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MARK HAIMAN

Abstract. We survey the proof of a series of conjectures in combinatorics using new results on
the geometry of Hilbert schemes. The combinatorial results include the positivity conjecture for
Macdonald’s symmetric functions, and the “n!” and “(n + 1)n−1” conjectures relating Macdonald
polynomials to the characters of doubly-graded Sn modules. To make the treatment self-contained,
we include background material from combinatorics, symmetric function theory, representation
theory and geometry. At the end we discuss future directions, new conjectures and related work of
Ginzburg, Kumar and Thomsen, Gordon, and Haglund and Loehr.
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1. Introduction

About ten years ago, Garsia and I [22] began to investigate certain doubly-graded Sn-modules
whose characters appeared to be related to the new class of symmetric functions then recently
introduced by Macdonald. Our modules are “doubled” analogs of well-known singly-graded mod-
ules arising in geometry and representation theory connected with the flag variety and Springer
correspondence for GLn. From the outset, we hoped to use them to prove the positivity conjec-
ture for certain coefficients Kλµ(q, t) occurring in Macdonald’s theory, but by the time this was
achieved [39], it had become clear that the solution of the positivity problem was just one chapter
in a longer story. As the investigation advanced, we and others noticed that the characters of our
doubled modules seemed to be related not only to Macdonald’s symmetric functions but also to a
number of classical “q-analogs” familiar to combinatorialists. Among these are q-enumerations of
rooted forests and parking functions, two q-analogs of the Catalan number Cn = 1

n+1

(
2n
n

)
, and a

q-analog of Lagrange inversion discovered independently by Garsia and Gessel. Eventually these
various observations were formulated as a series of conjectures which have come to be known by
the nicknames n! and (n+ 1)n−1 conjectures.

It develops that the doubled modules are associated naturally with the Hilbert scheme Hn of
points in the plane. Understanding this geometric context has led to proofs of the n! and (n+1)n−1

conjectures, along lines first suggested by Procesi. As it turns out, the full explanation depends
on properties of the Hilbert scheme that were not known before, and had to be established from
scratch in order to complete the picture. One might say, then, that the main results are not the n!
and (n+1)n−1 theorems, but new theorems in algebraic geometry. In a nutshell, the new theorems
are, first, that the Hilbert scheme Hn is isomorphic to another kind of Hilbert scheme, which
parametrizes orbits of the symmetric group Sn on Cn ⊕ Cn, and second, a cohomology vanishing
theorem for vector bundles on Hn provided by the first theorem.

I think it is fair to say that such results were unexpected, and became plausible to conjecture
only because of evidence accumulated from the combinatorial study. Certainly it was this study
that provided the incentive to prove them. One thing I wish to emphasize in these notes and in
the accompanying lectures is how important the combinatorial origins of the problem were for all
the subsequent developments.

It is perfectly possible to state the n! and (n+ 1)n−1 conjectures without reference to anything
but elementary algebra, but to properly appreciate their content and the context in which they
were discovered, it is helpful to understand some concepts which are familiar to combinatorialists
and experts on special functions, but not so well known to a larger public. To this end I give in §2
and §3 a review of background material from combinatorics and the theory of Hall-Littlewood and
Macdonald polynomials. To the same end, I will finish this introduction with a capsule history of
some earlier developments which inspired the current results.

In the theory of Hall-Littlewood symmetric functions one meets q-analogs Kλµ(q) of the Kostka
numbers Kλµ, which count semi-standard Young tableaux of shape λ and content µ, or equivalently
the weight multiplicity of µ in the irreducible representation of GLn with highest weight λ. The
Kλµ(q) are called Kostka-Foulkes polynomials, and it is an important theorem that their coefficients
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are positive integers. A major development in the combinatorial theory of symmetric functions was
Lascoux and Schützenberger’s interpretation of Kλµ(q) as q-enumerating Young tableaux according
to a numerical statistic called charge. This gives one of two proofs of the positivity theorem for
Kostka-Foulkes polynomials; the other being that of Hotta and Springer, who interpreted Kλµ(q)
in terms of characters of cohomology rings of Springer fibers for GLn.

In a 1987 preprint [62], Macdonald unified the theory of Hall-Littlewood symmetric functions with
that of spherical functions on symmetric spaces, introducing the symmetric functions now known as
Macdonald polynomials. For root systems of type A, they are symmetric functions in the classical
sense, but with coefficients that depend on two parameters q and t. In this new context there
are bivariate analogs Kλµ(q, t) of the Kostka-Foulkes polynomials, specializing at q = 0 to Kλµ(t).
Macdonald conjectured in [60] that these more general Kostka-Macdonald polynomials should also
have positive integer coefficients. (Actually, the Kλµ(q, t) were defined as rational functions and
their being polynomials was part of the conjecture.) In light of Lascoux and Schützenberger’s
work, it was natural to try to prove Macdonald’s positivity conjecture by suitably generalizing the
definition of charge. Indeed, the proof of the positivity conjecture notwithstanding, it remains an
open problem to give an explicit combinatorial proof along such lines.

As a first step toward the positivity conjecture, Garsia and Procesi [26] revisited and simplified
the Hotta-Springer proof of the positivity theorem for Kostka-Foulkes polynomials. Beginning
with an elementary description due to Tanisaki of the cohomology ring Rµ of a Springer fiber, they
derived the formula relating Kλµ(q) to the character of Rµ directly, without invoking geometric
machinery. Their work led Garsia and me to the n! conjecture, which similarly relates Kλµ(q, t) to
the character of a doubled analog of Rµ, and so implies Macdonald’s positivity conjecture.

The spaces figuring in the n! conjecture are quotients of the ring of coinvariants for the diagonal
action of Sn on Cn⊕Cn, and so we decided also to investigate the characters of the full coinvariant
ring. That precipitated the key event leading to the discoveries recounted here: the recognition by
us and others, especially Gessel and Stanley, of striking combinatorial patterns among characters
of diagonal coinvariants. The space of coinvariants apparently had dimension equal to (n+ 1)n−1,
a combinatorially interesting number. Paying closer attention to the grading and the Sn action
revealed known q-analogs of the number (n + 1)n−1 and the Catalan numbers Cn in the data. A
menagerie of things studied earlier by combinatorialists for their own sake thus turned up unex-
pectedly in this new context.

It was Procesi who suggested, upon learning of their remarkable behavior, that the diagonal
coinvariants might be interpreted as sections of a vector bundle on the Hilbert scheme Hn. Then it
might be possible to compute their dimension and character using the Lefschetz formula of Atiyah
and Bott, and so explain the phenomena. It soon became clear that the existence of Procesi’s
alleged vector bundle was in fact equivalent to the n! conjecture. By 1994, we had managed to
fully develop Procesi’s idea, explaining the observations on the diagonal coinvariants by combining
known combinatorial properties of Macdonald polynomials with a character formula predicated on
the assumption that the geometric theorems alluded to earlier on the Hilbert scheme would hold.
This explanation was successful enough to persuade us that the theorems surely must be true,
although it took quite some time after that before the proof was finally complete.
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2. Background from combinatorics

This section is a review of combinatorial facts needed later on. In part, the purpose here is to
fix notation and terminology, but we will also introduce several fundamental concepts.

The jeu-de-taquin operations on Young tableaux have become central to the combinatorial
theory of symmetric functions, and lead to the definition of charge, the basis of Lascoux and
Schützenberger’s combinatorial interpretation of the Kostka-Foulkes polynomials, discussed in more
detail in §3.4.5. The positivity theorem for Kostka-Foulkes polynomials was the progenitor of Mac-
donald’s positivity conjecture. The beautiful and subtle combinatorics associated with the earlier
theorem was a major reason why Macdonald’s conjecture seized the attention of combinatorialists.

Next we will touch on a few aspects of q-enumeration, involving Catalan numbers, trees and
parking functions. These particular q-enumerations have especially appealing and well studied
theories of their own, apart from their surprising connection with the diagonal coinvariants, which
is our main concern here.

