1.5 and Lemma 1.1,
it is clear that Conjecture 1.4 (and the weaker Conjecture 1.3) would follow from
Theorem 1.5 and a stronger version of Lemma 1.1 in which monomial characters
replace the characters χ. Such a strengthening of Lemma 1.1 is precisely our first
Hecke algebra conjecture, Conjecture 2.1.

In fact, not only the conjectures on Jacobi–Trudi matrices but also Conjecture
1.2 on totally positive matrices would follow from Conjecture 2.1—see the remarks
at the end of the next section.

2. A first conjecture

Since the irreducible characters of Hn(q) correspond to those of CSn = Hn(1),
the same is true of virtual characters. In particular, the monomial characters φλ of
Sn defined by (1.2) have unique analogs for Hn(q), specializing to (1.2) for q = 1.
Our first conjecture, which is natural to make in view of the proof of Theorem 1.4 via
Theorem 1.5 and Lemma 1.1, concerns evaluations of these monomial characters.

Conjecture 2.1. For every monomial character φλ of Hn(q) and every Kazhdan–
Lusztig basis element C ′

w, φλ(q`(w)/2C ′
w) is a polynomial with non-negative integer

coefficients. Moreover, these coefficients are unimodal and symmetric about q`(w)/2.

Note that the symmetry of the coefficients about q`(w)/2 holds for every virtual
character. This follows from Lemma 1.1, or, to give a more elementary reason, from
the invariance of C ′

w under the Hecke algebra involution defined in (8.5).
We shall discuss four broad aspects of Conjecture 2.1 here. More detailed infor-

mation can be found with the supporting evidence in Sections 4–6.
Geometry. By definition, the homogeneous symmetric function hn is the sum∑
|λ|=nmλ of all monomials. Hence the sum

∑
|λ|=n φλ is the character correspond-

ing to hn = s(n), i.e., the ‘trivial’ character χ(n)(Tw) = qw. Applying this to C ′
w

we obtain ∑

|λ|=n

φλ(q`(w)/2C ′
w) =

∑

v≤w

Pv,w(q)qv. (2.3)

The expression on the right is the Poincaré series for the global intersection homol-
ogy of the Schubert variety Γw associated to w.

The intersection homology decomposition theorem of [3] gives, for a projective
algebraic map f : Y → X of complex projective varieties, a natural direct sum
decomposition of the intersection homology of Y . The Poincaré series of the sum-
mands have the symmetry and unimodality properties we want for φλ(q`(w)/2C ′

w).
It is to be expected that (2.3) reflects some such decomposition, where Y is either
the Schubert variety Γw or some related variety.

Best possible statement. Conjectures 1.2 and 1.4 are best possible, in that by
appropriate choices of totally positive matrix A or Jacobi–Trudi matrix Hµ/ν , one
can see that any immanant with the required non-negativity property must be a
non-negative linear combination of monomial immanants. It follows that any vir-
tual character with the properties asserted for irreducible characters in Lemma 1.1
and for monomial characters in Conjecture 2.1 is necessarily a non-negative linear
combination of monomial characters. This can also be seen from the evaluation of
φλ(q`(w)/2C ′

w) given by Proposition 4.1 for w the longest element of a parabolic
subgroup of Sn.



HECKE ALGEBRA CHARACTERS 7

Total positivity. Stembridge [32] proves Theorem 1.2 by associating to a matrix
A an element [A] of the group algebra CSn, in a manner analogous to the definition
(1.5) of Iµ/ν . The main part of his proof is a demonstration that for totally positive
A, [A] is a non-negative linear combination of certain group algebra elements on
which the irreducible characters take non-negative values. In fact, if we let

∑
H

denote the sum of all elements in a subgroup H ⊆ Sn, his proof shows that [A] is
a sum of products of elements of the form

∑
WJ for various parabolic subgroups

WJ . It follows that [A] is a non-negative linear combination of Kazhdan–Lusztig
basis elements C ′

w(1), and therefore Conjecture 2.1 implies Conjecture 1.2.
Other Coxeter groups. There is probably an analog of Conjecture 2.1 for other

Coxeter groups, or at least Weyl groups. At present, however, it is not apparent
what the analog of a monomial character should be. Nor do we even know that
the analog of Lemma 1.1 for irreducible characters holds, since in general the cell
representations are reducible.

3. A second conjecture

Whereas Conjecture 2.1 appears natural in view of the proof of Theorem 1.4, our
second conjecture arose completely unexpectedly from examining data computed to
verify Conjecture 2.1. The conjecture applies to all characters and could in principle
have been discovered independently of any computation of monomial characters.
It is a bit of good fortune, however, that because Conjecture 2.1 is best possible,
tables of monomial characters are full of zeroes and small, highly recognizable
polynomials, making linear relationships stand out. This, together with the fact
that the co-dominant permutations defined below seem to play a special role in
immanant inequalities, is what made it possible to detect the second conjecture by
‘inspection’.

To state the conjecture, we must define a certain class of permutations which
we call co-dominant because they are of the form w0v, where v is one of Lascoux’s
dominant vexillary permutations [20], and w0 is the longest permutation in Sn.

Definition . Let f(1) ≤ f(2) ≤ · · · ≤ f(n) be a non-decreasing sequence of
integers with f(n) = n and f(i) ≥ i for all i. Let wf be the lexicographically
greatest permutation satisfying wf (i) ≤ f(i) for all i. Such a permutation wf is
called co-dominant.

Proposition 3.1. Let wf be co-dominant. Then wf determines f by the rule
f(i) = max{wf (j) | j ≤ i}. We have {v | v(i) ≤ f(i) ∀i} = {v | v ≤ wf}, where
≤ is Bruhat order. The permutations v ≤ wf may be described as those whose
permutation matrices are zero in a pattern of entries forming a Ferrers diagram in
the lower-left corner of the matrix. With respect to a fixed base flag 0 ⊂ F1 ⊂ F2 ⊂
· · · ⊂ Fn = Cn in the flag variety Fn, The Schubert variety Γwf

consists of all flags
0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gn = Cn satisfying Gi ⊆ Ff(i) for all i. This variety is
smooth. In particular, Pv,wf

= 1 for all v ≤ wf , or equivalently

q`(wf )/2C ′
wf

=
∑

v≤wf

Tv. (3.1)

Proof. Clearly wf (1), wf(2), . . . can be obtained writing down in turn for each i
the greatest number between 1 and f(i) which has not yet been used. In particular,
for i such that f(i − 1) < f(i) (and for i = 1) we have wf (i) = f(i). The rule for
recovering f follows immediately.
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Suppose v(i) ≤ f(i) for all i. Suppose v(j) > v(k) for some j < k, and let
v′ = v · (j k). Then clearly v′(i) ≤ f(i) for all i. This shows that the set {v | v(i) ≤
f(i) ∀i} is closed going downward in Bruhat order, hence contains {v | v ≤ wf}.

