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This work deals with the identity B+(q, t)=�& � + c+&(q, t), where B+(q, t) denotes
the biexponent generator of a partition +. That is, B+(q, t)=�s # + qa$(s)tl $(s), with
a$(s) and l $(s) the co-arm and co-leg of the lattice square s in +. The coefficients
c+&(q, t) are closely related to certain rational functions occuring in one of the Pieri
rules for the Macdonald polynomials and the symbol & � + is used to indicate that
the sum is over partitions & which immediately precede + in the Young lattice. This
identity has an indirect manipulatorial proof involving a number of deep identities
established by Macdonald. We show here that it may be given an elementary
probabilistic proof by a mechanism which emulates the Greene�Nijehuis�Wilf proof
of the hook formula. � 1998 Academic Press

INTRODUCTION

Given a partition + we shall represent it as customary by a Ferrers
diagram. We shall use the French convention here and, given that the parts
of + are +1�+2� } } } �+k>0, we let the corresponding Ferrer's diagram
have +i lattice squares in the i th row (counting from the bottom up). We
shall also adopt the Macdonald convention of calling the arm, leg, co-arm,
and co-leg of a lattice square s the parameters a(s), l(s), a$(s) and l $(s),
giving the number of cells of + that are respectively strictly East, North,
West, and South of s in +. We recall that Macdonald in [13] defines the
symmetric function basis [P+(x; q, t)]+ as the unique family of polynomials
satisfying the following conditions

(a) P*=S*+� +<* S+!+*(q, t)

(b) (P* , P+) q, t=0 for *{+,
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where ( , )q, t denotes the scalar product of symmetric polynomials defined
by setting for the power basis [ p\]

( p\ (1) , p\ (2)) q, t={z\ `
i

1&q \i

1&t \i
if \ (1)=\(2)=\

0 otherwise,

where z\ is the integer that makes n!�z\ the number of permutations with
cycle structure \. Macdonald shows that the basis [Q*(x; q, t)]+, dual to
[P+(x; q, t)]+ with respect to this scalar product, is given by the formula

Q*(x; q, t)=d*(q, t) P*(x; q, t),

where

d*(q, t)=
h*(q, t)
h$*(q, t)

and

h*(q, t)= `
s # *

(1&qa*(s)tl*(s)+1), h$*(q, t)= `
s # *

(1&qa*(s)+1tl*(s)) (I.1)

Macdonald sets

J+(x; q, t)=h+(q, t) P+(x; q, t)=h$+(q, t) Q+(x; q, t), (I.2)

and then defines his q, t-analogues of the Kostka coefficients by means of
an expansion that in *-ring notation may be written as

J+(x; q, t)=:
*

S*[X(1&t)] K*+(q, t). (I.3)

This note is concerned with the modified basis [H� +(x; q, t)]+ defined by
setting

H� +(x; q, t)=:
*

S*(x) K� *+(q, t), (I.4)

where we have set

K� *+(q, t)=K*+(q, 1�t) tn(+) (I.5)

with

n(+)= :
s # +

l+(s).
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To this date it is still an open problem to prove that the K*+(q, t) (and the
K� *+(q, t) as well) are polynomials with positive integer coefficients. In [2]
we have conjectured that H� +(x; q, t) is in fact (for a given + |&n) the
bivariate Frobenius characteristic of a certain Sn-module H+ yielding a
bigraded version of the left regular representation of Sn . In particular this
would imply that the expression

F+(q, t)=:
*

f*K� *+(q, t)

should be the Hilbert series of H+ . Here, f* denotes the number of standard
tableaux of shape *. Since Macdonald proved that

K*+(1, 1)=f* , (I.6)

we see that we must necessarily have

F+(1, 1)=:
*

f 2
*=n! (I.7)

According to our conjectures in [2] the polynomial

�p1
H� +(x; q, t)

should give the Frobenius characteristic of the action of Sn&1 on H+ . Using
the fact that the operator �p1

is in a sense1 dual to multiplication by the
elementary symmetric function e1 , we can transform one of the Pieri rules
given by Macdonald in [14] into the expansion of �p1

H� +(x; q, t) in terms
of the polynomials H� &(x; q, t) whose index & immediately precedes + in the
Young partial order. More precisely, we obtain

�p1
H� +(x; q, t)= :

& � +

c+&(q, t) H� &(x; q, t) (I.8)

with

c+&(q, t)= `
s # R+�&

tl+(s)&qa+(s)+1

tl&(s)&qa&(s)+1 `
s # C+�&

qa+(s)&tl+(s)+1

qa&(s)&tl&(s)+1 , (I.9)

where R+�& (resp. C+�&) denotes the set of lattice squares of & that are in the
same row (resp. same column) as the square we must remove from + to
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obtain &. This given, an application of �n&1
p1

to both sides of (I.8) yields the
recursion

F+(q, t)= :
& � +

c+&(q, t) F&(q, t), (I.10)

which together with the initial condition F(1)(q, t)=1 permits the computa-
tion of extensive tables of F+(q, t). Of course, all the data so obtained not
only confirm the polynomiality and positive integrality of the coefficients of
F+(q, t) but exhibit some truly remarkable symmetries under various trans-
formations of the variables +, q, and t. The temptation is strong to try and
deduce some of these properties directly from the recursion in (I.10). In
particular, we should want to construct a pair of statistics :+(_), ;+(_) on
permutations _ # Sn yielding

F+(q, t)= :
_ # Sn

q:+(_)t;+(_). (I.11)

Unfortunately, the complexity of the coefficients c+&(q, t) turns this into an
arduous task. The present work results from a systematic effort to understand
as much as possible about the mechanism which results in the positive
polynomiality of F+(q, t) in spite of the intricate rationality of the recursion.

The idea that a ``hook walk'' of sorts is involved here stems from noting
what takes place if we successively make the substitutions t � 1�t and then
t � q. To this end, setting

G+(q)=(F+(q, 1�t) tn(+))| t � q ,

routine manipulations yield that the recursion in (I.10) becomes

G+(q)= :
& � +

#+&(q) G&(q), (I.12)

with

#+&(q)= `
s # R+�&

1&qh+(s)

1&qh&(s) `
s # C+�&

1&qh+(s)

1&qh&(s)

where

h+(s)=l+(s)+a+(s)+1 and h&(s)=l&(s)+a&(s)+1.

However, now these coefficients #+&(q) may be given a very revealing form.
Indeed, since when s is not in R+�& or C+�& we have

h+(s)=l+(s)+a+(s)+1=l&(s)+a&(s)+1=h&(s),

77RANDOM q, t-HOOK WALK
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we may write

`
s # R+�&+C+�&

1&qh+(s)

1&qh&(s)=
1

1&q
>s # + (1&qh+(s))

>s # & (1&qh&(s))

where the divisor 1&q compensates for the fact that + differs from & by a
corner square (of hook length =1). Using the notation

[m]q=1+q+ } } } +qm&1=
1&qm

1&q
,

we can finally rewrite the recursion in (I.12) in the form

G+(q)
>s # + [h+(s)]q

= :
& � +

G&(q)
>s # & [h&(s)]q

.

This means that the expression G+(q)�>s # + [h+(s)]q satisfies the same recursion
as the number of of standard tableaux f+ . Since the initial condition is
G(1)=1, we deduce that for all partitions + we must have

G+(q)=f+ `
s # +

[h+(s)]q . (I.14)

This identity, which was noted by Macdonald in [14], points out the
order of difficulty of finding a pair of statistics yielding (I.11). Indeed, once
that is done, the specialization that sends F+(q, t) to G+(q) would deliver
a q-analogue of the hook formula.

The derivation of (I.14) suggests that the coefficient c+&(q) is some sort
of q, t-analogue of the ratio h+ �h& , where h+ and h& denote the hook
products for + and & respectively. This given, the recursion in (I.10) may
be viewed as a q, t-analogue of the identity

n!= :
& � +

h+

h&
(n&1)!.

Dividing both sides of this identity by n! we get

1=
1
n

:
& � +

h+

h&
,

which is precisely what Greene, Nijenhuis, and Wilf prove by means of their
random hook walk. We shall show here that an appropriate q, t-extension
of their argument yields a probabilistic proof of the identity

1=
1

B+(q, t)
:

& � +

c+&(q), (I.15)
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where

B+(q, t)= :
s # +

tl$+(s)qa$+(s). (I.16)

The contents of this note are divided into three sections. In the first
section we give the original argument that led us to discover this identity.
We also give an alternate proof which indicates the close relationship that
(I.15) has to certain special properties of the coefficients K� *+(q, t). In the
second section we introduce our q, t-hook walk and show that it yields
(I.15) as desired. In the final section we state a number of closely related
identities and suggest possible extensions of the present work.