Finally, we outline Garsia and Gessel’s theory of q-Lagrange inversion, which, as it happens,
nicely ties together precisely the q-enumerations we have just discussed. This fact is hardly acci-
dental, and indeed q-Lagrange inversion turns out to be indispensable to the full development of
the theory relating the combinatorial phenomena to the Hilbert scheme. The reason for this is that
to get specific predictions from the geometry, such as the dimension (n + 1)n−1 for the diagonal
coinvariants, is not a trivial exercise. What makes it possible is a reformulation of q-Lagrange
inversion in terms of symmetric function operators arising in the theory of Macdonald polynomials,
as will be explained in §3.5.7.

2.1. Partitions, tableaux and jeu-de-taquin. We write the parts of an integer partition as
usual in decreasing order, as

λ = (λ1, . . . , λl), where λ1 ≥ λ2 ≥ · · · ≥ λl.

Its length, denoted l(λ), is the number of parts, and its size, denoted |λ|, is the sum of the parts.
The diagram of λ, sometimes called its Young diagram or its Ferrers diagram, is the array of lattice
points

{(i, j) ∈ N× N : i+ 1 ≤ λj+1}.
It is drawn as an array of square cells, as for example

for the partition (4, 3, 2). Note that our conventions follow the French style, and that the lower-left
box is (0, 0), not (1, 1). We often abuse notation by identifying λ with its diagram, writing for
instance x ∈ λ to mean that x = (i, j) is a cell in the diagram of λ. The conjugate partition,
denoted λ′, is the partition obtained by transposing the diagram of λ.

The dominance order is the partial order on partitions of a given size defined by

(1) λ ≥ µ if λ1 + · · ·+ λk ≥ µ1 + · · ·+ µk for all k.

It is a slightly non-trivial exercise to prove that

λ ≤ µ ⇔ µ′ ≤ λ′.
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The arm of a cell x ∈ λ is the set of cells to the right of x in its row; the leg is the set of cells
above x in its column. The hook of x consists of x together with its arm and leg. We denote by

a(x), l(x), h(x) = 1 + a(x) + l(x)

the sizes of the arm, leg and hook of x. Thus in the example

l
x a a ,

we have a(x) = 2, l(x) = 1 and h(x) = 4.
A standard Young tableau of shape λ, where |λ| = n, is a bijective map T : λ → {1, . . . , n} such

that T is increasing along each row and column of λ (here already we are identifying λ with its
diagram). A semi-standard Young tableau of shape λ is a map T : λ→ N which is weakly increasing
along each row of λ and strictly increasing along each column. The number of standard Young
tableaux of shape λ is given by the hook formula of Frame, Robinson and Thrall [19]:

(2) |SY T (λ)| = n!∏
x∈λ h(x)

.

An important numerical statistic associated with λ is

n(λ) =
def

∑
i

(i− 1)λi =
∑

i

(
λ′i
2

)
.

This number has the following representation-theoretical significance. Put |λ| = n, and let T
be any standard Young tableau of shape λ. Let ST

∼= Sλ′1
× · · · × Sλ′l

be the subgroup of Sn

consisting of elements that only permute the numbers within columns of T . The Garnir polynomial
gT (x1, . . . , xn) is defined to be the product of the Vandermonde determinants ∆(XC0) · · ·∆(XCk

)
in the subsets XCi of the variables indexed by the entries Ci in column i of T , as for example

T =
3 6
2 5 8
1 4 7 9

: gT = ∆(x1, x2x3)∆(x4, x5, x6)∆(x7, x8).

Thus gT is the essentially unique homogeneous polynomial of minimal degree that is antisymmetric
with respect to ST . Its degree is n(λ). As T ranges over standard tableaux of shape λ, the
Garnir polynomials gT form a basis of an Sn-invariant subspace of C[x1, . . . , xn], which affords the
irreducible representation V λ of Sn whose character is denoted χλ in the standard indexing. In
particular, its degree χλ(1) is the number of standard Young tableaux of shape λ.

A skew shape λ/ν, where ν ⊆ λ, is the array of cells in the difference between the diagrams, as
for example

(4, 3, 2)/(2, 1) = .

Standard and semistandard Young tableaux of skew shape are defined by the same rules as for
straight shapes. Suppose given a semistandard tableau T of shape λ/ν and a cell x outside λ/ν
but on its lower boundary, so that {x} ∪ (λ/ν) is again a (skew) shape. There is a unique process,
called a forward slide, by which an entry of T is moved from an adjacent cell above or to the right
of x, then another entry into the cell thus vacated, and so on, until finally a cell is left vacant along
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the upper boundary, in such a way that the result is again a tableau. This is best illustrated by an
example:

1 6
2 5
x 3 4

→
1 6

5 y

2 3 4
.

Here y indicates the final vacated cell, and the tableau resulting from the slide consists of the other
cells in the diagram on the right. The opposite process, in which tableau entries move up and
to the right while the vacant cell moves down and to the left, is a reverse slide. It is easy to see
that following a slide with an opposite slide into the cell just vacated undoes the the first slide. In
particular, the figure above with the arrow reversed gives an example of a reverse slide. The general
name for manipulation of tableaux by slides is jeu-de-taquin. The basic properties of jeu-de-taquin
were established by Lascoux and Schützenberger [56, 77].

Proposition 2.1.1. (1) When a skew tableau T is brought to a straight shape by jeu-de-taquin, the
result depends only on T and not on the choice of slides used.

(2) The number of tableaux T of a given skew shape λ/ν that go by jeu-de-taquin to a given
tableau S of straight shape µ is the Littlewood-Richardson coefficient cλµν , independent of S.

A semistandard tableau T has content µ if its entries are µ1 1’s, µ2 2’s, and so on. If µ1 ≥ µ2 ≥
· · · , we say that T has partition content.

Definition 2.1.2. The Kostka numberKλµ is the number of semistandard Young tableaux of shape
λ and content µ. In particular, Kλµ = 0 unless λ ≥ µ, and Kλλ = 1.

Lascoux and Schützenberger defined a numerical invariant called charge on tableaux with par-
tition content and arbitrary skew shape. It is easiest to define it in terms of a complementary
invariant, called cocharge.

Definition 2.1.3. The cocharge of a tableaux T with partition content µ is the integer cc(T )
uniquely characterized by the following properties:

(i) Cocharge is invariant under jeu-de-taquin slides.
(ii) Suppose the shape of T is disconnected, say T = X ∪ Y , with X above and left of Y , and

no entry of X is equal to 1. Let S = Y ∪X be a tableau obtained by swapping X and Y .
Then cc(T ) = cc(S) + |X|.

(iii) If T is a single row, then cc(T ) = 0.
The charge of T is defined as c(T ) = n(µ)− cc(T ).

The existence of an invariant cc(T ) with properties (i)-(iii) is of course a theorem. To compute
cc(T ) for a tableau T of straight shape λ with more than one row, one may first put it in the form
X ∪ Y in (ii) using jeu-de-taquin, by sliding the bottom row to the right until it detaches from the
rest of the shape. Then swapping the detached row to the top and normalizing again to straight
shape by jeu-de-taquin, we obtain a new tableau S with cc(S) = cc(T ) − |λ| + λ1. This process
is called catabolism. Since it diminishes the cocharge, repeated catabolism eventually produces a
tableau with one row and cocharge zero.

2.2. Catalan numbers and q-analogs. The Catalan numbers are given by the formula

Cn =
1

n+ 1

(
2n
n

)
.
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They enumerate a wide range of interesting combinatorial objects. For example, Cn is the number
of binary trees with n vertices, the number of ordered rooted trees with n+1 vertices, the number of
standard Young tableaux of shape (n, n), and the number of partitions λ whose diagram is contained
inside that of the partition δn = (n − 1, n − 2, . . . , 1). For literally dozens of other combinatorial
interpretations of Cn, one may consult the book of Stanley [82].

The formulation most relevant here is that Cn is the number of partitions λ ⊆ δn, listed below
for n = 3.