Again suppose v(i) ≤ f(i) for all i, and suppose v 6= wf . Let j be the least
index for which v(j) 6= wf (j). Let k = v−1(wf (j)), so v(k) = wf (j). Since
v(i) = wf (i) 6= wf (j) for i < j, we have k > j. Since wf is lexicographically greater
than v, v(j) < wf (j) = v(k). Hence v′ = v · (j k) > v in Bruhat order. Again we
have v′(i) ≤ f(i) for all i. We may repeatedly replace v by v′ until we reach wf ,
showing v ≤ wf and proving {v | v(i) ≤ f(i) ∀i} = {v | v ≤ wf}.

The permutation matrix description merely restates the condition v(i) ≤ f(i)
for all i.

The description of Γwf
is a direct translation of the condition v(i) ≤ f(i) for

all i into Schubert conditions on the flag. Consider the variety Γk of partial flags
0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gk with dim(Gi) = i satisfying Gi ⊆ Ff(i) for all i. We see

that Γk+1 is a bundle over Γk with fiber Pf(k+1)−k−1(C). Hence each Γk is smooth,
including Γn = Γwf

. The remaining statements follow immediately. �

We remark that w is co-dominant if and only if there are no i < j < k with
w(j) < w(k) < w(i). The number of these in Sn is well known to be the Catalan

number Cn = 1
n+1

(
2n
n

)
.

Now we may state our conjecture.

Conjecture 3.1. Write a ∼ b if a, b ∈ Hn(q) are such that χ(a) = χ(b) for
every Hecke algebra character χ. Then for every w ∈ Sn there exist co-dominant
permutations w1, . . . , wk such that C ′

w ∼ C ′
w1

+ · · ·+ C ′
wk

. The number k of these
is given by P1,w(1), and more precisely,

P1,w(q) =

k∑

i=1

q(`(w)−`(wi))/2. (3.2)

Proof of (3.2), assuming what goes before. Consider the character χ corresponding
to the action of Hn(q) on the complex vector space with basis consisting of the
points of the finite ‘flag variety’ over GLn(q), for q a prime power. We have χ(T1) =
[n]q! = 1(1+q) · · · (1+q+ · · ·+qn−1) and χ(Tv) = 0 for v 6= 1. Hence a ∼ b implies

that a and b contain T1 with the same coefficient. Applying this to q`(w)/2C ′
w ∼∑

i q
(`(w)−`(wi))/2q`(wi)/2C ′

wi
, using P1,wi

= 1, yields (3.2). �

We have several remarks to make about Conjecture 3.1.
Reduction. If Conjecture 3.1 holds, it clearly reduces Conjecture 2.1 to the case

that w is co-dominant.
Geometry. Like Conjecture 2.1, Conjecture 3.1 seems to suggest some sort of

direct sum decomposition of perverse sheaf theoretic objects. However, the picture
is much murkier. For Conjecture 2.1, one can envision the kind of set-up that might
account for the character values, even if it is hard to guess exactly what varieties
and maps are involved. It is not at all evident how to account for the decomposition
given by Conjecture 3.1. Even how to give a geometric interpretation to the relation
∼ is far from clear. Our feeling is that Conjecture 3.1 reflects deeper phenomena
than Conjecture 2.1.

In particular, there are many smooth Schubert varieties corresponding to non-co-
dominant permutations. Yet the conjecture suggests that each such variety should
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be ‘equivalent’ in some undetermined character theoretic sense to a co-dominant
one. In particular its cohomology ring must have the same Poincaré series as that
of a co-dominant one. It seems to the author rather amazing that anything like
this should be so.

Combinatorics of Kazhdan–Lusztig polynomials. Any rule for explicitly listing
the co-dominant permutations w1, . . . , wk provided by the conjecture affords a com-
binatorial interpretation of the coefficients of P1,w for all w. Instances of the con-
jecture may be computed to seek clues to such a rule. Unfortunately the resulting
information is incomplete, since the expressions C ′

w ∼ C ′
w1

+· · ·+C ′
wk

are in general
not unique.

Since P1,w(0) = 1, the conjectured expansion C ′
w ∼ C ′

w1
+ · · ·+C ′

wk
must have a

unique ‘leading term,’ which we may take to be C ′
w1

, with `(w1) = `(w). It seems
likely that any rule for the expansion will obey certain additional conditions (which
still don’t determine it uniquely): (1) if w is co-dominant, then w1 = w; (2) more
generally, if w ≤ w′ with w′ co-dominant, then w1 ≤ w′; and (3) wi ≤ w1 for all i.

One might expect the leading w1 to depend on w in a Bruhat-order-preserving
fashion, but that is incompatible with (1). Consider w = 3412 in S4. For this w,
w1 must be 3241 or 2431. But 3214 and 1432 are co-dominants less than w and
neither candidate for w1 is greater than both of these.

More immanant conjectures. Stanley and Stembridge [29] offered conjectures
which reduce Conjecture 1.4 to special cases associated with co-dominant permu-
tations. Restated in the language used here, their [29, Conjecture 5.1] becomes:

Conjecture 3.2. ([29]) Define Eκ
µ/ν ∈ Hn(1) by expanding Iµ/ν with respect to

Schur functions:

Iµ/ν =
∑

|κ|=|µ|−|ν|

Eκ
µ/νsκ(X). (3.3)

Then there exist co-dominant permutations w1, . . . , wk such that Eκ
µ/ν ∼ C ′

w1
(1) +

· · ·+ C ′
wk

(1).

A further conjecture in the same paper ([29, Conjecture 5.4]) refines the above
statement with some conditions relating the terms in the expansion C ′

w1
(1) + · · ·+

C ′
wk

(1) to Young tableaux.
Conjecture 3.2 would follow from Conjecture 3.1, since by Theorem 1.5, Eκ

µ/ν

is a non-negative linear combination of Kazhdan–Lusztig basis elements. One of
the conditions which the more refined conjecture [29, Conjecture 5.4] imposes on
the terms is that each wi ≤ wf , where wf is the largest co-dominant avoiding the
pattern of zeros in the Jacobi–Trudi matrix Hµ/ν. This would follow from the
conditions proposed above on the rule for the expansion C ′

w ∼ C ′
w1

+ · · · + C ′
wk

.
We do not see how to account for the other conditions in their conjecture.

4. The generic case

In this section we discuss special cases of the conjectures which hold when q is
regarded as an indeterminate.

Both Conjectures 2.1 and 3.1 have been verified by computer for n ≤ 7. Table 1
gives the monomial character values φλ(q`(w)/2C ′

w) and expansions C ′
w ∼ C ′

w1
+C ′

w2

with wi co-dominant for w ∈ S4. Note that a ∼ b is equivalent to φλ(a) = φλ(b)
for all λ. Thus equivalences such as C ′

1243 ∼ C ′
1324 ∼ C ′

2134 (showing that the
expansion by co-dominants is non-unique) can be read off at once from the table.
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In the following proposition we collect those evaluations φλ(q`(w)/2C ′
w) which can

be obtained readily from well known properties of cell representations and Hecke
algebra characters.