We should mention that some of the computer experimentation that was
suggested by the the present work was the starting point of a development
which culminated into the proofs given in [9] and [10] that the K*+(q, t)
are in fact polynomials with integer coefficients.

1. MANIPULATIONS

Our presentation here relies heavily on *-ring notation and we shall
begin with a brief description of this device. The reader is referred to [1]
and [8] for further details. If P and Q are symmetric polynomials and Q
has positive integer coefficients, then by P[Q] we mean the symmetric
polynomial obtained by interpreting Q as a multiset of monomials A and
literally substituting the elements of A for the variables of P. Note that if
P= pk

2 this operation reduces to setting

pk[Q]= :
a # A

ak.

This given, to compute P[Q] in full generality we simply expand P in
terms of the power basis

P=:
\

c\p\ ,

and then set

P[Q]=:
\

c\ `
i

p\i
[Q]. (1.1)
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This is usually referred to as the plethysm of Q into P. *-Ring notation
simply extends plethysm to the case when Q is allowed to have negative as
well as positive integer coefficients. To do this we simply decompose Q as
a difference of two multisets Q=A&B and then set

pk[Q]= :
a # A

ak& :
b # B

bk. (1.2)

This given, the computation of P[Q] may again be carried out according
to formula (1.1). We should note that the definition in (1.2) is motivated
by the requirement that for any two polynomials Q1 and Q2 we should
have the two basic properties

pk[Q1+Q2]=pk[Q1]+pk[Q2], pk[Q1Q2]=pk[Q1] pk[Q2].

(1.3)

This definition can clearly be extended to the case when P as well as Q
are symmetric formal Laurent series. The convenience of this notation is
mainly due to the fact that, because of the properties in (1.3), many of the
manipulations that are natural in the context of substitution are still
correct for *-ring substitutions.

To carry out calculations in Macdonald theory by this device we need to
start by giving a *-ring expression to the Macdonald kernel. To this end we
define the basic Cauchy rational function 0 by setting

0=:
\

p\�z\=exp \ :
k�1

pk

k + , (1.4)

where for a partition \=1:1 2:2 } } } n:n we let z\=1:12:2 } } } n:n :1 ! :2 ! } } } :n !.
This given, it is easy to deduce from (1.1) and (1.3) that for any difference
A&B of two Laurent multisets of monomials we have

0[A&B]= `
a # A

1
1&a

`
b # B

(1&b). (1.5)

In particular, this gives that the Macdonald kernel

0q, t(x; y)= `
m�0

`
i, j

1&txi yj qm

1&xi yj qm

may simply be written as

0q, t(x; y)=0 _XY
1&t
1&q& , (1.6)
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where we set X=x1+x2+ } } } and Y= y1+ y2+ } } } . Then the duality of
the two bases [P+(x; q, t)]+ and [Q+(x; q, t)]+ with respect to the scalar
product ( , ) q, t translates into the identity

0 _XY
1&t
1&q&=:

+

P+(x; q, t) Q+(x; q, t). (1.7)

Using (I.2), this identity may be rewritten as

0 _XY
1&t
1&q&=:

+

J+(x; q, t) J+( y; q, t)
h+(q, t) h$+(q, t)

.

Making the *-ring substitutions X � X�(1&t) and Y � Y�(1&t) then yields
that

0 _ XY
(1&t)(1&q)&=:

+

J+ _ X
1&t

; q, t& J+ _ Y
1&t

; q, t&
h+(q, t) h$+(q, t)

.

Setting for convenience

J+ _ X
1&t

; q, t&=H+(x; q, t), (1.8)

we get

0 _ XY
(1&t)(1&q)&=:

+

H+(x; q, t) H+( y; q, t)
h+(q, t)h$+(q, t)

.

Note next that from (I.3) we deduce the Schur function expansion

H+(x; q, t)=:
*

S*(x) K*+(q, t). (1.9)

Thus extracting the terms of total degree 2n in the variables xi , yj we derive
that

hn _ XY
(1&t)(1&q)&= :

+ |&n

H+(x; q, t) H+( y; q, t)
h+(q, t) h$+(q, t)

. (1.10)

This leads us to our first basic identity.
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Theorem 1.1.

en _ XY
(1&t)(1&q)&= :

+ |&n

H� +(x; q, t) H� +( y; q, t)

h� +(q, t) h� $+(q, t)
. (1.11)

where we have set

h� +(q, t)= `
s # +

(qa+(s)&tl+(s)+1), h� $+(q, t)= `
s # +

(tl+(s)&qa*(s)+1). (1.12)

Proof. From (I.4) and (I.5) we get that

H� +(x; q, t)=H+(x; q, 1�t) tn(+). (1.13)

Note further that the definitions in (I.1) give

h+(q, 1�t)=(&1)n h� +(q, t)�tn(+)+n

h+(q, 1�t)=h� +(q, t)�tn(+).

This given, (1.7) follows immediately from (1.6) by replacing t with 1�t and
noting that

hn _ XY
(1&1�t)(1&q)&=(&1)n tnen _ XY

(1&t)(1&q)& .

Corollary 1.1.

en _ X
(1&t)(1&q)&= :

+ |&n

H� +(x; q, t)

h� +(q, t) h� $+(q, t)
. (1.14)

Proof. We simply evaluate both sides of (1.11) at an alphabet Y
containing a single letter y1 and note that we have

en _ Xy1

(1&t)(1&q)&=yn
1en _ X

(1&t)(1&q)& and H� +( y1 ; q, t)=yn
1 .

Thus (1.14) is obtained by canceling the common factor yn
1 from both sides

of the resulting identity.
The basic result that ties formula (I.8) to the Stanley�Macdonald Pieri

rules may be stated as follows:

Theorem 1.2. For any & |&n&1 we have

e1(x) H� &(x; q, t)= :
+ |&n

H� +(x; q, t) d+&(q, t) /(& � +), (1.15)
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where the symbol /(& � +) is to indicate that the sum is to be carried out over
partitions + which immediately follow & in the Young lattice, and

d+&(q, t)= `
s # R+�&

qa&(s)&tl&(s)+1

qa+(s)&tl+(s)+1 `
s # C+�&

tl&(s)&qa&(s)+1

tl+(s)&qa+(s)+1 , (1.16)

with R+�& (resp. C+�&) denoting as before the set of lattice squares of & that
are in the same row (resp. same column) as the square we must remove from
+ to obtain &.

Proof. This identity is obtained by taking one of the Pieri rules for the
basis P*(x; q, t) given by Macdonald in [14] and translating it to the
present setting by means of (I.2), (I.3), (1.8), and (1.13). The details of this
computation are given in [4] (see Theorem 2.1 there).

Corollary 1.1. With the same conventions as above, and for any + |&n,

�p1
H� +(x; q, t)= :

& � +

c+&(q, t) H� &(x; q, t), (1.17a)

where the coefficients c+&(q, t) are as given in (I.9). We also have

c+&(q, t)=
d+&(q, t)

(1&t)(1&q)
h� +(q, t) h� $+(q, t)

h� &(q, t) h� $&(q, t)
. (1.17b)

Proof. Note that we also have the expansion

en _ XY
(1&t)(1&q)&= :

\ |&n

p\(x) p\( y)
z\

(&1)n&k(\)

p\[(1&t)(1&q)]
,

where k(\) denotes the number of parts of \. Combining this with (1.11)
we deduce that the two bases [H� +(x; q, t)�h� +(q, t)]+ and [H� +(x; q, t)�h� $+(q, t)]+

are dual with respect to the scalar product ( , )
*

defined by setting for the
power basis elements

( p\ (1) , p\ (2) )
*

={0
z\ p\[(1&t)(1&q)](&1)n&k(\)

if \(1){\(2)

if \(1)=\ (2)=\
.

Now a simple manipulation shows that we have

(�p1
p\ (1) , p\ (2) )

*
=

1
(1&t)(1&q)

( p\ (1) , p1 p\ (2) )
*

.
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In other words, the operator �p1
is the adjoint of multiplication by

p1 �((1&t)(1&q)) with respect to the scalar product ( , )
*

. This means
that the action of �p1

on the kernel

en _ XY
(1&t)(1&q)&

as a symmetric function of the xi's has the same effect as multiplication of

en&1 _ XY
(1&t)(1&q)&

by p1( y)�((1&t)(1&q)). Using (1.11), this results in the identity

:
+ |&n

�p1
H� +(x; q, t) H� +( y; q, t)

h� +(q, t) h� $+(q, t)

=
1

(1&t)(1&q)
:

& |&n&1

H� &(x; q, t) p1( y) H� &( y; q, t)

h� &(q, t) h� $&(q, t)
.