∅ , , , ,

The list exhibits that C3 = 5. The Carlitz-Riordan q-analog of the Catalan number [12] is the
polynomial defined by

(3) Cn(q) =
∑
λ⊆δn

q(
n
2)−|λ|.

From the list of partitions for n = 3, we see that

C3(q) = q3 + q2 + 2q + 1.

The Carlitz-Riordan q-Catalan numbers satisfy the recurrence

(4) Cn(q) =
n−1∑
k=0

qkCk(q)Cn−1−k(q),

which is the q-analog of a classical recurrence for Cn. The recurrence (4) is easily proven by taking
k to be the number of consecutive cells along the outermost diagonal of δn, beginning at the top
left, that do not belong to λ, as illustrated here with n = 6 and λ = (4, 4, 1), so k = 3.

k
k

λ k
λ λ λ λ
λ λ λ λ

For fixed k, the top k rows of δn/λ may be chosen independently of the bottom n − 1 − k, with
the choice in the top k rows contributing a factor qkCk(q) and the choice in the remaining rows
contributing Cn−1−k(q).

The ordinary generating function for Catalan numbers is

(5) C(x) =
def

∞∑
n=0

Cnx
n =

1−
√

1− 4x
2x

.

Thus C(x) is the solution of a quadratic equation, which we will find it convenient to write in the
form

(6) xC(x)(1− xC(x)) = x.

In other words, xC(x) is the compositional inverse of the function F (x) = x(1− x).
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2.3. Tree enumeration and q-analogs. Among the things enumerated by Catalan numbers are
various types of unlabeled trees. It is also classical in combinatorics (going back to Cayley) to
enumerate trees and forests with vertices labeled by the integers {1, . . . , n}. A tree is a connected
graph without cycles. A rooted tree is a tree with one vertex distinguished as the root. A forest is
a possibly non-connected graph without cycles. Every forest is the disjoint union of its connected
components, which are trees. A rooted forest is a forest in which each component is assigned a
distinguished root.

Labeled rooted forests on the vertex set {1, . . . , n} are in natural bijective correspondence with
trees on the vertex set {0, 1, . . . , n}, the trees being thought of either as unrooted or as always
rooted at vertex 0. The tree corresponding to a forest F is constructed by adding the vertex 0
and attaching it by an edge to the root vertex of each component of F . It is of little consequence
whether we enumerate trees or forests; for the present discussion I prefer forests.

Proposition 2.3.1. The number of rooted forests on n labeled vertices is (n+ 1)n−1.

There are many ways to prove this classical theorem, none of them entirely trivial. Perhaps the
most direct is to consider the exponential generating function for trees

T (x) =
∞∑

n=1

tn
xn

n!
,

where tn is the number of rooted trees on n labeled vertices. On the one hand, it follows from general
principles that the exponential generating function F (x) for rooted forests is given by F (x) = eT (x),
because a forest is a disjoint union of trees. On the other hand, viewing a rooted tree as composed
of a root vertex and an attached forest on the other vertices, one obtains T (x) = xF (x). Hence we
have T (x) = xeT (x), or better,

(7) T (x)e−T (x) = x,

so T (x) is the compositional inverse of xe−x. Now we apply the Lagrange inversion formula.

Proposition 2.3.2. Let xK(x) be the compositional inverse of the formal power series x/E(x).
Then the coefficients of K(x) are given by

(8) kn =
def

[xn]K(x) = [xn]
E(x)n+1

n+ 1
.

In our case, we take E(x) = ex, so xK(x) = T (x) and K(x) = F (x). Then kn = fn/n!,
where fn is our desired number of forests. Proposition 2.3.2 yields kn = (n + 1)n−1/n! and hence
fn = (n+ 1)n−1.

Definition 2.3.3. An inversion in a rooted forest F on vertices labeled {1, . . . , n} is a pair of
vertices i < j such that vertex j is on the unique path from vertex i to the root of its component
in F .

As an example, the forest

v
v

v
v
v
v

A
AA�

��
1

3

4

5

6

2
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(drawn with the roots at the bottom) has 3 inversions: (1, 3), (2, 6) and (2, 5). This definition
provides a combinatorial q-analog of the number (n+ 1)n−1, the inversion enumerator for forests

(9) Jn(q) =
def

∑
F

qi(F ),

where the sum is over rooted forests with vertices labeled {1, . . . , n}, and i(F ) denotes the number
of inversions in the forest F . By listing the forests, one computes for example

J3(q) = q3 + 3q2 + 6q + 6.

Mallows and Riordan [63] determined Jn(q) by a generating function identity.

Proposition 2.3.4 ([63]). We have

(10)
∞∑

n=1

qn−1Jn−1(q + 1)
xn

n!
= log

∞∑
n=0

(q + 1)(
n
2)x

n

n!
.

A pleasant proof of this result was given by Gessel and Wang [32]. The right-hand side of (10)
is the exponential generating function for connected graphs with labeled vertices, enumerated with
weight qe(G) for a graph G with e(G) edges. Gessel and Wang described a search algorithm that
selects a distinguished subtree in each graph. All graphs with a given distinguished tree T are
gotten by adding to T some subset of certain optional edges. The number of optional edges is the
number of inversions in T , regarded as rooted at vertex 1. Since vertex 1 never participates in
an inversion of T , this is the same as the number of inversions in the rooted forest on the other
vertices. Taking account of the n− 1 fixed edges in T , together with the additional optional edges,
and summing over all trees T on n vertices, gives the coefficient qn−1Jn−1(q + 1) of xn/n! on the
left-hand side.

2.4. q-Lagrange inversion. A q-analog of Lagrange inversion was defined independently by Gar-
sia [30] and Gessel [31]. I will follow the approach of Garsia, who defined a q-analog of functional
composition of formal power series by the identity

F ◦q G(x) =
def

∑
n

fnG(x)G(qx) · · ·G(qn−1x), where F (x) =
∑

n

fnx
n.

He proved the following basic result, which shows that it is a good definition.

Proposition 2.4.1 ([30]). We have

(11) F ◦q G(x) = x if and only if G ◦1/q F (x) = x

More generally, when they hold, we have for any φ(x) and ψ(x)

(12) ψ(x) = φ ◦q G(x) if and only if φ(x) = ψ ◦1/q F (x).

Garsia also obtained a q-analog of the Lagrange inversion formula (8) for the q-compositional
inverse G(x) of F (x) = x/E(x), as defined by (11). His formula involves operations called roofing
and starring, which I will not go into here. Garsia and I later reformulated it more combinatorially
as follows.
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Proposition 2.4.2 ([24, 30]). Let E(x) =
∑∞

n=0 enx
n, with e0 = 1, and let G(x) be the q-

compositional inverse of F (x) = x/E(x) in the sense of (11). Then G(x) = xK(qx), where
K(x) =

∑∞
n=0 kn(q)xn, with kn(q) given by

kn(q) =
∑
λ⊆δn

q(
n
2)−|λ|eα0(λ)eα1(λ) · · · eαn−1(λ).

Here αi(λ) is the number of parts equal to i in λ, with α0(λ) defined to make
∑n−1

i=0 αi(λ) = n.

One sees immediately that when E(x) = 1/(1 − x), so en = 1 for all n, then kn(q) = Cn(q),
the Carlitz-Riordan q-Catalan number defined by (3). In other words the generating function for
q-Catalan numbers

C(x; q) =
∞∑

n=0

Cn(q)xn

has the property that G(x) = xC(qx; q) is the q-compositional inverse of F (x) = x/E(x) = x(1−x).
This is the the q-analog of equation (6).

It turns out that equation (7) also has a q-analog, which involves the inversion enumerators for
forests.

Proposition 2.4.3 (Gessel [31]). Let

J(x; q) =
∞∑

n=0

Jn(q)
xn

n!

be the exponential generating function for the forest inversion enumerators Jn(q) in (9). Then

(13) xe−x ◦q xJ(qx; q) = x.