Proposition 4.1. (1) Let WJ = Sλ1 ×· · ·×Sλk
be a parabolic subgroup of W = Sn.

Let wJ ∈WJ be its longest element. Then

φµ(q`(wJ )/2C ′
wJ

) =

{ ∑
w∈WJ

qw = [λ1]q! · · · [λk]q!, µ = λ

0, µ 6= λ.
(4.1)

(2) Let w be an arbitrary element of WJ = Sλ1 × · · · × Sλk
, and write it as w =

w1w2 · · ·wk with wi ∈ Sλi
. Then

φµ(q`(w)/2C ′
w) =

∑

µ(1)
∪···∪µ(k)=µ

|µ(i) |=λi

k∏

i=1

φµ(i) (q`(wi)/2C ′
wi

). (4.2)

(3) Let λ be the shape of the tableaux P (w), Q(w) associated with w by the Schensted
correspondence; λ′ the conjugate partition. Then φµ(q`(w)/2C ′

w) = 0 unless µ ≥ λ′

in dominance order.

Proof. We begin with (2). Formula (4.2) follows from the fact that q`(w)/2C ′
w =

q`(w1)/2C ′
w1

· · · q`(wk)/2C ′
wk

, together with the rule for restriction of Hn(q) charac-
ters to Hλ1(q)⊗ · · ·⊗Hλk

(q) (the branching coefficients do not involve q so are the
same as for Sn characters).

Given (2), (1) reduces to the case WJ = Sn, wJ = w0. The single element C ′
w0

spans a two-sided ideal in Hn(q), the Kazhdan–Lusztig cell affording the ‘trivial’
one-dimensional representation V(n) in which Tw maps to qw. Hence C ′

w0
acts as 0

in every cell representation except V(n), where it acts as
∑

w∈Sn
qw = [n]q!. This is

(4.1) for WJ = Sn.
For (3), recall that the Kazhdan–Lusztig cells for Sn are given by the Schensted

correspondence, so that C ′
w belongs to the two-sided cell indexed by the partition

λ′. Since the ordering <LR among two-sided cells is opposite to dominance order
among partitions, the two-sided ideal HC ′

wH in H = Hn(q) is spanned by elements
C ′

v belonging to cells indexed by µ ≥ λ′. In particular, C ′
w acts as 0 in the cell

representation Vµ unless µ ≥ λ′. Since the monomial characters and the irreducible
characters are dominance-lower-triangular with respect to one another, this implies
(3). �

Next we shall prove Conjecture 2.1 in the case w = s1 · · ·sk, where s1, . . . , sk

are distinct simple reflections (i.e., adjacent transpositions in Sn). By (4.2) we may
assume that s1, . . . , sk are all the simple reflections.

Proposition 4.2. Let

ψ(a) =
∑

|λ|=n

φλ(a)hλ(X) =
∑

|λ|=n

χλ(a)sλ(X) (4.3)

for any a ∈ Hn(q). Let wn be a Coxeter element of Sn, that is, the product of all
n − 1 simple reflections, in any order. Then ψ(q(n−1)/2C ′

wn
) depends only on n,

and we have the generating function

1 +
∑

n≥1

ψ(q(n−1)/2C ′
wn

) =

∑
n≥0 hn(X)

1 − q
∑

n≥2(1 + q + · · ·+ qn−2)hn(X)
. (4.4)
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Proof. Write wn as s1 · · ·sn−1. The elements v ≤ wn in Bruhat order correspond
to subsets I = {i1 < · · · < ij} ⊆ {1, . . . , n− 1}, with v = si1 · · ·sij

. For all such v,
Pv,wn

= 1, or

q(n−1)/2C ′
wn

=
∑

I

Tsi1 ···sij
. (4.5)

This follows by induction from the formula (8.8) for C ′
sC

′
w.

Ram [24] has evaluated ψ(Tv) for Tv of the form appearing in (4.5), obtaining

ψ(Tsi1 ···sij
) =

qn

(q − 1)`(µ)
hµ((1 − q−1)X). (4.6)

Here µ = (j1, j2 − j1, . . . , n − jk) is the composition of n determined by {j1 <
· · · < jk} = {1, . . . , n} r I; equivalently it describes the cycle structure of the
permutation si1 · · · sij

. The expression hµ((1 − q−1)X) on the right hand side

means
∏k+1

i=1 hµi
((1− q−1)X), where hm((1− q−1)X) is the symmetric polynomial,

homogeneous of degree m in X, defined by

∑

m≥0

hm((1 − q−1)X) =
∏

i

1 − q−1xi

1 − xi
. (4.7)

Combining (4.5) and (4.6) leads to the generating function

1 +
∑

n≥1

ψ(q(n−1)/2C ′
wn

) =
1

1 − 1
q−1

∑
k≥1 q

khk((1 − q−1)X)

=
1

1 − 1
q−1(H(qX)/H(X) − 1)

=
H(X)

H(X) − 1
q−1(H(qX) −H(X))

,

(4.8)

where H(X) =
∑

m hm(X) =
∏

i(1 − xi)
−1. The final formula in (4.8) is just

another way of writing (4.4), so the proof is complete. �

Proposition 4.2 establishes Conjecture 2.1 for w = wn. To see this, rewrite (4.4)
as

1 +

∑
n≥1(1 + q + · · ·+ qn−1)hn(X)

1 −
∑

n≥2(q + q2 + · · ·+ qn−1)hn(X)
. (4.9)

In this form it is easy to see that the coefficient of hλ is a polynomial in q with
non-negative coefficients, unimodal and symmetric about q(|λ|−1)/2.

The generating function (4.4) is an interesting one which has arisen in other
contexts [5], [28], [31]. Specifically, as explained in [28], associated with the Coxeter
complex of Sn is a smooth toric variety whose homology groups carry an Sn action.
Let Pλ(q) be the polynomial whose coefficients are the multiplicities of Vλ in these
homology groups. Then

∑
λ Pλ(q)sλ turns out to be given by (4.4). In other words,

Pλ(q) = χλ(q`(wn)/2C ′
wn

). (4.10)

No direct explanation of (4.10) seems to be known, nor whether the corresponding
result holds for every Coxeter group. It is known that

∑
λ fλPλ(q) =

∑
w∈W q|D(w)|

for every Coxeter group W , where |D(w)| is the number of descents of w, i.e., the
number of simple reflections s such that sw < w. This follows from the fact that
there is a W -equivariant isomorphism between the homology of the toric variety
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and a suitable quotient of the Stanley–Reisner ring of the Coxeter complex. It is
not hard to show that (4.10) agrees with this.