Since p1 and e1 are one and the same we can use the Pieri rule in (1.15)
and rewrite the right-hand side of this relation in the form

RHS=
1

(1&t)(1&q)
:
&

H� &(x; q, t)
1

h� &(q, t) h� $&(q, t)
:

+ � &

H� +( y; q, t) d+&(q, t).

Substituting this in the equation above and equating coefficients of H� +( y; q, t)
on both sides gives

�p1
H� +(x; q, t)

1

h� +(q, t) h� $+(q, t)

=
1

(1&t)(1&q)
:

& � +

H� &(x; q, t)
1

h� &(q, t) h� $&(q, t)
d+&(q, t).

This establishes the recursion in (1.17a) with

c+&(q, t)=
d+&(q, t)

(1&t)(1&q)
h� +(q, t) h� $+(q, t)

h� &(q, t) h� $&(q, t)
. (1.18)

We leave it to the reader to verify that the expression on the right-hand
side of this formula simplifies to the right-hand side of formula (I.9).

Macdonald established the existence of the basis [P*(x; q, t)]* by charac-
terizing it as the eigensystem of a certain difference operator �1 . Our
polynomials H� +(x; q, t) have an analogous characterization in terms of the
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difference operator 21 which in *-ring notation is given by setting for any
symmetric polynomial P(x)

21P=P&P _X+
(1&t)(1&q)

z & 0[&Xz] |z o . (1.19)

Here the symbol | zo represents the operation of taking a constant term in
a formal Laurent series in the variable z.

More precisely, it is shown in [5, Theorem 2.2] that we have

Theorem 1.3.

21H� +(x; q, t)=(1&t)(1&q) B+(q, t) H� +(x; q, t). (1.20)

Sketch of Proof. We first rewrite the Macdonald operator �1 in *-ring
notation and compute its effect on the basis J+(x; q, t). Using the relations
(1.8) and (1.13) the result is then transformed into an identity involving
H� +(x; q, t). This done, formula (1.20) is obtained after a few straightforward
manipulations. This computation is carried out in full detail in [5] (see the
proofs of Theorems 2.1 and 2.2 there).

The *-ring formula in (1.19) makes it convenient to compute the action
of 21 in a number of special cases. In particular, we can easily derive the
following result which is basic in the present treatment.

Proposition 1.1.

21en _ X
(1&t)(1&q)&=e1(x) en&1 _ X

(1&t)(1&q)& (1.21)

Proof. Note that for any two multisets of monomials A, B we have the
addition formula

en[A+B]= :
n

k=0

ek[A] en&k[B].

Using this with A=X�((1&t)(1&q)) and B=1�z, from the definition (1.19)
we immediately obtain

21 en _ X
(1&t)(1&q)&

=en _ X
(1&t)(1&q)&& :

n

k=0

ek _ X
(1&t)(1&q)& en&k[1�z] 0 _&

X
z & } z o

.

(1.22)
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However, since

1 for n&k=0,

en&k[1�z]={1�z for n&k=1,

0 for n&k�2,

(1.22) reduces to

21 en _ X
(1&t)(1&q)&=&en&1 _ X

(1&t)(1&q)& 0 _&
X
z & } z

=en&1 _ X
(1&t)(1&q)& e1(x)

as desired.

An immediate application of this result is our

First Proof of B+(q, t)=�& � + c+&(q, t). Using (1.20) and (1.14) we can
rewrite the left-hand side of (1.21) as

LHS= :
+ |&n

H� +(x; q, t)(1&t)(1&q) B+(q, t)

h� +(q, t) h� $+(q, t)
.

On the other hand, the right-hand side may be written as

RHS= :
& |&n&1

e1(x) H� &(x; q, t)

h� &(q, t) h� $&(q, t)
.

By applying (1.15) we can transform this into

RHS= :
& |&n&1

1

h� &(q, t) h� $&(q, t)
:
+

H� +(x; q, t) d+&(q, t) /(& � +).

Equating the LHS and the RHS we derive the identity

:
+ |&n

H� +(x; q, t)(1&t)(1&q) B+(q, t)

h� +(q, t) h� $+(q, t)

=:
+

H� +(x; q, t) :
& |&n&1

1

h� &(q, t) h� $&(q, t)
d+&(q, t) /(& � +).
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Equating coefficients of H� +(x; q, t) yields

(1&t)(1&q)

h� +(q, t) h� $+(q, t)
B+(q, t)= :

& � +

1

h� &(q, t) h� $&(q, t)
d+&(q, t),

and our desired identity follows from (1.17b).

An alternate proof of the identity is based on one of the specializations
of P+(x; q, t) given by Macdonald in the original paper [13]. When this
result is translated into a specialization of the polynomial H� +(x; q, t) we
obtain an identity which in *-ring notation can be stated as follows.

Proposition 1.2.

H� +[1&u; q, t]= `
s # +

(1&utl$+(s)qa$+(s)) (1.23)

A detailed proof of this result can be found in [5, Corollary 2.1].

Corollary 1.2. For k=0, ..., n&1 and all + |&n we have

K� 1kn&k, +(q, t)=ek[B+(q, t)&1], (1.24)

in particular,

(a) K� n, +(q, t)=1

{(b) K� 1 n&1, +(q, t)=B+(q, t)&1 (1.25)

(c) K� 1 n, +(q, t)=tn(+)qn(+$).

Proof. The identity in (1.23) combined with the expansion in (I.4) gives

:
*

S*[1&u] K� *+(q, t)= `
s # +

(1&utl$+(s)qa$+(s)). (1.26)

Now it is easily shown that S*[1&u] fails to vanish only when * is a hook.
More precisely, we have

S*[1&u]={(&u)k (1&u)
0

if *=1kn&k for some k<n
otherwise.

Using this in (1.26) and cancelling the factor 1&u from both sides we get

:
n&1

k=0

(&u)k K� 1 kn&k, +(q, t)= `
s # +

(oo)(1&utl$+(s)qa$+(s)),
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where the superscript (oo) is to indicate that the product omits the factor
corresponding to the corner cell with a$=l $=0. This given, (1.24) follows
by equating coefficients of uk.

We are thus in a position to give our

Second Proof of B+(q, t)=�& � + c+&(q, t). Note that (I.4) and (a) of
(1.25) (with n replaced by n&1) give that for any & |&n&1 we have

(H� & , Sn&1)=1

where here the angles ( , ) are to represent the customary Hall inner
product of symmetric polynomials. Thus, using (I.8) we may write

:
& � +

c+&(q, t)=(�p1
H� + , Sn&1). (1.27)

Now it is well known and easy to show that the adjoint of the operator �p1

with respect to the Hall inner product is multiplication by p1 . From this
and (I.4) we finally deduce that

:
& � +

c+&(q, t)=(H� + , p1 Sn&1 )=(H� + , Sn+Sn&1, 1)

=K� n, +(q, t)+K� n&1, 1, +(q, t)

and our identity follows from (1.25a and b).

2. THE q, t-HOOK WALK

We shall start with a brief review of the Greene�Nijenhuis�Wilf proof of
the identity

1=
1
n

:
& � +

h+

h&
. (2.1)

To simplify our language we need to make some notational conventions.
To begin with we shall hereafter identify a partition + with its Ferrers
diagram. We should also recall that the hook of a cell s of + consists of s
together with its arm, whose length we have denoted by a+(s) and its leg
whose length we have denoted by l+(s). Since we use the French convention
of depicting Ferrers diagrams, the arm of s consists of the cells of + which
are strictly east of s and the leg consists of the cells of + which are strictly
north of s. Likewise, the co-arm and co-leg consist of the cells respectively
strictly west and strictly south. We shall often use the words arm, co-arm,
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leg, and co-leg to refer to their respective lengths. We set h+(s)=1+a+(s)+
l+(s) and refer to it as the hook length of s in +. We shall also set
h+=>s # + h+(s). When & immediately precedes + (which we have expressed
by writing & � +) it will be convenient to denote by +�& the corner cell we
must remove from + to obtain &. A cell s with coarm a$ and coleg l $ will
be represented by the pair (a$+1, l $+1). If s=(x, y) and s$=(x$, y$) we
shall write s<<s$ if and only if x<x$ and y< y$ and s<<=s$ if and only
if x�x$ and y� y$. The collection of cells that are weakly northeast of s
will be denoted by NE(s) and will be referred to as the shadow of s. That
is,

NE(s)=[s$: s<< =s$].