This is proved using Proposition 2.3.4. Proposition 2.4.3 has an alternate interpretation that
is worth mentioning. Combining (13) with Proposition 2.4.2, we see that Jn(q) is equal to the
specialization of n!kn(q) at ek = 1/k!, or in symbols,

(14) Jn(q) =
∑
λ⊆δn

q(
n
2)−|λ|

(
n

α0(λ), α1(λ), . . . , αn−1(λ)

)
.

Consider the diagram of λ with its border extended by a line segment along the vertical axis ending
at (0, n). The numbers αi(λ), including α0(λ), are then the heights of the vertical segments along
this extended border. The multinomial coefficient

(
n

α0(λ),α1(λ),...,αn−1(λ)

)
is the number of ways to

place labels {1, . . . , n} to the right of the n vertical steps on the extended border of λ, so that
the labels increase along each contiguous vertical segment. Here is an example with n = 6 and
λ = (4, 4, 1).

(15)

5
3
2

6
4
1

Such a labeled diagram is specified completely by giving the function f : {1, . . . , n} → {1, . . . , n} in
which f(i)− 1 is the column occupied by label i. Not every function is admissible, because of the
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condition λ ⊆ δn. However, it is not hard to see that this condition on λ is precisely equivalent to
the condition on f that

(16) |f−1({1, . . . , k})| ≥ k for all k = 1, . . . , n.

Definition 2.4.4. A function f : {1, . . . , n} → {1, . . . , n} satisfying (16) is a parking function. The
weight of f is the quantity

(
n+1

2

)
−
∑

i f(i).

Note that the parts of λ are one less than the values of the corresponding parking function f , so
the weight of f is simply

(
n
2

)
− |λ|. Hence Propositions 2.4.2 and 2.4.3 have the following corollary,

which was also proved by Kreweras [51] using a combinatorial bijection.

Corollary 2.4.5. The number of parking functions of weight d on {1, . . . , n} is equal to the number
of rooted forests on {1, . . . , n} with d inversions.

There is a natural action of Sn on parking functions defined by

w(f) = f ◦ w−1, for w ∈ Sn.

This action is well-defined since it leaves condition (16) invariant; and it preserves the weight. We
have the following nice result.

Proposition 2.4.6. The permutation action of the symmetric group Sn on parking functions is
isomorphic to its action on the finite Abelian group

Q/(n+ 1)Q,

where Q = Zn/Z · (1, 1, . . . , 1) and Sn acts on Q by permuting coordinates.

Proof. Fix the integers {0, . . . , n} as representatives of the residue classes modulo n+1, and identify
(Z/(n+ 1)Z)n with the set of functions f : {1, .., n} → {0, . . . , n} in the obvious way. It is not hard
to show that in every coset of (Z/(n + 1)Z) · (1, 1, . . . , 1) there is exactly one f that is a parking
function. This gives an Sn-equivariant bijection between parking functions and the elements of
Q/(n+ 1)Q. �

Note that the proposition gives in particular an easy proof that there are exactly (n + 1)n−1

parking functions. The Abelian group Q and its Sn action may be identified with the weight lattice
for sln and its Weyl group action.

3. Background from symmetric function theory

3.1. Generalities. We work with formal symmetric functions in infinitely many variables z =
z1, z2, . . ., with coefficients implicitly assumed to be rational functions of any parameters q, t,
etc. under discussion. I’ll use the standard notation from Macdonald’s book [61] for the classical
families of symmetric functions: ek for the k-th elementary symmetric function, hk for the complete
homogeneous symmetric function of degree k, pk for the power-sum zk

1 + zk
2 + · · · , and eλ, hλ, pλ

for products of these. The monomial symmetric functions are denoted mλ, and the Schur functions
sλ.

The Hall inner product makes the Schur functions orthonormal, or equivalently, makes the mono-
mial symmetric functions mλ dual to the complete homogeneous symmetric functions hλ:

(17) 〈sλ, sµ〉 = 〈mλ, hµ〉 = δλµ.
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Recall that the power-sum symmetric functions are orthogonal, but not orthonormal; their norms
are given by

(18) 〈pλ, pλ〉 = zλ =
def

∏
i

αi!iαi , where λ = (1α1 , 2α2 , . . .).

The Kostka numbers Kλµ of Definition 2.1.2 are related to symmetric functions by the identity

(19) Kλµ = 〈sλ, hµ〉,
which in light of (17) is equivalent to either of the expansions

sλ =
∑

µ

Kλµmµ(20)

hµ =
∑

λ

Kλµsλ.(21)

3.2. The Frobenius map. A classical theorem of Frobenius expresses the irreducible characters
of the symmetric groups in terms of symmetric functions.

Proposition 3.2.1. Let λ be a partition of n, and w ∈ Sn. The value of the irreducible character
χλ of Sn at w is given by

(22) χλ(w) = 〈sλ, pτ(w)〉,

where τ(w) is the partition whose parts are the lengths of the disjoint cycles of the permutation w.

The number of permutations w ∈ Sn with given cycle-type τ(w) = λ is equal to n!/zλ, where
zλ = 〈pλ, pλ〉, as in (18). Hence Proposition 3.2.1 can also be written as the identity

sλ =
1
n!

∑
w∈Sn

χλ(w)pτ(w).

This suggests the following definition.

Definition 3.2.2. The Frobenius characteristic map is the the linear map from class functions on
Sn to symmetric functions homogeneous of degree n given by

Fχ =
def

1
n!

∑
w∈Sn

χ(w)pτ(w),

or equivalently, the unique linear map sending the irreducible character χλ to the Schur function
sλ.

Note that F is an isometry of the usual inner product on characters onto the Hall inner product
on symmetric functions.

We will often deal with graded, or doubly-graded, Sn-modules. In this context it is useful to
extend the Frobenius map to a generating function for their graded characters.

Definition 3.2.3. Let A =
⊕

r Ar be a graded Sn-module (with each Ar finite-dimensional). The
Frobenius series of A is the generating function

FA(z; t) =
∑

r

trF charAr.
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If A =
⊕

r,sAr,s is doubly graded, its Frobenius series is the bivariate generating function

FA(z; q, t) =
∑
r,s

trqsF charAr,s.

Note that the degree of χλ is equal to χλ(1) = 〈sλ, p
n
1 〉. It follows that the dimension of any

finite-dimensional Sn-module V is given by 〈pn
1 , F charV 〉. Hence the Frobenius series of a graded

or doubly graded module A determines its Hilbert series by the formula

HA(t) = 〈pn
1 , FA(z; t)〉 or HA(q, t) = 〈pn

1 , FA(z; q, t)〉.

Of course the Frobenius series of any module is a fortiori Schur-positive, that is, the coefficients of
its expansion in Schur functions are polynomials or formal series in t and/or q with positive integer
coefficients. Our basic tool for establishing the Schur positivity of symmetric functions will be to
interpret them as Frobenius series for suitable graded modules.

3.3. Plethystic or λ-ring notation. The algebra of symmetric functions ΛF over a coefficient
field F containing Q is freely generated by the power-sums pk, that is,

ΛF ∼= F[p1, p2, . . .].

Hence we may specify arbitrary values for the pk’s in any algebra A over F and extend uniquely to
an F-algebra homomorphism ΛF → A.

Now let A be a formal Laurent series with rational coefficients in indeterminates a1, a2, . . . (possi-
bly including parameters q, t from the coefficient field). We define pk[A] to be the result of replacing
each indeterminate ai in A by ak

i . Then for any f ∈ ΛF, the plethystic substitution of A into f ,
denoted f [A], is the image of f under the homomorphism sending pk to pk[A].

If A is a sum of indeterminates, A = a1 + · · · + an, then pk[A] = pk(a1, a2, . . . , an), and hence
for every f we have f [A] = f(a1, a2, . . . , an). This is why we view this operation as a kind of
substitution. In particular, when dealing with symmetric functions in an alphabet z, we always
denote the sum of the variables by

Z = z1 + z2 + · · · ,
whence

f [Z] = f(z)

for all f . More generally, if A has a series expansion as a sum of monomials, then f [A] is f evaluated
on these monomials, for example

f [Z/(1− t)] = f(z1, z2, . . . , tz1, tz2, . . . , t2z1, t2z2, . . .).