We close this section with a conjectured exact value for certain φλ(w).

Conjecture 4.1. Let wf be co-dominant (f as in Proposition 3.1). Then

φ(n)(q
`(wf )/2C ′

wf
) = [n]q[f(1) − 1]q[f(2) − 2]q · · · [f(n− 1) − (n− 1)]q, (4.11)

where [k]q = 1 + q + · · ·+ qk−1.

This conjecture agrees with Propositions 4.1 and 4.2 in the cases where they
overlap. Its q = 1 specialization will be proven in the next section.

5. The case q = 1

The case of Conjecture 2.1 for q = 1 and w = wf co-dominant is equivalent to a
special case of Conjecture 1.4. To see this, choose µ and ν such that the 0 entries
of Hµ/ν form the forbidden pattern describing permutations v ≤ wf (such µ and
ν can always be found). Then the term Tvhµ−v(ν) in (2.1) is non-zero exactly for
v ≤ wf , and the coefficient of s(N) in Iµ/ν is C ′

wf
(1), where N = |µ| − |ν|. Hence

Conjecture 1.4 implies Conjecture 2.1.
Stanley and Stembridge [29] proved Conjecture 1.4 in two cases. First, they

proved it when µ/ν is a ‘rim hook’, corresponding to the n-cycle wf = (1 2 · · · n).
Their result in this case is equivalent to the q = 1 specialization of Proposition 4.1.

Second, they proved the part we need concerning the coefficient of s(N) in the
case that the forbidden pattern is not too big, which leads to the following corollary.

Proposition 5.1. ([29]) Let wf be co-dominant, let k be the least value for which
f(k) = n, and assume f(1) ≥ k − 1. Then φλ(C ′

wf
(1)) ≥ 0 for all λ. �

Conjecture 4.1 can also be proven for q = 1, as follows.

Proposition 5.2. Let wf be co-dominant. Then

φ(n)(C
′
wf

(1)) = n(f(1) − 1) · · · (f(n − 1) − (n− 1)). (5.1)

Proof. Let V be the pattern avoided by ones in permutation matrices corresponding
to v ≤ wf . This pattern V consists of the last n− f(i) entries in column i for each
i. On Sn, the monomial character φ(n)(w) is n if w is an n-cycle and 0 otherwise.
What (5.1) asserts, therefore, is that the number of n-cycles whose permutation
matrix avoids V is given by (f(1) − 1)(f(2) − 2) · · · (f(n − 1) − (n− 1)).

Let rk be the number of ways to place k mutually non-attacking rooks on a chess
board of shape V , that is, the number of subsets of V in which no two elements
share a row or a column. Consider a fixed such ‘rook placement.’ Permutations in
Sn whose matrix is 1 at the positions of all the rooks correspond in a fairly obvious
bijective way to permutations in Sn−k, with n-cycles corresponding to (n − k)-
cycles. It follows by the sieve principle that the number of n-cycles avoiding V is∑

k(−1)krk(n− k − 1)!.
By the sieve principle we also find that the total number of permutations avoiding

V is
∑

k(−1)krk(n − k)!. Thus the number of n-cycles avoiding V is the same as
the number of all permutations avoiding a pattern of the same shape as V in an
(n− 1) × (n− 1) matrix, which is easily seen to be (f(1) − 1)(f(2) − 2) · · · (f(n −
1) − (n − 1)). �
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6. The case q = 0

In this section we calculate φλ(q`(w)/2C ′
w) for all λ and w, with q = 0. The

calculation confirms Conjectures 2.1, 3.1 and 4.1 for the specialization q = 0.
The Kazhdan–Lusztig basis elements C ′

w are not well-defined for q = 0, but

q`(w)/2C ′
w is well-defined and equal to

C0
w =

∑

v≤w

Tv, (6.1)

since Pv,w(0) = 1 for all v ≤ w.
The irreducible and monomial ‘characters’ aren’t properly named for q = 0,

since Hn(0) is not a semi-simple algebra. Nevertheless they are well-defined by
specialization from Hn(q), and in particular they may be computed from the W -
graph form of the cell representations by setting q = 0.

Proposition 6.1. The monomial characters φλ of Hn(0) take the values

φλ(C0
w) =

{
1, WJ(w)

∼= Sλ

0, otherwise.
(6.2)

Here J(w) is the set of simple reflections appearing in a reduced expression for w,
WJ(w) is the corresponding parabolic subgroup of Sn (the smallest parabolic subgroup
containing w), and WJ(w)

∼= Sλ means WJ(w) is a subgroup of the form Sλ1 ×· · ·×
Sλk

with the factors in any order.

Remark. Conjecture 2.1 requires that φλ(C0
w) = 1 for one λ and φλ(C0

w) = 0 for
all others, since by (2.3) the sum over all λ is 1. Conjecture 4.1, taken together
with Proposition 4.1, requires that for co-dominant w, the λ with φλ(C0

w) = 1 is the
one given by Proposition 6.1. This is compatible with Conjecture 3.1, and indicates
that the leading co-dominant w1 in the expansion of C ′

w should have J(w1) = J(w).
We need a simple lemma for the proof of Proposition 6.1.

Lemma 6.1. Let I be a set of simple reflections such that I ∩ J(w) 6= ∅. Then
∑

v≤w
v∈WI

(−1)`(v) = 0. (6.3)

Proof. Since w cannot be 1, the left descent set D(w) is non-empty. Let t ∈ D(w).
If t ∈ I, then v ≤ w ⇔ tv ≤ w and v ∈ WI ⇔ tv ∈ WI . This implies (6.3).

If t 6∈ I, we proceed by induction on `(w). We have `(tw) < `(w) and J(w) ⊆
J(tw) ∪ {t}, which implies J(tw) ∩ I 6= ∅. By induction, the sum of (−1)`(v) over
WI ∩ {v | v ≤ tw} is zero. But WI ∩ {v | v ≤ tw} = WI ∩ {v | v ≤ w}, for if we
fix a reduced expression tU for w then either set consists of all v having reduced
expressions which use only simple reflections in I and are subwords of U . �

Proof of Proposition 6.1. By Möbius inversion on the Bruhat order,

Tw =
∑

v≤w

(−1)`(vw)C0
w. (6.4)

Hence the proposition is equivalent to

φλ(Tw) =
∑

v≤w
WJ(v)

∼=Sλ

(−1)`(vw), (6.5)
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or

χλ(Tw) =
∑

µ

Kλ,µ

∑

v≤w
WJ(v)

∼=Sµ

(−1)`(vw)

=
∑

v≤w

(−1)`(vw)Kλ,µ(v),

(6.6)

where µ(v) is the type of the parabolic subgroup WJ(v), and sλ =
∑

µKλ,µmµ.