We shall also express the inequality s<<s$ by saying that s is covered by
s$. Here the symbols R+�& and C+�& will have the same meaning as in the
Introduction, but in addition, for a given cell s we shall denote by R+�&(s)
and C+�&(s) the cells of R+�& and C+�& that are strictly northeast of s. Note
that both R+�&(s) and C+�&(s) are empty when +�& is not in the shadow of
s. When +�& is in the shadow of s we shall denote by r[s] the element of
R+�& _ [+�&] that is directly North of s. Likewise c[s] will denote the
element of C+�& _ [+�&] that is directly East of s.

Given + |&n, the basic ingredient in [11] is a random walk Z1 , Z2 , ...,
Zm , ... over the cells of + which is constructed according to the following
mechanism.

(1) The initial point Z1=(x1 , y1) is obtained by selecting one of the
cells of + at random and with probability 1�n.

(2) After k steps, given that Zk=s,

(a) the walk stops if s is a corner cell of +;

(b) if s is not a corner cell, then Zk+1 is obtained by selecting at
random and with equal probability 1�(a+(s)+l+(s))=1�(h+(s)&1) one of
the cells of the arm or the leg of s in +.

Greene�Nijenhuis�Wilf establish (2.1) by showing that for any & � + the
quantity (1�n)(h+�h&) gives the probability that the random walk ends at
the corner cell +�&. Denoting by Zend the ending position of the random
walk, we may express this by writing

P[Zend=+�&]=
1
n

h+

h&
. (2.2)
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Clearly, if the random walk starts at the cell s then it can only end on a
corner cell that is in the shadow of s. In fact, the G-N-W proof yields that
for s<<+�&

P[Zend=+�& | Z1=s]

=
1

h+(r[s])&1
1

h+(c[s])&1
`

r # R+�&(s)

h+(r)
h&(r)

`
c # C+�&(s)

h+(c)
h&(c)

, (2.3)

for r[s]=+�&

P[Zend=+�& | Z1=s]=
1

h+(c[s])&1
`

c # C+�&(s)

h+(c)
h&(c)

, (2.3r)

and for c[s]=+�&

P[Zend=+�& | Z1=s]=
1

h+(r[s])&1
`

r # R+�&(s)

h+(r)
h&(r)

. (2.3c)

This given, (2.2) follows from the identity

P[Zend=+�&]= :
s<< =+�&

P[Z1=s] P[Zend=+�& | Z1=s]. (2.4)

Remarkably, all of this has a complete q, t-analog in our setting. As we
shall see, our proof of

B+(q, t)= :
& � +

c+&(q, t) (2.5)

brings to light the finer combinatorial mechanism that underlies the G-N-W
argument.

In order to use the probabilistic jargon in our argument, it is necessary
to view the parameters q and t as positive numbers. In fact, it will be
convenient to let 0<q<1 and t>1. However, the trained combinatorial
eye should have no difficulty seeing that this condition is totally artificial.
In fact, it can be done without completely by viewing each random walk
as a lattice path and its probability as the weight of the path. In this setting
q and t may be left as they should be, namely as two independent indeter-
minates. From this point of view our proof may viewed as a modification
of the G-N-W proof obtained by simply changing weights. Nevertheless, the
probabilistic jargon is too convenient to give up at this point and we shall
use it at first, leaving the combinatorial implications to our final comments.
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Following the G-N-W scheme our random walk may be described as
follows.

(1) The initial point Z1 is obtained by selecting the cell (x, y) of + with
probability (qx&1t y&1)�B+(q, t).

(2) After k steps, given that Zk=s=(x, y),

(a) the walk stops if s is a corner cell of +

(b) if s is not a corner cell then Zk+1 is obtained by selecting

(i) the cell (x, y+j ) of the leg of s with probability t j&1((qa+ (s)(t&1))�
(tl+(s)&qa+(s)))

(ii) the cell (x+i, y) of the arm of s with probability qi&1((tl+(s)(1&q))�
(tl+(s)&qa+(s))).

Note that the probability of Zk+1 landing anywhere in the leg of s is given
by the sum

:
l+(s)

j=1

t j&1 qa+(s)(t&1)
tl+(s)&qa+(s)=qa+(s) tl+(s)&1

tl+(s)&qa+(s) ,

and the probability of Zk+1 landing anywhere in the arm of s is given by

:
a+(s)

i=1

qi&1 tl+(s)(1&q)
tl+(s)&qa+(s)=tl+(s) 1&qa+(s)

tl+(s)&qa+(s)

and we see that we do have, as necessary,

qa+(s) tl+(s)&1
tl+(s)&qa+(s)+tl+(s) 1&qa+(s)

tl+(s)&qa+(s)=1.

Our plan is to prove (2.5) by establishing that for any & � +,

P[Zend=+�&]=
1

B+(q, t)
c+&(q, t). (2.6)

It will be convenient to set for any cell s # +

A(s)=
tl+(s)(1&q)
tl+(s)&qa+(s) and B(s)=

qa+(s)(t&1)
tl+(s)&qa+(s) . (2.7)
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This given, in complete analogy with (2.3) we shall show that

P[Zend=+�& | Z1=s]

=A(r[s]) B(c[s]) `
r # R+�&(s)

tl+(r)&qa+(r)+1

tl&(r)&qa&(r)+1 `
c # C+�&(s)

qa+(c)&tl+(c)+1

qa&(c)&tl&(c)+1 . (2.8)

The identity in (2.8) as well as that in (2.5) is almost an immediate
consequence of two elementary combinatorial lemmas which are at the root
of the G-N-W argument. The first of these is a lattice path result which is inter-
esting in its own right. Let L(h, k) denote the collection of lattice points

L(h, k)=[(i, j ): 1�i�h+1, 1� j�k+1].

Let P(h, k) denote the collection of lattice paths in L(h, k) which start at (1, 1),
end at (h+1, k+1), and proceed by East and North steps. To be precise, a
path ? # P(h, k) is given by a sequence of m=h+k+1 lattice points

?=[(i1 , i1), (i2 , j2), ..., (im , jm)], (2.9)

with

(i1 , j1 )=(1, 1)

(is+1, js){ (is+1, js+1)={or for 1�s�h+k
(is , js+1)

(im , jm)=(h+1, k+1)

Given two sets of weights, [ai, j ]i=1 } } } h+1, j=1 } } } k+1 and
[bi, j]i=1 } } } h+1, j=1 } } } k+1 , we define the weight of a step (i, j ) � (i $, j $) by
setting

w[(i, j ) � (i $, j $)]={
1

ai, j

1
bi, j

if (i $, j $)=(i+1, j )

if (i $, j $)=(i, j+1)

\An East
Step +

\A North
Step +

, (2.10)

then define the weight w[?] of a path ? # P(h, k) to be the product of the
weights of each of its steps. More precisely, if ? is as given in (2.9) we set

w[?]= `
h+k

s=1

w[(is , js) � (is+1 , js+1)].
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Lemma 2.1. Let a1 , a2 , ..., ah and b1 , b2 , ..., bk be fixed indeterminates
and u be a fixed parameter. Let the weights ai, j and bi, j be given by setting

ai, j =
ai+bj

1+ubj
, bi, j=

ai+bj

1&uai
(2.11)

with ah+1=bk+1=0. Then

w[a1 , .., ah ; b1 , .., bk ]= :
? # P(h, k)

w[?]=
1

a1 a2 } } } ah b1b2 } } } bk
. (2.12)

Proof. Note that our choice of weights [ai, j], [bi, j] assures that we
have

ai

ai, j
+

bj

bi, j
=1. (2.13)

This given, for h=k=1 we have

w[a1 ; b1]=
1

a1, 1

1
b1

+
1

b1, 1

1
a1

=\ a1

a1, 1

+
b1

b1, 1+
1

a1 b1

=
1

a1b1

.

So we may proceed by induction on m=h+k. Let it be true for m&1 and
for any set of indeterminates. Since any path in P(h, k) must start with one
of the two steps (1, 1) � (2, 1) or (1, 1) � (1, 2), we must have

w[a1 , .., ah ; b1 , .., bk ]=
1

a1, 1

w[a2 , .., ah ; b1 , .., bk]

+
1

b1, 1

w[a1 , .., ah ; b2 , .., bk],

so by the induction hypothesis

w[a1 , .., ah ; b1 , .., bk]=
1

a1, 1

1
a2 } } } ah b1b2 } } } bk

1
b1, 1

1
a1a2 } } } ah b2 } } } bk

=\ a1

a1, 1

+
b1

b1, 1+
1

a1a2 } } } ahb1 b2 } } } bk

=
1

a1a2 } } } ahb1 b2 } } } bk
.