Among the virtues of this notation is that the substitution Z → Z/(1− t) as above has an explicit
inverse, namely the substitution Z → Z(1− t).

One caution that must be observed with plethystic notation is that indeterminates must always
be treated as formal symbols, never as variable numeric quantities. For instance, if f is homogeneous
of degree d then it is true that

f [tZ] = tdf [Z],

but it is false that f [−Z] = (−1)df [Z], that is, we cannot set t = −1 in the equation above.
Actually, f [−Z] is an interesting quantity: it is equal to (−1)dωf(z), where ω is the classical
involution on symmetric functions defined by ωpk = (−1)k+1pk, which interchanges the elementary



14 MARK HAIMAN

and complete symmetric functions ek and hk, and more generally exchanges the Schur function sλ

with sλ′ .
It is convenient when using plethystic notation to define

(23) Ω = exp(
∞∑

k=1

pk/k).

Then since pk[A+B] = pk[A] + pk[B] and pk[−A] = −pk[A] we have

(24) Ω[A+B] = Ω[A]Ω[B], Ω[−A] = 1/Ω[A].

From this and the single-variable evaluation Ω[x] = exp(
∑

k≥1 x
k/k) = 1/(1− x) we obtain

Ω[Z] =
∏

i

1
1− zi

=
∞∑

n=0

hn(z)(25)

Ω[−Z] =
∏

i

(1− zi) =
∞∑

n=0

(−1)nen(z).(26)

The plethystic substitutions Z → Z(1− t) and Z → Z/(1− t) have an important representation-
theoretical interpretation.

Proposition 3.3.1. Let SkV and ∧kV denote the symmetric and exterior powers respectively of
the defining representation V = Cn of Sn, and let f(z) = FA(z; t) be the Frobenius series of a
graded Sn-module A. Then we have

f [Z(1− t)] =
∑

k

(−1)ktkFA⊗∧kV (z; t),(27)

f [
Z

1− t
] =

∑
k

tkFA⊗SkV (z; t).(28)

The proof is in two steps. First, a direct computation gives

hn[Z(1− t)] =
∑

k

(−1)ktkF∧kV (z; t),

hn[
Z

1− t
] =

∑
k

tkFSkV (z; t).

Second, an easy exercise shows that if φ is a virtual character whose Frobenius image has the form
Fφ = hn[ZQ] for some Q, then F (φ⊗ χ) = (Fχ)[ZQ] for all χ, from which the result follows.

In §3.5 we will need the following classical generalization of the hook formula (2).

Proposition 3.3.2. The Schur function specialization sλ(1, t, t2, . . .) = sλ[1/(1− t)] is given by

(29) sλ[1/(1− t)] =
tn(λ)∏

x∈λ(1− th(x))
,

where h(x) is the hook-length of the cell x ∈ λ.
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3.4. Hall-Littlewood polynomials. Hall-Littlewood polynomials are symmetric functions with
coefficients depending on a parameter q. They play an important role in the representation theory
of GLn(Fq) and in the geometry associated with it, involving character sheaves and the Springer cor-
respondence (see §3.4.4). Together with Jack’s symmetric functions, Hall-Littlewood polynomials
were the precursors of Macdonald’s symmetric functions.

The connecting coefficients between Hall-Littlewood polynomials and Schur functions are the
Kostka-Foulkes polynomials Kλµ(q). The positivity theorem for Kostka-Foulkes polynomials was
the precursor to Macdonald’s positivity conjecture, and the combinatorial proof of that theorem
by Lascoux and Schützenberger was the inspiration for our work on Macdonald’s conjecture.

3.4.1. Definition; Kostka-Foulkes polynomials. We begin with the classical definition of Hall-
Littlewood polynomials, as in Macdonald [61]. We use the conventional q-notation (with t instead
of q)

(30)
[k]t =

def

1− tk

1− t
= tk−1 + tk−2 + · · ·+ 1;

[k]t! =
def

[k]t[k − 1]t · · · [1]t.

Definition 3.4.1. The Hall-Littlewood polynomial Pλ(z; t) is defined in n ≥ l(λ) variables z =
z1, . . . , zn by the formula

(31) Pλ(z; t) =
1∏

i≥0[αi]t!

∑
w∈Sn

w

(
zλ

∏
i<j(1− tzj/zi)∏
i<j(1− zj/zi)

)
.

Here λ = (1α1 , 2α2 , . . .), with α0 defined so as to make
∑

i αi = n, and zλ is shorthand for
zλ1
1 zλ2

2 · · · zλl
l .

We will see below that the definition is stable with respect to changing the number of variables,
so Pλ(z; t) makes sense formally in infinitely many variables. At t = 0, the denominator

∏
i≥0[αi]t!

disappears and (31) reduces to the classical formula for Schur functions (equation (36) below), so
we have

(32) Pλ(z; 0) = sλ(z).

At t = 1, the products inside the sum cancel, and
∏

i≥0[αi]t! becomes the number of permutations
w ∈ Sn that stabilize zλ, so

(33) Pλ(z; 1) = mλ(z).

Definition 3.4.2. The Kostka-Foulkes polynomials Kλµ(t) are the coefficients in the expansion

sλ(z) =
∑

µ

Kλµ(t)Pµ(z; t).

In particular, by (32) and (33), we have

Kλµ(1) = Kλµ

Kλµ(0) = δλµ.

It is not yet obvious that Kλµ(t) is in fact a polynomial, but this will become clear below.
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3.4.2. Jing’s operators and transformed Hall-Littlewood polynomials. There is another way of defin-
ing Hall-Littlewood polynomials which gives easier access to many of their properties. We begin
with “vertex operators” due to Bernstein (see Macdonald [61] or Zelevinsky [86]) that have the
effect of adding a part to a Schur function.

Definition 3.4.3. The Bernstein operators are the coefficients S0
m = [um]S0(u) of the operator

generating function S0(u) defined by

(34) S0(u)f = f [Z − u−1]Ω[uZ].

Proposition 3.4.4. The Bernstein operators add a part to the indexing partition of a Schur func-
tion, that is, for m ≥ λ1, we have S0

msλ(z) = s(m,λ)(z).

Proof. It suffices to work in finitely many variables Z = z1 + · · · + zn. Then we have the partial
fraction expansion

(35) Ω[uZ] =
∏

i

1
1− uzi

=
∑

i

1
1− uzi

∏
j 6=i

1
1− zj/zi

.

The classical formula in n variables for a Schur function as a ratio of determinants, or equivalently
the Weyl character formula for GLn, can be written

(36) sλ(z) =
∑

w∈Sn

w

(
zλ∏

i<j(1− zj/zi)

)
.

Now observe that for any polynomial f , we have

[um]f(u−1)
1

1− uz
= [u0]u−mf(u−1)

1
1− uz

= zmf(z).

Combined with (34) and (35), this gives the formula for the Bernstein operator in n variables

S0
mf(z) =

∑
i

zm
i

f(Z − zi)∏
j 6=i(1− zj/zi)

.

The desired result now follows easily by induction using (36). �

It is customary to define sλ by (36) when λ is any integer sequence, not necessarily a partition.
Then, setting δ = (n− 1, n− 2, . . . , 1, 0), we have sλ = 0 if λ+ δ does not have distinct parts, and
otherwise sλ = ε(w)sν , where w(λ + δ) = ν + δ with ν a partition. With these conventions, the
identity S0

msλ(z) = s(m,λ)(z) holds for all m ≥ 0.
We now introduce two t-deformations of Bernstein’s operators that will allow us to construct

Hall-Littlewood polynomials.

Definition 3.4.5. The Jing operators [45] are the coefficients St
m = [um]St(u) of the operator

generating function St(u) defined by

(37) St(u)f = f [Z + (t− 1)u−1]Ω[uZ].