The ‘Kostka number’ Kλ,µ(v) = 〈sλ, hµ(v)〉 has a combinatorial description: it is
the number of standard Young tableaux T of shape λ whose descent set D(T ) is
disjoint from J(v). Hence the last expression in (6.6) is equal to

∑

T∈SYT(λ)

∑

v≤w
v∈WSrD(T )

(−1)`(vw) = (−1)`(w)|{T ∈ SYT(λ) | D(T ) ⊇ J(w)}|

= (−1)`(w)Kλ′,µ(w)

(6.7)
by Lemma 6.1 and the fact that the inner sum has only the term v = 1 for D(T ) ⊇
J(w). SYT(λ) stands for the set of standard Young tableaux of shape λ.

Now we prove χλ(Tw) = (−1)`(w)Kλ′,µ(w) for q = 0. Recall that the cell repre-
sentation Vλ can be regarded as spanned by the vertices of a W -graph Gλ. These
vertices are indexed by tableaux T ∈ SYT(λ), and each is marked with the descent
set D(T ). The edges are labeled with certain integers µ̃(S, T ) which are irrelevant
for us.

The element Ts ∈ Hn(q) acts on Vλ as follows. If s ∈ D(T ), then Ts(T ) =
−T + q1/2

∑
s6∈D(S) µ̃(S, T )S. If s 6∈ D(T ), then Ts(T ) = qT . Thus for q = 0,

the matrix of Tw is diagonal, with (T, T ) entry (−1)`(w) if w ∈ WD(T ) and zero
otherwise. It is obvious that the trace of this matrix is given by (6.7). �

7. Proof of the main theorem of Section 1

In this section we prove Theorem 1.5, using a generalization of the Steinberg
tensor product theorem to infinite-dimensional irreducible highest weight modules
over a simple complex Lie algebra (Proposition 7.2). The derivation of this gener-
alized Steinberg theorem is parallel to the usual derivation in the finite-dimensional
case (see, e.g., [11]), with the role of the Weyl character formula played by the
Kazhdan–Lusztig conjecture.

We require the following notation. Let g be a finite-dimensional simple complex
Lie algebra with Weyl group W (for our application, g = sln and W = Sn). As
usual, δ denotes one-half the sum of the positive roots. Let Mλ denote the Verma
module with highest weight λ, Lλ the corresponding irreducible module (infinite-
dimensional for non-dominant λ).

Because we must consider tensor products of infinite-dimensional modules, we
shall work with a class of g-modules somewhat larger than the commonly used
Bernstein–Gel’fand–Gel’fand category O. Thus we define the class C to contain a
g-module V if:

(1) V is a direct sum V =
⊕

λ Vλ of weight spaces belonging to integral weights
λ.

(2) For every integer N ,
⊕

〈λ,δ〉≥N Vλ is finite-dimensional.
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The class C contains the Verma modules Mλ and the irreducible modules Lλ.
The formal character of V ∈ C we define by ch(V ) =

∑
λ dim(Vλ)xλ, where the

symbols xλ denote formal exponentials, multiplying by the rule xλxµ = xλ+µ.

Lemma 7.1. Let W ⊆ V be a submodule of V ∈ C. Then W and V/W belong to
C, and we have ch(V ) = ch(W ) + ch(V/W ). If in addition U ∈ C, then U ⊗ V ∈ C,
and we have ch(U ⊗ V ) = ch(U )ch(V ).

Proof. For the first part, everything is clear, provided we know that W is the
direct sum of its weight spaces. But every element a ∈W belongs to V , and hence
a ∈ Vλ1 ⊕· · ·⊕Vλk

for a finite set of weights {λi}. This space is a finite-dimensional
module for the Cartan subalgebra h ⊆ g, and so is its intersection with W . Since
every such module is a direct sum of weight spaces, each weight space component
of a is again in W , so W =

⊕
λWλ.

For the second part, if we let {aα} and {bβ} be bases of weight vectors for U
and V respectively, then {aα ⊗ bβ} is a basis of weight vectors for U ⊗ V . The
properties asserted for U ⊗ V follow easily. �

Modules in C (even in O) are not necessarily direct sums of irreducibles, but for
formal computations with multiplicities we can get by with the weaker notion of
‘composition series,’ which we define as follows.

Definition . A composition series of a module V ∈ C is a finite or infinite sequence

0 = W0 ⊆ W1 ⊆W2 ⊆ · · · (7.1)

of submodules Wi ⊆ V , with
⋃

iWi = V andWi+1/Wi an irreducible highest weight
module Lλi

for each i.

Note that the weight spaces (Wi)λ form a filtration of the finite-dimensional
space Vλ, so only a finite number of the quotients (Wi+1)λ/(Wi)λ are non-zero for
any given λ. Thus

∑∞
i=0 ch(Wi+1/Wi) is well-defined and equal to ch(V ).

Lemma 7.2. Every V ∈ C has a composition series. The number mλ(V ) of indices
i for which Wi/Wi+1

∼= Lλ is finite and is uniquely determined by the equation
∑

λ

mλ(V )ch(Lλ) = ch(V ). (7.2)

In particular mλ(V ) does not depend on the choice of composition series.

Proof. Obviously we may assume V 6= 0.
Let λ be a weight for which Vλ 6= 0 and 〈λ, δ〉 is maximal. Such a weight clearly

exists for V ∈ C. Choose a nonzero a ∈ Vλ and let Va be the submodule generated
by a. Since a is a highest weight vector, Va is a quotient of the Verma module Mλ

and therefore has a finite composition series

0 = U0 ⊆ U1 ⊆ · · · ⊆ Ui = Va.

If we have constructed a partial composition series

0 = W0 ⊆ W1 ⊆ · · · ⊆ Wk 6= V

for V , we may apply the above construction to a maximal weight vector a in V/Wk

to obtain an extension

0 = W0 ⊆ W1 ⊆ · · · ⊆ Wk ⊆ · · · ⊆ Wl = Wk + Va.
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Repeating the process, we either reach Wl = V at some stage, or we produce an
infinite sequence

0 = W0 ⊆ W1 ⊆ · · · .

At each stage, we reduce the dimension of a non-zero weight space (V/Wl)λ for
which 〈λ, δ〉 is maximal. By condition (2) in the definition of C, we must eventually
exhaust every weight space, i.e., (V/Wl)λ = 0 for sufficiently large l. Hence our
sequence is a composition series.

As for the multiplicities, clearly Lλ cannot occur as a quotient Wi+1/Wi more
than dim(Vλ) times, so mλ(V ) is finite. Equation (7.2) is thus well-defined and
valid. The formal characters ch(Lλ) are linearly independent, since each has a
distinct leading term xλ. Therefore (7.2) determines the multiplicities mλ(V ). �

Remark. The rest of our work in this section consists entirely of computations upon
formal power series f(x) =

∑
λ cλx

λ with integer coefficients obeying

(2′) For every integer N , there are only finitely many weights λ with 〈λ, δ〉 ≥ N
and cλ 6= 0.