This completes the induction and the proof.
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Lemma 2.2. For any indeterminates a1 , a2 , ..., an and b1 , b2 , ..., bn we
have

`
n

i=1

(ai+bi)= :
n

i=1

b1b2 } } } bi&1ai `
i $>i

(ai $+bi $)+b1b2 } } } bn . (2.14)

Proof. This identity is obtained by expanding the product on the left-
hand side and then combining into the i th summand all the monomials
which contain ai and do not contain a1 , a2 , ..., ai&1 . We may also prove
(2.14) by an obvious induction argument.

To apply these two results to our q, t-hook walks we need to introduce
further notation. To begin with it will be convenient to briefly denote a
hook walk Z1 , Z2 , ..., Zend by the symbol HW. To distinguish between the
random variable HW and its values, we need to introduce the notion of a
hook path. By this we mean a sequence of cells of +

?=[s1 � s2 � } } } � sm+1] (2.15)

with

{si+1

sm+1=+�&
in the arm or leg of si for i=1, ..., m
for some & � +

For a fixed pair & � +, set +�&=(a$+1, l $+1). We will find it convenient
to represent the cells s<< =+�& by their projections in R+�& _ [+�&] and
C+�& _ [+�&]. More precisely, we shall write

r[s]=r
s=[r, c] � {and

c[s]=c.

Now let

R$=[r1 , r2 , ..., rh]�R+�& and C$=[c1 , c2 , ..., ck]�C+�& (2.16)

where the elements of R$ are given in the left-to-right order and those in C$
are given in the bottom-to-top order. The set of cells s # + such that
r[s] # R$ _ [+�&] and c[s] # C$ _ [+�&] will be denoted by gr[R$, C$] and
will be referred to as the grid determined by the pair R$, C$.

Note that when C$ is empty then gr[R$, C$] is simply R$ _ [+�&], and
likewise, when R$ is empty then gr[R$, C$] reduces to C$ _ [+�&]. Now it
is easily seen that to each hook path

?=[s1=(x1 , y1) � s2=(x2 , y2) � } } } � sm=(xm , ym) � +�&]
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we can associate a unique grid gr[?] which may be defined as the smallest
grid which contains all the vertices of ?. To do this we simply set

gr[?]=gr[R$, C$] with {R$=[r # R+�& : r=r[xi ]
C$=[c # R+�& : c=c[ yj ]

for some 1�i�m]
for some 1� j �m].

(2.17)

Note that if we let nk be the number of cells of + that are between sk and
sk+1 then the probability of the transition Zk � Zk+1 according to our
definition is given by

P[Zk+1=sk+1 | Zk=sk ]={qnk A(sk)
tnk B(sk)

if sk � sk+1 is an East step
if sk � sk+1 is a North step.

(2.18)

Let us now define the weight of a hook path ? (given in (2.15)) as the
product

w[?]= `
m

k=1

w[sk � sk+1]

with

w[sk � sk+1]={
A(sk)
1&q
B(sk)
t&1

if sk � sk+1 is an East step

if sk � sk+1 is a North step.
(2.19)

Comparing (2.19) and (2.18) we see that if gr[?]=gr[R$, C$], with R$, C$
as given in (2.16), and +�&=(a$+1, l $+1) then the probability of a hook
walk resulting in ?, given that Z1=s1=[r1 , c1 ], may be written as

P[HW=? | Z1=s1]=qa+(r1)&|R$| tl+(c1)&|C$|(1&q) |R$| (t&1)|C$| w[?].

(2.20)

This places us in a position to establish our first basic identity.

Theorem 2.1. If R$ and C$ are as given in (2.16) and s1=[r1 , c1] then

P[gr[HW]=gr[R$, C$] | Z1=s1 ]

=qa+(r1)&|R$| tl+(c1)&|C$| `
r$ # R$

A(r$) `
c$ # C$

B(c$). (2.21)
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Proof. Since

P[gr[HW]=gr[R$, C$] | Z1=s1]= :
gr[?]=gr[R$, C$]

P[HW=? | Z1=s1],

from (2.20) we get that

P[gr[HW]=gr[R$, C$] | Z1=s1]

=qa+(r1)&|R$|tl+(c1)&|C$| (1&q) |R$| (t&1)|C$| :
gr[?]=gr[R$, C$]

w[?]. (2.22)

To evaluate the sum on the right-hand side we need only show that the
assignment of weights in (2.19) satisfies the conditions required by Lemma 2.1.
To this end let s<<+�& and set r[s]=r and c[s]=c (see Fig. 1).

Now a look at the figure above should reveal that the following identities
hold true for any triplet r, c, s with s=[r, c]:

l+(s)=l+(r)+l+(c),
(2.23)

a+(s)=a+(r)+a+(c).

For convenience set

!s=
1&q
A(s)

=1&
qa+(s)

tl+(s) ; 's=
t&1
B(s)

=
tl+(s)

qa+(s)&1

(2.24)

!r=
1&q
A(r)

=1&
qa+(r)

tl+(r) ; 'c=
t&1
B(c)

=
tl+(c)

qa+(c)&1.

This given, we have

1
1+'s

=1&!s=
qa+(s)

tl+(s) =
qa+(r)

tl+(r) _
qa+(c)

tl+(c) =
1&!r

1+'c
,

from which we derive that

!s=
!r+'c

1+'c
, 's=

!r+'c

1&!r
.

This shows that the assignment of weights in (2.19) satisfies the conditions
in (2.11) with u=1

ai =!ri
, bj ='cj
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Figure 1

and

ai, j=![ri , cj ]
=

!ri
+'cj

1+'cj

, bi, j='[ri , cj]
=

!ri
+'cj

1&!ri

.

So Lemma 2.1 gives

:
gr[?]=gr[R$, C$]

w[?]=
1

!r1
!r2

} } } !rh
'c1

'c2
} } } 'ck

.

Substituting this into (2.22) and using the relations in (2.24) we finally
obtain

P[gr[HW]=gr[R$, C$] | Z1=s1]=qa&(r1)&|R$| tl&(c1)&|C$| `
h

i=1

A(ri ) `
k

j=1

B(cj ),

which is another way of writing (2.21).

Remark 2.1. We should note that (2.21) is the q, t-analogue of the
G-N-W identity

P[gr[HW]=gr[R$, C$] | Z1=s1 ]= `
r$ # R$

1
hr$&1

`
c$ # C$

1
hc$&1

. (2.25)
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Since in the G-N-W case the assignment of weight in (2.19) reduces to

w[sk � sk+1]=
1

h+(sk)&1

and the relations in (2.23) give

h+(s)&1=h+(r)&1+h+(c)&1,

we see that (2.25) is another instance of (2.12) with

ai=h+(ri )&1, bj =h+(cj)&1, and ai, j=bi, j=h+([ri , cj])&1.

Let us set for any partition + and any s # +,

h� $+(s)=tl+(s)&qa+(s)+1 , h� +(s)=qa+(s)&tl+(s)+1.

Note that for any r # R+�& we have

q+A(r)=q+
tl+(r)(1&q)
tl+(r)&qa+(r)=

tl+(r)&qa+(r)+1

tl+(r)&qa+(r) =
h� $+(r)

h� $&(r)
. (2.26)

Similarly, for any c # C+�& we have

t+B(c)=t+
qa+(c)(1&t)
qa+(c)&tl+(c)=

qa+(c)&tl+(c)+1

qa+(c)&tl+(c) =
h� +(c)

h� &(c)
. (2.27)

We can thus state the following beautiful corollary of Theorem 2.1:

Theorem 2.2. For any s<<+�&,

P[Zend=+�& | Z1=s]=A(r[s]) B(c[s]) `
r # R+�&(s)

(q+A(r)) `
c # C+�&(s)

(t+B(c)).

(2.28a)

Or, which is the same,

P[Zend=+�& | Z1=s]=A(r[s]) B(c[s]) `
r # R+�&(s)

h� $+(r)

h� $&(r)
`

c # C+�&(s)

h� +(c)

h� &(c)
.

(2.28b)

Proof. The first equality follows immediately by summing (2.21) over
subsets R$�R+�&(s) and C$�C+�&(s) and the second follows from the first
because of (2.26) and (2.27).

The identities in (2.26) and (2.27) allow us to rewrite the coefficient
c+&(q, t) in a rather revealing form.
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Proposition 2.1. Let r1 , r2 , ..., ra$ be the elements of R+�& in the left-to-
right order and c1 , c2 , ..., cl $ be the elements of C+�& in the bottom-to-top
order. Then

c+&(q, t)=\ :
a$

i=1

qi&1A(ri ) `
i $>i

(q+A(ri $))+qa$+
_\ :

l $

j=1

t j&1B(cj ) `
j $>j

((t+B(cj $))+tl $+ . (2.29)

Proof. Using (2.26) we may write

`
r # R+�&

h� $+(r)

h� $&(r)
= `

a$

i=1

(q+A(ri )).