Let Π(1−t) denote the plethystic substitution operator Π(1−t)f(z) = f [Z(1− t)]. The modified Jing
operators are

S̃t
m = Π(1−t)S

t
mΠ−1

(1−t),
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or equivalently, the coefficients of the generating function

(38) S̃t(u)f = f [Z − u−1]Ω[(1− t)uZ].

The transformed Hall-Littlewood polynomials are defined by

(39) Hµ(z; t) = St
µ1
St

µ1
· · ·St

µl
(1).

We also set Qµ(z; t) =
def

Hµ[(1− t)Z; t], so

(40) Qµ(z; t) = S̃t
µ1
S̃t

µ1
· · · S̃t

µl
(1).

The notation Qµ(z; t) agrees with that used in Macdonald’s book.

3.4.3. Orthogonality and triangularity. The basic orthogonality and triangularity properties of Hall-
Littlewood polynomials are readily deduced using the Rodrigues-type formulas (39) and (40).

Lemma 3.4.6. If m ≥ µ1 and λ ≥ µ, then

St
msλ ∈ Z[t]{sγ : γ ≥ (m,µ)}.

Moreover, s(m,µ) occurs with coefficient 1 in St
msµ.

Proof. Recall the Schur function identity (dual Pieri rule)

sλ[Z + a] =
∑

k

ak
∑

λ/ν∈Hk

sν ,

where the notation λ/ν ∈ Hk means that the skew shape λ/ν is a horizontal strip of size k, that is,
it has at most one cell in each column. Write the Jing operator in terms of the Bernstein operator:
St(u)f = S0(u)f [Z + tu−1]. Taking the coefficient of um and applying the Pieri rule, we get

(41) St
msλ =

∑
k

tk
∑

λ/ν∈Hk

s(m+k,ν),

with the conventions discussed above if (m+ k, ν) is not a partition. It is convenient to extend the
dominance partial order to sequences that may not be partitions by maintaining the same definition
(1). In particular, rewriting s(m+k,ν), if nonzero, as ±sγ where γ is a partition, we have

γ ≥ (m+ k, ν) ≥ (m,λ) ≥ (m,µ).

Equality can only occur for k = 0, and does occur then if λ = µ. �

Corollary 3.4.7. We have
Hµ(z; t) =

∑
λ≥µ

Cλµ(t)sλ(z)

for suitable coefficients Cλµ(t) ∈ Z[t], with Cµµ(t) = 1.

We will see presently that in fact Cλµ(t) = Kλµ(t). Now let us use our second Rodrigues formula
(40) to establish an opposite triangularity for Qµ(z; t).

Lemma 3.4.8. If m ≥ λ1, then

S̃t
msλ ∈ Z[t]{sγ : γ ≤ (m,λ)},

and the coefficient of s(m,λ) in S̃t
msλ is equal to 1 − tα, where α is the multiplicity of m as a part

of (m,λ).
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Proof. In n variables, we can get an explicit formula for S̃t
m, much as we did for S0

m in the proof of
Proposition 3.4.4, by using the partial fraction expansion

(42) Ω[(1− t)uZ] =
∏

i

1− tuzi
1− uzi

= tn + (1− t)
∑

i

1
1− uzi

∏
j 6=i

1− tzj/zi
1− zj/zi

.

The resulting formula is

S̃t
mf = δm,0t

nf + (1− t)
∑

i

zm
i f [Z − zi]

∏
j 6=i(1− tzj/zi)∏
j 6=i(1− zj/zi)

(43)

= δm,0t
nf + (1− t)

∑
i

∑
k

(−t)kzm−k
i

ek[Z − zi]f [Z − zi]∏
j 6=i(1− zj/zi)

.(44)

Taking f = sλ and applying the usual Pieri rule for multiplication by ek, we obtain for m > 0

S̃t
msλ = (1− t)

∑
k

(−t)k
∑

γ/λ∈Vk

s(m−k,γ).

The worst case γ for each k, that is, the maximal one in the dominance order, is λ+ (1k). For this
case, s(m−k,γ), if non-zero, is ±sν with ν having one of the forms

ν = (λ1, . . . , λi,m− k + i, λi+1 + 1, . . . , λk + 1, λk+1, . . .) and i ≤ k, or

ν = (λ1, . . . , λk, λk+1 − 1, . . . , λi − 1,m− k + i, λi, . . .) and i > k.

In either case, ν ≤ (m,λ) provided m ≥ λ1. Equality occurs when m = λ1 = · · · = λi and k = i.
Hence the coefficient of s(m,λ) in S̃t

msλ is equal to (1− t)[α]t = (1− tα). �

Corollary 3.4.9. We have

Qµ(z; t) =
∑
λ≤µ

Bλµ(t)sλ

for suitable coefficients Bλµ(t) ∈ Z[t], and Bµµ = (1− t)l(µ)
∏

i[αi]t!, where µ = (1α1 , 2α2 , . . . , ).

The operator Π(1−t) is self-adjoint for the Hall inner product, that is, 〈f, g[(1− t)Z]〉 =
〈f [(1− t)Z], g〉. More generally, for any A there holds the identity

〈f, g[AZ]〉 = 〈f [AZ], g〉.

This is easily seen using the Cauchy formula: homogeneous bases {uλ} and {vλ} are dual with
respect to 〈−,−〉 if and only if

(45)
∑

λ

uλ[Y ]vλ[Z] = Ω[Y Z].

Hence {uλ} and {vλ[AZ]} are dual bases if and only if
∑

λ uλ[Y ]vλ[Z] = Ω[Y Z/A], and this condi-
tion is symmetric between {uλ} and {vλ}.

By Corollaries 3.4.7 and 3.4.9, if 〈Hµ,Hν [(1− t)Z]〉 6= 0, we must have µ ≤ ν. By symmetry, we
must also have ν ≤ µ, so µ = ν. Together with the leading terms determined in Corollaries 3.4.7
and 3.4.9, this gives the following result.
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Corollary 3.4.10. The transformed Hall-Littlewood polynomials are orthogonal with respect to the
inner product 〈f, g[(1− t)Z]〉, and their self-inner-products are given by

(46) 〈Hµ,Hµ[(1− t)Z]〉 = (1− t)l(µ)
∏

i

[αi]t!, µ = (1α1 , 2α2 , . . .).

The polynomials Hµ are uniquely characterized by any two of the three properties expressed by
Corollaries 3.4.7, 3.4.9, and 3.4.10.

Equation (43) yields by induction an explicit formula for Qλ(z; t) in n variables, analogous to
the classical formula (36) for Schur functions. In this way we can recover the classical formula (31)
for Hall-Littlewood polynomials.

Proposition 3.4.11. The symmetric functions Qλ(z; t) = Hλ[(1− t)Z; t] are given in n variables
z1, . . . , zn by

Qλ(z; t) = (1− t)l(λ)[n− l(λ)]t!
∑

w∈Sn

w

(
zλ

∏
i<j(1− tzj/zi)∏
i<j(1− zj/zi)

)
.

Hence the classical Hall-Littlewood polynomials Pλ(z; t) are equal to

(47) Pλ(z; t) =
Qλ(z; t)

(1− t)l(λ)
∏

i[αi]t!
, λ = (1α1 , 2α2 , . . .).

In the classical theory of Hall-Littlewood polynomials, one uses the t-inner product given in our
language by

〈f, g〉t = 〈f, g[Z/(1− t)]〉.
Corollary 3.4.10 and equation (47) imply that 〈Pλ, Qµ〉t = δλµ, that is, {Pλ} and {Qλ} are orthog-
onal (but not orthonormal) bases for 〈−,−〉t, dual to each other. Hence

Kλµ(t) = 〈sλ, Qµ〉t = 〈sλ,Hµ〉.
This shows, as claimed earlier, that the coefficients Cλµ(t) in Corollary 3.4.7 are equal to the Kλµ(t).