Formal series obeying (2′) form a ring, and they have unique expansions f(x) =∑
λ dλch(Mλ) =

∑
λ eλch(Lλ), where the coefficients dλ and eλ obey the same

restriction (2′) as cλ. The formal series f(x) is actually the formal character of
some module in C if and only if the coefficients eλ are non-negative. Our need for
the underlying representation theory is confined to a single consequence of it: the
product of two series which are actually characters is again a character.

We now proceed to the derivation of the generalized Steinberg tensor product
theorem from the Kazhdan–Lusztig conjecture.

It will be convenient to define some notation in connection with the action of W
on weights. If λ is a weight and w is an element of W , define w · λ = w(λ+ δ) − δ.
If λ + δ is dominant, then W λ = {w | w · λ = λ} denotes the stabilizer of λ+ δ, a
parabolic subgroup of W . Each coset wW λ contains a unique longest element; let
Dλ denote the set of these.

Definition . The expression w ·λ is in standard form if (1) λ+ δ is dominant, and
(2) w ∈ Dλ.

Every weight has a unique expression in standard form.
The formal characters of Verma modules are given by

ch(Mλ) = xλ/∆(x), where ∆(x) =
∏

α

(1 − x−α), (7.3)

the product taken over all positive roots α.
By Harish–Chandra’s theorem, Mv·λ has a finite composition series whose com-

position factors are of the form Lw·λ. Their multiplicities are given by the Kazhdan–
Lusztig conjecture:

Proposition 7.1. ([2], [6], [12]) For λ + δ dominant and integral we have

ch(Mv·λ) =
∑

w∈Dλ

Pv,w(1)ch(Lw·λ) (7.4)

or equivalently

∑

w∈W

(−1)`(vw)Qv,w(1)ch(Mw·λ) =

{
ch(Lv·λ), v ∈ Dλ

0, v 6∈ Dλ,
(7.5)
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where Pv,w and Qv,w = Pw0w,w0v are Kazhdan–Lusztig polynomials for W .

The proofs in [2] and [6] treat the case λ = 0. The reduction of the general case
to this one had already been found in [12]. The equivalence of (7.4) with (7.5) is
a consequence of the fact that [Pv,w] and [(−1)`(vw)Qv,w] are inverse |W | × |W |
matrices.

Proposition 7.2. (Generalized Steinberg theorem) Let s·α, t·β and u·γ be integral
weights expressed in standard form. Then the multiplicity of Lu·γ as a composition
factor of Ls·α ⊗ Lt·β is given by

∑

r∈Dγ

v,w∈W

(−1)`(stvw)Pr,u(1)Qs,v(1)Qt,w(1)p(v ·α+ w · β − r · γ), (7.6)

where p(λ) is the partition function, defined by

1

∆(x)
=

∑

λ

p(λ)x−λ. (7.7)

Proof. If f is a formal character, let 〈ch(Lλ)〉f denote the coefficient of ch(Lλ) in the
expansion of f by irreducible characters, and let 〈ch(Mλ)〉f denote the coefficient
of ch(Mλ) in its expansion by Verma module characters. By (7.4) we have, for u ·γ
standard,

〈ch(Lu·γ)〉f =
∑

r∈Dγ

Pr,u(1)〈ch(Mr·γ )〉f. (7.8)

We are to show that 〈ch(Lu·γ)〉ch(Ls·α)ch(Lt·β) is equal to (7.6). By (7.5),

ch(Ls·α)ch(Lt·β) =
∑

v,w∈W

(−1)`(stvw)Qs,v(1)Qt,w(1)ch(Mv·α)ch(Mw·β). (7.9)

Note that 〈ch(Mr·γ )〉ch(Mv·α)ch(Mw·β) = 〈xr·γ〉(xv·α+w·β/∆(x)), by (7.3). Apply-
ing this to (7.8) with f given by (7.9) yields

〈ch(Lu·γ)〉ch(Ls·α)ch(Lt·β)

=
∑

r∈Dγ

v,w∈W

(−1)`(stvw)Pr,u(1)Qs,v(1)Qt,w(1)〈xr·γ〉(xv·α+w·β/∆(x))

=
∑

r∈Dγ

v,w∈W

(−1)`(stvw)Pr,u(1)Qs,v(1)Qt,w(1)p(v · α+ w · β − r · γ) �

(7.10)

Observe that (7.6) reduces to zero when s 6∈ Dα or t 6∈ Dβ . This is clear from
the proof, since (7.9) reduces to zero in these cases, by (7.5).

Finally, we apply this to immanants.

Proof of Theorem 1.5. The coefficient of C ′
t(1)sκ(X) in Iµ/ν is given by

mt,κ
µ/ν =

∑

w∈Sn

(−1)`(tw)Qt,w(1)Kκ,µ−w(ν), (7.11)

where the Kostka number Kκ,λ is by definition the coefficient of sκ in hλ. It is
well-known that

Kκ,λ =
∑

v∈Sn

(−1)`(v)p(v · κ− λ), (7.12)
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where κ is a partition, regarded as a dominant weight for sln, and λ is any sequence
(λ1, . . . , λn) ∈ Zn with |λ| = |κ|. Indeed, (7.12) is equivalent to the fact that ch(Lκ)
is the Schur function sκ for κ dominant.

Combining (7.11) and (7.12) we obtain

mt,κ
µ/ν =

∑

v,w∈Sn

(−1)`(tvw)Qt,w(1)p(v · κ+ w · (ν − δ) − (µ− δ)). (7.13)

By Proposition 7.2, this is a non-negative integer, since it is (7.6) with α = κ, s = 1,
β = ν − δ, t = t, γ = µ − δ, and u ∈ Dγ representing the coset 1W γ . Note that
α+ δ, β + δ and γ+ δ are dominant as required, since they are partitions, and u ·γ
and s · κ are in standard form. For t 6∈ Dβ , t · β is not standard, but then, as we
observed above, (7.6) reduces to zero. �

It is instructive to examine the case t = 1. Extracting the coefficient of C ′
1(1)sκ(X)

in Iµ/ν amounts to finding the coefficient of sκ(X) in det(Hµ/ν) = det(Hγ+δ/β+δ) =
sγ/β(X). The equality of this with 〈sγ , sκsβ〉 is the defining identity for skew Schur
functions. But of course 〈sγ , sκsβ〉 is the multiplicity of Lγ in Lκ ⊗ Lβ, since
ch(Lλ) = sλ for dominant λ. Thus the symmetric functions 〈C ′

w(1)〉Iγ+δ/β+δ ap-
pear as rather natural generalizations of the skew Schur function sγ/β .

It may also be worth noting that the coefficient of sκ in 〈C ′
w(1)〉Iγ+δ/β+δ is the

multiplicity of Lγ in Lκ ⊗ Lw·β for w · β standard, and zero otherwise. Since Lκ

is finite-dimensional, this particular tensor product does belong to the category O,
not just to C.