Using Lemma 2.2 with ai=A(ri ) and bi=q gives

`
r # R+�&

h� $+(r)

h� $&(r)
= :

a$

i=1

qi&1A(ri ) `
i $>i

(q+A(ri $)) + qa$.

Similarly, the relations in (2.27) and Lemma 2.2 with aj=B(cj ) and bi=t
give

`
c # C+�&

h� +(c)

h� &(c)
= :

l $

j=1

ti&1B(cj) `
j $>j

((t+B(c$j)) + tl $.

Multiplying these two identities and using the definition (I.9) of c+&(q, t)
gives (2.29) as desired.

This identity may be converted into the following hook walk interpretation
for the c+&(q, t):

Theorem 2.3.

c+&(q, t)= :
s<< =+�&

qa$(s)tl $(s)P[Zend=+�& | Z1=s]. (2.30)

In particular, we derive that

:
& � +

c+&(q, t)=B+(q, t).
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Proof. Note that Theorem 2.2 gives

:
a$

i=1

:
l $

j=1

qi&1t j&1A(ri ) B(cj ) `
i $>i

(q+A(ri $)) `
j $> j

((t+B(cj $))

= :
a$

i=1

:
l $

j=1

qi&1t j&1P[Zend=+�& | Z1=[ri , cj]]

= :
s<<+�&

qa$(s)tl $(s)P[Zend=+�& | Z1=s]. (2.31)

Similarly, we derive that

:
a$

i=1

qi&1tl $A(ri ) `
i $>i

(q+A(ri $))= :
r # R+�&

qa$(r)tl $(r) P[Zend=+�& | Z1=r]

(2.31r)

and

:
l $

j=1

qa$t j&1B(cj ) `
i $>i

(c+B(cj $))= :
c # C+�&

qa$(c)tl $(c) P[Zend=+�& | Z1=c],

(2.31c)

which are our q, t-analogues of (2.3), (2.3r), and (2.3c). Since

P[Zend=+�& | Z1=+�&]=1,

expanding the left-hand side of (2.29) and using (2.31), (3.31r), and (3.31c)
yields (2.30) precisely as asserted. The last assertion follows immediately
from (2.30) and and the fact that for any s # + we must have

:
& � +

P[Zend=+�&]=1.

The identity in (2.30) may be given a suggestive reformulation which brings
to light a number of remarkable properties of the coefficients c+&(q, t). To
see this let ,& be a function of the partitions & � +. Multiplying (2.30) by
,& and summing over all & � + we get

:
& � +

c+&(q, t) ,(&)= :
s # +

qa$(s)tl $(s) :
& � +

,(&) P[Zend=+�& | Z1=s]. (2.32)

Now if (by a slight abuse of notation) we set ,(Zend)=,(&) when Zend=+�&,
then we can write

:
& � +

,(&) P[Zend=+�& | Z1=s]=E[,(Zend) | Z1=s], (2.33)
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where the right-hand side may be referred to as the conditional expectation
of ,(Zend) given that Z1=s. Combining (2.32) and (2.33) we obtain the
following corollary of Theorem 2.3:

Theorem 2.4. For any function , of the partitions & � + we have

:
& � +

c+&(q, t ) ,(&)= :
s # +

qa$(s)tl $(s) E[,(Zend) | Z1=s]. (2.34)

In particular, letting ,(&)=F&(q, t), from (I.10) we derive that

F+(q, t)= :
s # +

qa$(s)tl $(s)E[FZend
(q, t) | Z1=s]. (2.35)

Remark 2.2. Although the recursion in (2.35) was derived from (I.10),
it should be considered as an interesting alternate to (I.10). In fact, by
iterating the latter we end up expressing F+ as a sum of certain rational
functions RT (q, t) indexed by standard tableaux T of shape +. In contrast,
iterating on (2.35), and suitably grouping the terms thus obtained, we
obtain a formula for F+ as a sum of certain rational functions R_(q, t)
indexed by permutations _ # Sn . We should mention that Maple computa-
tions lead us to conjecture that the expression E[FZend

(q, t) | Z1=s] is
actually, for all s # +, a polynomial in q, t with integer coefficients. It develops
that the validity of this conjecture can be easily derived from the identity
expressed by Theorem 2.2 of [9]. This given, it would be interesting to find
a representation theoretical interpretation of this fact in terms of the action
of Sn&1 on the bigraded modules H+ studied in [6]. We hope to return to
these questions in later work.

Formula (2.35) may yet be rewritten in a compacted form using certain
constancy properties of the expression in (2.33). This follows from a
q, t-analogue of another result of G-N-W. To state it we need some nota-
tion. Let + be a partition with m corners, and let (a$i , l$i ) for i=1 } } } m be
the co-arm and co-leg of the corners of + in the left-to-right order. For any
pair i, j # [1, m] set

Ai, j=[s # + : a$i&1<a$(s)�a$i ; l$j+1<l $(s)�l$j], (2.36)

where for convenience we set a$0=lm+1=&1. In words, Aio , jo
is the subset

of + consisting of the cells which have in their shadow only the corner cells
with coordinates,

(a$i+1, l$i+1) for io�i� jo .

Now in complete analogy with a result (and its proof) given by G-N-W in
[11] we have
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Theorem 2.5. For any & � + and any s<<=&�+ we have

P[Zend=+�& | Z1=s]=P[Zend=+�& | Z1=r[s]]

_P[Zend=+�& | Z1=c[s]]. (2.37)

In particular, if + has m corners and the Ai, j ( for i, j # {[1, m]) are as
given in (2.36), then the conditional probability

P[Zend=+�& | Z1=s]

remains constant as s varies in Ai, j .

Proof. By specializing (2.28a) to the case when s=r[s]=r we obtain

P[Zend=+�& | Z1=r]=A(r) `
r$ # R+�&(r)

(q+A(r$)). (2.38)

Similarly, when s=c[s]=c we get

P[Zend=+�& | Z1=c]=B(c) `
c$ # C+�&(s)

(t+B(c$)). (2.39)

This given, the identity in (2.37) is simply another way of writing (2.28a).
Now let again r1 , r2 , ..., ra$ be the elements of R+�& in the left-to-right order
and c1 , c2 , ..., cl $ be the elements of C+�& as they they are read from bottom
to top. Set

Pi =P[Zend=+�& | Z1=ri ], Qj=P[Zend=+�& | Z1=cj ].

Note that if, for convenience, we set A(ri )=Ai and B(cj )=Bj , then from
(2.38) we get the recursion

Pi=
Ai

Ai+1

(q+Ai+1)Pi+1 ,

or better

1
Ai

Pi=\ q
Ai+1

+1+ Pi+1 .

Note that if a(ri )=a then a(ri+1)=a&1 and thus when l(ri+1)=l(ri)=l
this recursion reduces to

tl&qa

tl (1&q)
Pi =\tl&qa&1

tl (1&q)
q+1+ Pi+1 ,
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which gives

Pi =Pi+1.

In other words,

l(ri )=l(ri+1) � P[Zend=+�& | Z1=ri ]=P[Zend=+�& | Z1=ri+1 ].

(2.40)

Similarly, we show that

a(cj )=a(cj+1) � P[Zend=+�& | Z1=cj]=P[Zend=+�& | Z1=cj+1].

(2.41)

Since when s varies in a subset Aij both l(r[s]) and a(c[s]) remain
constant, our last assertion is an immediate consequence of (2.40), (2.41),
and the factorization in (2.37).

3. FURTHER q, t-ANALOGUES

In their second paper [12], Green, Nijenhuis, and Wilf show that their
hook walk mechanism can be used to give a probabilist proof of the so-
called upper recursion for the number of standard tableaux. This is an
identity due to A. Young [18], which is obtained by summing f+ over
partitions which immediately follow a fixed partition &. More precisely, for
a given & |&n&1 we have

nf&= :
+ � &

f+ . (3.1)

This identity was used by Rutherford [17] to give a proof of Young's
formula

n!= :
+ |&n

f 2
+ . (3.2)

We show in this section that the theory of Macdonald polynomials produces
several q, t-analogues of (3.1) and (3.2). All this suggests that the q, t-hook
walk mechanism should have an extension that yields proofs of these
further identities.