To keep things organized, let me summarize in one place our conclusions so far.

Corollary 3.4.12. The transformed Hall-Littlewood polynomials Hµ are related to the classical
Hall-Littlewood polynomials by

(48) Hµ[(1− t)Z; t] = Qµ(z; t) = (1− t)l(µ)
µ1∏
i=1

[αi(µ)]t!Pµ(z; t).

They are uniquely characterized by the following properties.
(i) Hµ(z; t) ∈ Z[t] · {sλ : λ ≥ µ},
(ii) Hµ[(1− t)Z; t] ∈ Z[t] · {sλ : λ ≤ µ}
(iii) 〈sµ,Hµ〉 = 1.

The Kostka-Foulkes polynomials Kλµ(t) can be defined through the Schur function expansion

Hµ(z; t) =
∑
λµ

Kλµ(t)sλ(z),

and enjoy the following properties.
(iv) Kλµ(t) ∈ Z[t],
(v) Kλµ(t) = 0 unless λ ≥ µ, and Kµµ(t) = 1,
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(vi) Kλµ(0) = δλµ, that is, Hµ(z; 0) = sµ(z),
(vii) Kλµ(1) = Kλµ, that is, Hµ(z; 1) = hµ(z).

3.4.4. Interpretation in geometry and representation theory. The geometric interpretation of the
Kostka-Foulkes polynomials that I wish to discuss is summarized in the next proposition, which
combines results of Hotta, Lusztig and Springer [42, 58, 81]. To state it we need a bit of terminology.
Let N be the variety of n×n nilpotent matrices, that is, the nilpotent variety in the Lie algebra gln.
Via the exponential map, we can identify N with the variety of unipotent elements in GLn. The
adjoint action of GLn on N is by similarities x 7→ gxg−1, so the GLn-orbit of an element x ∈ N
is given by its Jordan canonical form. For each partition λ of n, let Oλ denote the orbit whose
elements have Jordan block sizes λ1, . . . , λl.

The flag variety B = GLn /B may be identified concretely either with the variety of Borel
subalgebras b ⊆ gln or with the variety of flags of subspaces

(49) 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Cn, dimFi = i.

A flag F is compatible with x ∈ N if xFi ⊆ Fi−1 for each i, or equivalently, F is fixed by the
unipotent element exp(x) ∈ GLn, or yet again equivalently, we have x ∈ b for the corresponding
Borel b, the Lie algebra of the stabilizer of F . The variety

(50) Z0 = {(x, b) ∈ N × B : x ∈ b}
is a vector bundle over B, hence nonsingular. The Grothendieck resolution is the proper and
birational map

g : Z0 → N
given by projection on the first factor. Its fiber over any element x ∈ Oλ is called a Springer fiber,
and denoted Bλ. Thus Bλ ⊆ B is just the variety of flags fixed by a unipotent matrix of Jordan
type λ. The dimension of Bλ, which is equal to one-half the codimension of Oλ in N , is the statistic
n(λ) discussed in §2.1.

Finally, let GLn(q) be the linear group over the finite field Fq with q elements. Identifying Oλ

with a unipotent orbit in GLn, its Fq-rational points form a conjugacy class Oλ(q) ⊆ GLn(q) (here
life is simpler for GLn than for other semisimple Lie groups G; in general a unipotent orbit may
break up into several conjugacy classes of the corresponding finite Chevalley group). The finite
group GLn(q) acts on the finite set B(q) of Fq-rational points of the flag variety, which in our case
is just the set of flags as in (49), but in the finite vector space Fn

q instead of Cn.
The characters χλ of those irreducible representations Vλ of GLn(q) that occur in the permutation

representation on C · B(q) are called unipotent characters. Their indexing by partitions λ comes
about as follows. Fix the Borel subgroup B ⊆ GLn(q) of upper triangular matrices. The Hecke
algebra Hn(q) is the subalgebra Hn(q) ⊆ C GLn(q) of elements

∑
g agg with coefficients ag constant

on double cosets BwB. As is well-known, Hn(q) is the specialization at the integer q of a generic
Hecke algebra in which q is an indeterminate, and its specialization at q = 1 is the group algebra
of the Weyl group, that is, Hn(1) = CSn for G = GLn. Both the generic Hecke algebra and
these specializations are semi-simple, so the irreducible representations V λ of Hn(q) are naturally
identified with those of CSn. By general principles for double coset algebras, Hn(q)×GLn(q) acts
on C ·B(q) and this representation decomposes into irreducibles as

C ·B(q) ∼=
⊕

λ

V λ ⊗ Vλ.
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Thus there is a natural correspondence between the unipotent characters χλ of GLn(q) and the
irreducible characters χλ of Sn.

Definition 3.4.13. The “cocharge” Kostka-Foulkes polynomials are

K̃λµ(q) =
def

qn(µ)Kλµ(q−1).

It is not hard to see—from the proof of Lemma 3.4.6, for instance—that the degree of Kλµ(t) is
at most n(µ), so K̃λµ(q) is in fact a polynomial.

Proposition 3.4.14. The Kostka-Foulkes polynomials Kλµ(q) and their cocharge variants K̃λµ(q)
have the following interpretations.

(i) The value of a unipotent character of GLn(q) on a unipotent conjugacy class is given by
χλ(u) = K̃λµ(q), for u ∈ Oµ(q).

(ii) The Poincaré series of the local intersection homology of the closure Oλ at any point x ∈ Oµ

is given by
∑

k q
k IH 2k

x (Oλ) = qn(µ)−n(λ)Kλµ(q).
(iii) For the Springer action [81] of the Weyl group Sn on the cohomology ring H∗(Bµ) of a

Springer fiber, we have
∑

q q
k〈χλ, charH2k(Bµ)〉 = K̃λµ(q). In other words, the Frobenius

series of H∗(Bµ) is given by FH∗(Bµ)(z; q) = qn(µ)Hµ(z; q−1).

It is somewhat difficult to gain an understanding of these results from the original papers,
because the theory of perverse sheaves, which simplifies and clarifies the proofs, was developed
later. I will not discuss the proofs in any detail, but will only mention a few points to make the
present discussion self-contained. For further information I recommend the excellent exposition by
Shoji [78].

One point that deserves attention is the definition of the Springer action referred to in part (iii)
of the Proposition. The variety Z0 in (50) is part of a larger bundle over the flag variety,

Z = {(x, b) ∈ gln × B : x ∈ b},
and projection on the first factor again yields a proper map

f : Z → gln.

This map f is not birational, but it is generically finite. Specifically, the preimage of the set
(gln)rss of regular semi-simple elements has a natural structure of principal Sn-bundle. Let CZ be
the trivial constant sheaf on Z. The fundamental decomposition theorem of Beilinson-Bernstein-
Deligne-Gabber [4], together with an easy dimension argument, implies that the object Rf∗CZ in
the derived category of constructible sheaves on gln is a perverse sheaf, and furthermore, it is the
perverse extension of its restriction to (gln)rss. Since Sn acts naturally on this restriction, it acts
on Rf∗CZ . But the cohomology ring H∗(Bµ) is just the stalk of Rf∗CZ at x ∈ Oµ. The action of
Sn on the stalk is the Springer action.

The equivalence of interpretations (ii) and (iii) in Proposition 3.4.14 follows from similar con-
siderations involving Rg∗CZ0 . Their further equivalence with interpretation (i) is part of Lusztig’s
theory of character sheaves.

As for the identification with K̃λµ(q) of the quantity described by all three interpretations, Shoji
gave a procedure for computing the characters of the cohomology rings of Springer fibers (referred
to in this context as Green polynomials) for the classical groups G, and this was extended by Lusztig
to all G in [59]. Shoji and Lusztig characterize the Green polynomials by triangularity conditions,
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which in the case of GLn, when translated into symmetric function language using the Frobenius
series and Proposition 3.3.1, amount to conditions (i)-(iii) in Corollary 3.4.12.