Appendix: Hecke algebra and Kazhdan–Lusztig polynomials

Here we state the definitions and theorems we use from Kazhdan–Lusztig theory.
Since this paper is meant for a varied audience, this material has been included
for completeness, despite the risk that it may be unnecessary to specialists and
incomprehensible to everyone else. Standard references are [4] and [17].

The symmetric group Sn is an example of a Coxeter group, with its distinguished
generating set of simple reflections S consisting of the adjacent transpositions (i i+
1). A minimum-length expression for w ∈ Sn as a product of simple reflections is
called a reduced expression; its length `(w) is the number of inversions in w. The

sign of w is (−1)`(w).
The Bruhat order is a partial order on Sn with the defining property that v ≤ w

if for some, or equivalently for every, reduced expression s1 · · · s` for w, there is a
subword si1 · · ·sik

which is a reduced expression for v. The Bruhat order is the
transitive closure of the relation v ≺ w if v = w · (i j) for some i < j such that
w(i) > w(j).

For each s ∈ S, either sw > w or sw < w in Bruhat order. Those s with sw < w
are the (left) descents of w. The descent set is denoted D(w). There is a reduced
expression for w beginning with s if and only if s ∈ D(w).

A subgroup WJ ⊆ Sn generated by a subset J ⊆ S is called parabolic. If
(i1 i1 + 1), (i2 i2 + 1), . . . , (ik ik + 1) are the simple reflections not in J , with i1 <
· · · < ik, then WJ has the form Sλ1 ×· · ·×Sλk+1 , where λ = (i1, i2− i1, . . . , n− ik).
Each coset wWJ contains a unique longest and Bruhat greatest element, which can
be obtained by sorting each of the successive segments of length λ1, λ2, . . . , λk+1

in the sequence w(1), . . . , w(n) into decreasing order. The longest element of Sn is
denoted w0.
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A presentation of Sn is given by the generators S and relations

s2 = 1, (8.1a)

rs = sr if |i− j| > 1,
rsr = srs if |i− j| = 1,

(8.1b)

where r = (i i + 1) and s = (j j + 1). The Hecke algebra Hn(q) associated to Sn

is the algebra with unit over C[q−1/2, q1/2] generated by elements Ts for s ∈ S,
subject to the relations

T 2
s = (q − 1)Ts + q, (8.2a)

TrTs = TsTr if |i− j| > 1,
TrTsTr = TsTrTs if |i− j| = 1.

(8.2b)

For w ∈ Sn, we define

Tw = Ts1 · · ·Ts`
, (8.3)

where s1 · · ·s` is a reduced expression for w. This is well-defined because all reduced
expressions for w are connected by relations of the form (8.1b). The elements Tw

form a basis for the Hecke algebra and we have

TsTw =

{
Tsw, sw > w

(q − 1)Tw + qTsw, sw < w.
(8.4)

In view of (8.1), the specialization Hn(1) is the group algebra CSn, with {Tw}
as the natural basis. For q an indeterminate, Hn(q) is a semi-simple algebra.
Specializing them at q = 1 sets up a natural correspondence between its irreducible
representations and those of Sn.

There is a C-linear involution of Hn(q) defined by

q = q−1; Tw = (Tw−1 )−1. (8.5)

The Kazhdan–Lusztig basis {C ′
w} of Hn(q) is uniquely defined by the conditions

C ′
w = C ′

w,

q`(w)/2C ′
w =

∑

v≤w

Pv,w(q)Tv,

Pv,w(q) ∈ Z[q], Pw,w(q) = 1, deg(Pv,w) < (`(w) − `(v))/2 for v 6= w.

(8.6)

The Pv,w(q) are Kazhdan–Lusztig polynomials. They have constant term Pv,w(0) =
1 for all v ≤ w. The inverse of (8.6) is

Tw =
∑

v≤w

(−1)`(vw)Qv,w(q)q`(v)/2C ′
v, (8.7)

where Qv,w = Pw0w,w0v.
The basis C ′

w satisfies the two equivalent formulas

C ′
sC

′
w =

{
C ′

sw +
∑

sv<v µ(v, w)C ′
v, sw > w

(q−1/2 + q1/2)C ′
w, sw < w,

(8.8)

TsC
′
w =

{
−C ′

w + q1/2
∑

sv<v µ̃(v, w)C ′
v, sw > w

qC ′
w, sw < w,

(8.9)

where µ(v, w) is the coefficient of q(`(w)−`(v)−1)/2 in Pv,w(q) if `(w) − `(v) is odd,
zero otherwise, and µ̃(v, w) is µ(v, w) or µ(w, v), accordingly as v < w or w < v.
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A reflexive and transitive relation ≤ is called a preorder. To a preorder corre-
sponds an equivalence relation defined by x ≈ y if x ≤ y ≤ x. The preorder induces
a partial order on ≈-equivalence classes.

Preorders ≤L and ≤R are defined on Sn as follows: ≤L (resp. ≤R) is the weakest
relation such that for all w, the linear span of {C ′

v | v ≤L w} (resp. {C ′
v | v ≤R w})

is a left (resp. right) ideal in Hn(q). The transitive closure of ≤L ∪ ≤R is denoted
≤LR; thus {C ′

v | v ≤LR w} spans a two-sided ideal in Hn(q).
The equivalence classes of ≈L, ≈R, and ≈LR are the left, right, and two-sided

cells, respectively. Regarding the span C[q−1/2, q1/2]{C ′
v | v ≈L w} as a quotient

C[q−1/2, q1/2]{C ′
v | v ≤L w}/C[q−1/2, q1/2]{C ′

v | v <L w} makes it a left Hn(q)-
module, called a cell representation.

Let (P (w), Q(w)) be the pair of standard Young tableaux (of shape λ(w)) cor-
responding to w under the Schensted correspondence. Then v ≈L w if and only
if Q(v) = Q(w), v ≈R w if and only if P (v) = P (w), and v ≈LR w if and only
if λ(v) = λ(w). It is convenient to index cells by the transposed tableaux P (v)′,
Q(v)′ of shape λ′. With this indexing the left cells indexed by tableaux of shape
λ afford the irreducible representation Vλ, according to the usual indexing for Sn

modules.
The ordering <LR on two-sided cells corresponds to the opposite of the domi-

nance order on their indexing partitions. No direct statement of this fact seems to
appear in the literature, but it can be deduced without much difficulty from the
results of [1] and [16] on primitive ideals in U (gln).