Our first three q, t-analogues may be stated as follows:
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Proposition 3.1. For every & |&n&1 we have

(a) 1= :
+ � &

d+&(q, t)

(b) 1= :
+ � &

d+&(q, t)T+�& (3.3)

(c) nF&(q, t)= :
+ � &

F+(q, t) d+&(q, t)

where the coefficients d+&(q, t) are as given in (1.16) and T+�&=tr& qs& with
r& , s& the co-leg and co-arm of the corner cell +�&.

Proof. Plethystically substituting 1&u into both sides of (1.15) we
obtain

(1&u) H� &[1&u; q, t]= :
+ � &

H� +[1&u; q, t] d+&(q, t).

Using (1.23) this may be rewritten as

(1&u) `
s # &

(1&utl$&(s)qa$&(s))= :
+ � &

`
s # +

(1&utl$+(s)qa$+(s)) d+&(q, t).

Cancelling the common factor >s # & (1&utl$&(s)qa$&(s)) yields

(1&u)= :
+ � &

(1&uT+�&) d+&(q, t),

from which we derive (3.3a) and (3.3b) by equating coefficients of u0 and
u1. Note next that applying �n

p1
to both sides of (1.15) and using the

relation

�n
p1

H� +(x; q, t)=F+(q, t) (3.4)

we get

�n
p1

(e1(x) H� &(x; q, t))= :
+ � &

F+(q, t) d+&(q, t). (3.5)

However, Leibnitz formula and (3.4) (with + replaced by &) yield that

�n
p1

(e1(x) H� &(x; q, t))=n(�p1
e1(x))(�n&1

p1
H� &(x; q, t))=nF&(q, t)).

Combining this with (3.5) gives (3.3c) as desired.
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It develops that (3.3a), (3.3b), and (3.3c) are but three different variants
of the upper recursion. To see this note that, by dividing both sides of (3.1)
by nf& , the resulting identity may be rewritten in the form

1= :
+ � &

h&�h+ . (3.6)

On the other hand, from the definition (1.16), we can deduce (as we did
for c+&) that making the replacement t � 1�q and then letting q=1 reduces
d+& to the ratio h&�h+ . Thus we see that the same replacements reduce
(3.3a) and (3.3b) to (3.6) and (3.1c) to

n(n&1)!= :
+ � &

n!
h&

h+
,

which is yet another way of writing (3.6).

The same reasoning shows that the following identities are variants of (3.2).

Proposition 3.2.

(a)
1

(1&t)n (1&q)n= :
+ |&n

F+(q, t)

h� +(q, t) h� $+(q, t)

(b)
n

(1&t)n (1&q)n= :
+ |&n

F+(q, t) B+(q, t)
h� +(q, t) h� $+(q, t)

(3.7)

(c)
n!

(1&t)n (1&q)n= :
+ |&n

F 2
+(q, t)

h� +(q, t) h� $+(q, t)
.

Proof. Note that the power sum expansion of en[X�((1&t)(1&q))] can
be written as

en _ X
(1&t)(1&q)&=

1
n!

pn
1(x)

(1&t)n (1&q)n+R,

where the remainder R contains no terms in which p1(x) is raised to the
nth power. Thus (3.7a) can be obtained by applying �n

p1
to both sides of

(1.14).
Note next that if we use (1.14) and (1.20) we can rewrite (1.21) in the

form

e1(x) en&1 _ X
(1&t)(1&q)&= :

+ |&n

(1&t)(1&q) B+(q, t) H� +(x; q, t)

h� +(q, t) h� $+(q, t)
.
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Applying �n
p1

to both sides and using the Leibnitz rule on the left-hand side
gives (3.7b) upon division by (1&t)(1&q).

Finally, (3.7c) is obtained by applying the operator �n
p1(x) �

n
p1( y) to (1.11)

and using the fact that the only term which contributes to the left-hand side
of the resulting identity is

1
n!

pn
1(x) pn

1( y)
(1&t)n (1&q)n .

Remark 3.1. We should point out that Rutherford in [17] derives (3.1)
by a multiple use of the lower recursion

f+= :
& � +

f& . (3.8)

This done, he derived (3.2) from (3.1) and (3.8) by an induction argument
based on the following steps:

(n+1)n!= :
+ |&n

f+ (n+1) f+= :
+ |&n

f+ :
* � +

f*

= :
* |&n+1

f* :
+ � *

f+= :
* |&n+1

f 2
* . (3.9)

Now it develops that we have several q, t-analogues of this derivation. For
instance, (3.7c) follows from (3.3c), (1.18), and (I.10), and by induction
according to the following sequence of steps:

(n+1)n!
(1&t)n+1 (1&q)n+1= :

+ |&n

F+(q, t)

h� +(q, t) h� $+(q, t)

(n+1) F+(q, t)
(1&t)(1&q)

= :
+ |&n

F+(q, t)

h� +(q, t) h� $+(q, t)
:

* � +

F*(q, t) d*+(q, t)
(1&t)(1&q)

= :
* |&n+1

F*(q, t)

h� *(q, t) h� $*(q, t)
:

+ � *

c*+(q, t) F+(q, t)

= :
* |&n+1

F 2
*(q, t)

h� *(q, t) h� $*(q, t)
. (3.10)
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Curiously, if we apply the same reasoning to (3.7a) or (3.7b) we are led to
a whole family of identities interpolating between (3.7a) and (3.7c). To be
precise, let B (k)

+ (q, t) (for k�1) be the rational(?) function defined by the
recursion

B(k)
+ (q, t)= :

& � +

c+&(q, t) B (k&1)
& (q, t) (with B (0)

+ (q, t)=1). (3.11)

Then, starting from (3.7a), after k iterations of the same sequence of steps
we carried out in (3.10), we end up with the following further variant of the
upper recursion

n(n&1) } } } (n&k+1)
(1&t)n (1&q)n = :

+ |&n

F+(q, t) B (k)
+ (q, t)

h� +(q, t) h� $+(q, t)
(for k�1). (3.12)

Note that we have

B(1)
+ (q, t)=B+(q, t) and B (n&1)

+ (q, t)=F+(q, t).

Thus (3.12) reduces to (3.7b) for k=1 and to (3.7c) for k=n&1.

Remark 3.2. Rutherford's proof of the upper recursion may be viewed
as a precursor of the Robinson�Schensted correspondence. Indeed, it is
precisely by bijectivating Rutherford's argument that MacLarnan in [15]
was led to the construction of his several variations of the correspondence.
This given we get the feeling, especially from the steps in (3.10), that the
solution of some of the combinatorial problems concerning the conjectured
Hilbert series F+(q, t) as well as the coefficients K� *+(q, t) may depend on
the discovery of a +-depending or +-weighted form of Jeu de Taquin.

Another problem which is suggested by these q, t-analogies is the construc-
tion of a +-dependent version of the bijective proof of the hook formula
given by Pak and Stoyanovskii in [16]. Their bijection would then be the
special case +=1n. The desired +-dependent bijection should combinatorially
unravel the rationality of the recursion

F+(q, t)= :
+ � +

c+, &(q, t) F&(q, t),

which as we have seen is an amalgamated form of the hook formula.
It is interesting to see what becomes of our q, t-hook walk under the

specializations q=0 and t=1. It develops that the identities we can derive
from it tie in very well with the representation theoretical results obtained
in [7] and [6].

For convenience let P[ A j
s ; q, t] denote the probability that the hook

walk takes a North step from a cell s to a cell j rows above and likewise
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let P[ s�i ; q, t] denote the probability of an East step from s to a cell i
columns to the right. We recall that in the general case we have

(a) P[ A j
s ; q, t]=

t j&1qa+(s)(t&1)
tl+(s)&qa+(s) ,

(b) P[ s � j ; q, t]=
qi&1tl+(s)(1&q)

tl+(s)&qa+(s) . (3.13)

For a given cell s # + let c(s) denote the corner cell of + that is in the
shadow of s and has the least co-leg and let &(s) be the partition obtained
by removing c(s) fom +. This given we have

Proposition 3.3. For q=0 as well as for t=1 the hook walk starting
from any cell s proceeds by East steps straight to the East boundary of +
(unless it is already at the start) then climbs by steps to the corner cell c(s).

Proof. Note first that in the general case when the walk reaches a cell
s on the East boundary of + it must climb with North steps with probability
given by (3.13a) for a+(s)=0. That is,

P[ A j
s ; q, t]=

t j&1(t&1)
tl+(s)&1

.

This will be so even when q=0. When t=1 the probability of a North step
reduces to

lim
t � 1

t j&1(t&1)
tl+(s)&1

=
1

l+(s)
.