Using (8.9), the action of Ts in a cell representation can be described by a W-
graph. The vertices correspond to basis elements C ′

v for v in a left cell, hence to
the tableaux P (v)′ of a fixed shape. Vertices v, w are connected by an edge labeled
µ̃(v, w) = µ̃(S, T ), which depends only on the tableaux S = P (v)′, T = P (w)′.
Since D(v) is the complement of the descent set D(P (v)′), we have for s ∈ D(T ),
Ts(T ) = −T + q1/2

∑
s6∈D(S) µ̃(S, T )S, and for s 6∈ D(T ), Ts(T ) = qT .

The elements C ′
w are closely connected with the geometry of the flag variety.

Let V be an n-dimensional complex vector space. The flag variety Fn consists of
all flags 0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = V of subspaces with dim(Fi) = i. Fix a
flag F 0 and let B be its stabilizer in GLn, i.e., the Borel subgroup of all upper
triangular matrices. Each flag F = gF 0 corresponds to a coset gB of B. We have
the Bruhat decomposition

GLn =
⋃

w∈Sn

BwB. (8.10)

(Regard w as a permutation matrix.) This induces a decomposition of the flag
variety into Schubert cells γw = {gF 0 | gB ⊆ BwB} with dimension dim(γw) =
`(w). Their closures Γw = γw are the Schubert varieties. We have Γv ⊆ Γw if and
only if v ≤ w in Bruhat order.

The flags F ∈ Γw can be described by Schubert conditions with respect to
the base flag F 0. Namely, F ∈ Γw if and only if for all i, j, dim(Fi ∩ F 0

j ) ≥
|w({1, . . . , i})∩ {1, . . . , j}|.

Let IH∗
v (Γw) be the local intersection homology of Γw at a point of Γv. This is

non-zero in even (real) dimensions only and satisfies (by [18])

Pv,w(q) =
∑

i

qi dim(IH2n−2i
v (Γw)). (8.11)
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In particular, the Kazhdan–Lusztig polynomials have non-negative coefficients.
Moreover, they are equal to 1 for all v ≤ w if Γw is smooth.

Consider a variety Γu,v consisting of pairs (F 1, F 2) such that F 1 ∈ Γu, and, with
respect to F 1 as a base flag, F 2 ∈ Γv. Projecting Γu,v on F 2 induces a decompo-
sition of the intersection homology of Γu,v described by certain polynomials with
non-negative, symmetric and unimodal coefficients [3]. By [27], these polynomials

are the structure coefficients q(`(u)+`(v)−`(w))/2fw
u,v(q) defined by

C ′
uC

′
v =

∑

w

fw
u,v(q)C

′
w. (8.12)

When q is a power of a prime we may consider the finite ‘flag variety’ over a field
F(q). If we form a complex vector space by taking this finite set of flags as a basis,
then the Hecke algebraHn(q) (specialized to this integer q) acts on it as the algebra
of all operators commuting with the action of GLn(q). The operator Tw ∈ Hn(q)
maps a flag F to the sum of all flags F ′ in the Schubert cell γw−1 , constructed with
respect to F as base flag. The trace of this action is therefore χ(Tw) = 0 for w 6= 1,
χ(T1) = |Fn(q)| = [n]q! = (1)(1 + q) · · · (1 + q + · · ·+ qn−1). This character (really
a different character for each q) is the one used in the proof following Conjecture
3.1.
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(1983).
[4] N. Bourbaki, Groupes et algebras de Lie, Chapitres 4, 5, 6. Hermann, Paris

(1968).
[5] F. Brenti, Unimodal polynomials arising from symmetric functions. A.M.S.

Proceedings 108 (1990) 1133–1141.
[6] J. Brylinski & M. Kashiwara, Kazhdan–Lusztig conjecture and holonomic

systems. Invent. Math. 64 (1981) 387–410.
[7] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett & A. Ocneanu,

A new polynomial invariant of knots and links. Bull. AMS 12 no. 2 (1985)
239–246.

[8] M. Goresky & R. MacPherson, Intersection homology II. Invent. Math. 72

(1983) 77–129.
[9] I. Goulden & D. Jackson, Immanants of combinatorial matrices. J. Algebra,

to appear.
[10] C. Greene, Proof of a conjecture on immanants of the Jacobi–Trudi matrix.

Linear Algebra and its Applications 171 (1992) 65–79.
[11] N. Jacobson, Lie Algebras. Interscience, New York (1962).
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C ′
w ∼C ′

w1
+ C ′

w2
φ(4) φ(31) φ(22) φ(211) φ(14)

C ′
1234∼C

′
1234 0 0 0 0 1

C ′
1243∼C

′
1243 0 0 0 1 + q 0

C ′
1324∼C

′
1324 0 0 0 1 + q 0

C ′
2134∼C

′
2134 0 0 0 1 + q 0

C ′
1423∼C

′
1342 0 1 + q + q2 0 q 0

C ′
1342∼C

′
1342 0 1 + q + q2 0 q 0

C ′
2143∼C

′
2143 0 0 1 + 2q + q2 0 0

C ′
3124∼C

′
2314 0 1 + q + q2 0 q 0

C ′
2314∼C

′
2314 0 1 + q + q2 0 q 0

C ′
1432∼C

′
1432 0 1 + 2q + 2q2 + q3 0 0 0

C ′
2341∼C

′
2341 1 + q + q2 + q3 q + q2 q + q2 0 0

C ′
2413∼C

′
2341 1 + q + q2 + q3 q + q2 q + q2 0 0

C ′
3142∼C

′
2341 1 + q + q2 + q3 q + q2 q + q2 0 0

C ′
3214∼C

′
3214 0 1 + 2q + 2q2 + q3 0 0 0

C ′
4123∼C

′
2341 1 + q + q2 + q3 q + q2 q + q2 0 0

C ′
2431∼C

′
2431 1 + 2q + 2q2 + 2q3 + q4 q + 2q2 + q3 0 0 0

C ′
3241∼C

′
3241 1 + 2q + 2q2 + 2q3 + q4 q + 2q2 + q3 0 0 0

C ′
3412∼C

′
3241 + C ′

2143 1 + 2q + 2q2 + 2q3 + q4 q + 2q2 + q3 q + 2q2 + q3 0 0
C ′

4132∼C
′
2431 1 + 2q + 2q2 + 2q3 + q4 q + 2q2 + q3 0 0 0

C ′
4213∼C

′
3241 1 + 2q + 2q2 + 2q3 + q4 q + 2q2 + q3 0 0 0

C ′
3421∼C

′
3421 1 + 3q + 4q2 + 4q3 + 3q4 + q5 q2 + q3 0 0 0

C ′
4231∼C

′
3421 + C ′

3214 1 + 3q + 4q2 + 4q3 + 3q4 + q5 q + 3q2 + 3q3 + q4 0 0 0
C ′

4312∼C
′
3421 1 + 3q + 4q2 + 4q3 + 3q4 + q5 q2 + q3 0 0 0

C ′
4321∼C

′
4321 1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6 0 0 0 0

Table 1. Conjectures 2.1 and 3.1 for n = 4