On the other hand, when the walk is at a cell s with a+(s)>0 from (3.13a)
we get in either case

lim
q � 0

P[ A j
s ; q, t]=lim

t � 1
P[ A j

s ; q, t]=0,

while (3.13b) for a+(s)>0 gives

lim
q � 0

P[ s � j ; q, t]={0
1

if i>1
if i=1

and lim
t � 1

P[ s � j ; q, t]=
qi&1(1&q)

1&qa+(s) .

Thus in either case the walk moves only by East steps whenever it can and
when it can no more it goes by North steps. This establishes our assertion.

Let now + be a k-corner partition and let ci=(:i , ;i ) for i=1, .., k be its
corner cells listed according to decreasing co-legs (that is, from left to right
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in the french way of depicting partitions). Let &(i) denote the partition obtained
by removing ci from +. Note that by our previous notation we can also
represent ci by +�&(i). If & is a predecessor of + and &=&(i) then we let
S[+, &] denote the collection of cells of + which are covered by ci and (if
i<k) not covered by ci+1. Set

B+&(q, t)= :
s # S[+, &]

qa$+(s)l l$+(s). (3.14)

Finally, let :& and ;& respectively denote the co-arm and co-leg of the cell
+�& and let #& be the length of the vertical step of the boundary of + that
lies directly below the corner cell +�&. Note that when &=&(i) we have :&=
:i&1 ;&=;i&1 and

#i={;i&;i+1

;k

if i<k
if i=k

.

This given, Proposition 3.3 has the following immediate corollary.

Theorem 3.1. In the limiting cases q=0 and t=1 the conjectured Hilbert
series F+(q, t) reduces to the polynomials determined by the following recursions

(a) F+(0, t)= :
& � +

F&(0, t)(t;&+t;&&1+ } } } +t;&&#&+1)
(3.15)

(b) F+(q, 1)= :
& � +

F&(q, 1) #& (1+q+q2+ } } } +q:&&1).

Proof. From Proposition 3.3 we derive that starting from a cell s the
hook walk with probability 1, in either case, terminates at the cell c(s).
Thus the conditional expectation E[FZend

(q, t) | Z1=s] occurring in (2.35)
reduces to F&(s)(0, t) or F&(s)(q, 1), as the case may be. Thus from (2.35) we
derive that

(a) F+(0, t)= :
& � +

F&(0, t) B+&[0, t]
(3.16)

(b) F+(q, 1)= :
& � +

F&(q, 1) B+&[q, 1].

Now it is easy to see from the definition (3.14) that

(a) B+&[0, t]=(t;&+t;&&1+ } } } +t;&&#&+1),

(b) B+&[q, 1]=#& (1+q+q2+ } } } +q:&&1).

Substituting this into (3.16) gives (3.15) as desired.
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It is interesting to see how these identities reflect the results in [7] and
[6] concerning the Sn-modules R+ and H+ respectively studied there. To
begin with it was shown in [6] that the y-degree 0 portion of H+ is isomorphic
to R+ , and moreover we show there that the graded Frobenius characteristic
of that portion of H+ is indeed given by the polymial H� +(x; , 0, 1). In particular
we can deduce from all this that F+(0, t) is in fact the Hilbert polynomial
of R+ . The curious thing is that the hook walk for t=1 is identical with
the algorithm shown in [7]3 to yield the standard monomial basis of the
ring R+ considered as a quotient of the polynomial ring Q[x1 , ..., xn ] by a
certain canonical ideal J+ . In [7] the latter algorithm results from studying
what happens to the Sn-module R+ under restriction to Sn&1 . This brings
us to the problem of understanding in which way restriction in [7] corre-
sponds to the specific hook walk we encounter here. We believe that such
an understanding might lead to unraveling how restricting H+ to Sn&1 is
related to our general q, t-hook walk and ultimately to the recursion in
(2.35).

The situation for t=1 is equally intriguing. Using some of the identities
proved by Macdonald in [13], it is shown in [4]4 that for +=(+1 , +2 , ..., +k)
we have

H� +(X; q, 1)= `
k

i=1
\(q)+i

h+i _ X
(1&q)&+ , (3.17)

where for an integer m�0 we set (q)m=(1&q)(1&q2) } } } (1&qm). Apply-
ing the operator �n

p1
to both sides of this identity and using the Leibnitz

formula we obtain that

F+(q, 1)=
n!

+1 ! +2 ! } } } +k !
[+1]q ! [+2]q ! } } } [+k]q !, (3.18)

where as customary, for an integer m�0, we set [m]q !=>m
s=1(1+q+ } } }

+qs&1). We should note that in [6] we prove that the right-hand side of
(3.17) gives the y-graded Frobenius characteristic of our module H+ . Thus
in particular we do know that the right-hand side of (3.18) is the Hilbert
polynomial of H+ when the x-grading of H+ is not taken into account. And
of course, in perfect agreement with all of this, we can easily verify that the
polynomial in (3.18) satisfies the recursion in (3.16b). This brings us again
to the conclusion that, somehow, restriction of H+ to Sn&1 (as a y-graded
Sn -module) must be performable by some algebraic mechanism that closely
reflects the type of hook walk we obtain here for t=1. In conclusion, we
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3 See Eq. (1.2) there.
4 See Chapter IV, Section 3, Theorem 3.9.
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see that there are several promising avenues to pursue in trying to extend
or sharpen the results obtained here, most particularly in the direction of
proving the polynomiality of the conjectured Hilbert series F+(q, t). We
hope to return to this and related questions in some later work.

REFERENCES

1. Y. M. Chen, A. M. Garsia, and J. Remmel, Algorithms for plethysm, in ``Combinatorics
and Algebra,'' Contemporary Mathematics, Vol. 34 (Curtis Greene, Ed.), pp. 109�153,
American Math. Society, Providence, RI, 1984.

2. A. M. Garsia and M. Haiman, A graded representation module for Macdonald's
polynomials, Proc. Natl. Acad. Sci. U.S.A. 90 (1993), 3607�3610.

3. A. M. Garsia and M. Haiman, Factorizations of Pieri rules for Macdonald polynomials,
Discrete Math. 139 (1995), 219�256.

4. A. M. Garsia and M. Haiman, ``Orbit Harmonics and Graded Representations,'' research
monograph (S. Brlek, Ed.), Lab. de Comb. et Informatique Mathe� matique, Univ. Que� bec
a� Montre� al, to appear.

5. A. Garsia and M. Haiman, A remarkable q, t-catalan sequence and q-Lagrange inversion,
J. Algebraic Combin. 5 (1996), 191�244.

6. A. Garsia and M. Haiman, Some bigraded Sn-modules and the Macdonald q, t-Kostka
coefficients, Electron. J. Algebraic Combin. 3, No. 2 (1996), 561�620.

7. A. M. Garsia and C. Procesi, On certain graded Sn-modules and the q-Kostka polynomials,
Adv. in Math. 94 (1992), 82�138.

8. A. Garsia, Orthogonality of Milne's polynomials and raising operators, Discrete Math. 99
(1992), 247�264.

9. A. Garsia and G. Tesler, Plethystic formulas for Macdonald q, t-Kostka coefficients, Adv.
in Math. 123, No. 2 (1996), 144�222.

10. A. Garsia and J. Remmel, Plethystic formulas and positivity for q, t-Kostka coefficients,
in ``Rotafest Volume,'' accepted for publication.

11. C. Greene, A. Nijenhuis, and H. Wilf, A probabilistic proof of a formula for the number
of Young tableaux of a given shape, Adv. Math. 31, No. 1 (1979), 104�109.

12. C. Greene, A. Nijenhuis, and H. Wilf, Another probabilistic method in the theory of
Young tableaux, J. Combin. Theory, Ser. A 37 (1984), 127�135.

13. I. G. Macdonald, A new class of symmetric functions, in ``Actes du 20e Se� minaire
Lotharingien,'' Publ. I.R.M.A. Strasbourg, pp. 131�171.

14. I. G. Macdonald, ``Symmetric Functions and Hall Polynomials,'' 2nd ed., Clarendon,
Oxford, 1995.

15. T. J. McLarnan, ``Tableaux Recursions and Symmetric Schensted Correspondences for
Ordinary, Shifted, and Oscillating Tableaux,'' Ph.D. thesis, University of California, San
Diego, 1985.

16. I. M. Pak and A. V. Stoyanovskii, A bijective proof of the Hook-length formula and its
analogs, Funct. Anal. Appl. 26, No. 3 (1992), 216�218.

17. D. E. Rutherford, ``Substitutional Analysis,'' pp. 25�26, Edinburgh University Press,
Edinburgh, 1948.

18. A. Young, On quantitative substitutional analysis, III, Proc. London Math. Soc. 28 (1928),
255�292.

� � � � � � � � � �

111RANDOM q, t-HOOK WALK