Finally, a word is in order here about the situation for a general semisimple Lie group G. The
things described by the three parts of Proposition 3.4.14 again coincide for general G, with certain
adjustments.

First of all, the cohomology rings H∗(Bu) depend, strictly speaking, on the choice of u in a
nilpotent orbit O. On a fixed orbit they are all isomorphic, but the locally constant sheaf with
stalk H∗(Bu) at u is usually not trivial. Various pairs (O,L) consisting of a nilpotent orbit O
and an irreducible local system L on it arise in this way. These pairs, rather than the orbits
themselves, are what correspond to unipotent conjugacy classes in the finite Chevalley group G(q).
To formulate the Proposition correctly, in (iii) one should consider separately the summands of
H∗(Bu) corresponding to different local systems L on O. Also (ii) has to be rephrased to take
account of the local systems.

Secondly, part (i) is only “almost” correct for general G. The unipotent characters χλ have to
be replaced with certain linear combinations, called almost characters. This phenomenon occurs
because Lusztig’s character sheaves are imperfect geometric analogs of characters. The linear
transformations required involve only a few characters at a time, and are given by certain small
matrices which have been explicitly determined by Lusztig.

3.4.5. Combinatorial interpretations. The following theorem was discovered by Lascoux and
Schützenberger [57] and its proof completed by Butler [11].

Theorem 3.4.15. The Kostka-Foulkes polynomial Kλµ(t) is given in terms of the charge statistic
defined in §2.1, evaluated on semistandard tableaux T of shape λ and content µ, by

Kλµ(t) =
∑
T

tc(T ).

Equivalently, the cocharge Kostka-Foulkes polynomials are given in terms of cocharge by

K̃λµ(t) =
∑
T

tcc(T ).

An alternative combinatorial interpretation of Kλµ(t) was given by Kirillov and Reshetikhin
[47, 48]. For any partition ν, let

sk(λ) = λ1 + · · ·+ λk

denote the sum of the first k parts of ν. A (λ, µ) configuration is a sequence of partitions

ν = (ν0 = µ′, ν1, . . . , νl(λ))

of sizes
|νk| = |λ| − sk(λ).

Note that νl(λ) is empty by definition. The configuration ν is said to be admissible if the numbers

pk
j (ν) =

def
sj(νk−1)− 2sj(νk) + sj(νk+1), for i = 1, . . . , l(λ)− 1 and all j

are non-negative. Note that for j sufficiently large, pk
j (ν) = λk − λk+1, which is necessarily non-

negative.
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Theorem 3.4.16 (Kirillov-Reshetikhin [48]). The Kostka-Foulkes polynomial Kλµ(t) is given by
the sum

(51) Kλµ(t) =
∑

ν

tn(µ)−
P

j≥1 µ′jν1
j +

P
k,j≥1 νk

j (νk
j −νk+1

j )
∏

k,j≥1

[
pk

j + νk
j − νk

j+1

νk
j − νk

j+1

]
t

over all (λ, µ)-admissible configurations ν, where[
n

k

]
t

=
def

[n]t!
[k]t![n− k]t!

are the Gauss binomial coefficients.

The theorem is proved by attaching to each configuration ν some additional data, called a rigging,
so that the term corresponding to ν in (51) is a weighted enumeration of the possible riggings. Then
Kirillov and Reshetikhin give a bijection between rigged configurations and semistandard tableaux
in which the weight of the configuration corresponds to the charge of the tableau. This reduces
Theorem 3.4.16 to Theorem 3.4.15.

Theorem 3.4.16 has an interesting origin. A technique from mathematical physics known as the
Bethe ansatz enables one to produce highest weight vectors (called Bethe vectors in this context)
for the irreducible constituents in tensor products of GLn modules Vµ1 ⊗ · · · ⊗ Vµr , where the µi

are rectangular partitions. In this particular application of the Bethe ansatz it turns out that
the resulting system of Bethe vectors is complete, and that they are naturally indexed by rigged
configurations. The weight of the rigged configuration has a physical interpretation as a quantum
number of the state described by the corresponding Bethe vector. When the rectangles µi are the
rows of µ, the relevant configurations are the admissible configurations in Theorem 3.4.16. Thus
the theorem says that Kλµ(t) enumerates Bethe vectors in V(µ1) ⊗ · · · ⊗ V(µr) by quantum number.

3.4.6. The method of Garsia and Procesi. The proof of Theorem 3.4.15 is complicated and not par-
ticularly illuminating, while the proof of Proposition 3.4.14 requires heavy intersection cohomology
machinery. A simpler route than either of these to the positivity theorem for the Kostka-Foulkes
polynomials was found by Garsia and Procesi [26], with some improvements by N. Bergergon and
Garsia [8]. I will outline their approach.

The basic idea is to describe the cohomology ring Rµ = H∗(Bµ) in elementary terms, without
reference to its geometric origin. In order to motivate the description it is helpful first to recall some
geometrical facts about Rµ, although they are not actually needed for the construction. For any
semisimple Lie group G, the cohomology ring H∗(B) of the whole flag variety is isomorphic to the
ring of coinvariants for the Weyl group W acting on a Cartan subalgebra h. The coinvariant ring
is by definition C[h]/I, where I = (C[h]W+ ) is generated by the W -invariant polynomials without
constant term. The isomorphism H∗(B) ∼= C[h]/I is W -equivariant for the Springer action on
H∗(B) and the tautological W action on C[h]/I.

For G = GLn, the ring C[h] is a polynomial ring C[x] = C[x1, . . . , xn] in n variables, the Weyl
group W is Sn, and I = (e1, . . . , en) is generated by the elementary symmetric functions. The
homomorphism H∗(B) → H∗(Bµ) induced by the inclusion Bµ ⊆ B is always W -equivariant. For
G = GLn these homomorphisms are surjective, so Rµ is C[x]/Iµ for a homogeneous Sn-invariant
ideal Iµ ⊇ I. The highest degree in which Rµ is nonzero is dim(Bµ) = n(µ), and by the Springer
correspondence, this top degree component of Rµ affords the irreducible representation Vµ of Sn.
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Recall from §2.1 that C[x] contains a unique copy of Vµ in degree n(µ), spanned by the Garnir
polynomials gT (x) for standard tableaux T of shape µ. It develops that

Iµ is the unique largest homogeneous Sn-invariant ideal having zero intersection with
the unique copy of V µ in degree n(µ).

So, following the Garsia-Procesi approach, let us forget about H∗(Bµ), define Iµ and Rµ = C[x]/Iµ
by the above characterization, and proceed to study the graded character of Rµ. The first lemma
is an easy general consequence of the definition of Iµ.

Lemma 3.4.17 (Bergeron-Garsia [8]). Let C[∂] = C[∂/∂x1, . . . , ∂/∂xn] act on C[x] by differentia-
tion, and let Gµ ⊆ C[x] be the C[∂]-module generated by the Garnir polynomials gT for T of shape
µ.

(i) A polynomial f ∈ C[x] belongs to Iµ if and only if f(∂)gT = 0 for all T .
(ii) The canonical projection of Gµ ⊆ C[x] on Rµ = C[x]/Iµ is an isomorphism.

Let xS denote the subset of the variables x1, . . . , xn indexed by a subset S ⊆ {1, . . . , n}. Using
Lemma 3.4.17 one can prove that the elementary symmetric function ek(xS) belongs to Iµ whenever

(52) k > |S| − n+ µ′1 + µ′2 + · · ·µ′n−|S|.
By considering the leading terms of derivatives of the Garnir polynomials, Bergeron and Garsia
showed that Gµ and Rµ have dimension at least

(
n

µ1,...,µl

)
. On the other hand Garsia and Pro-

cesi constructed a set of
(

n
µ1,...,µl

)
monomials which span C[x] modulo the ideal generated by the

functions ek(xS) with k and S satisfying (52). This proves the following result.

Proposition 3.4.18 (Garsia-Procesi [26]). The Tanisaki generators ek(xS) for k and S satisfying
(52) generate the ideal Iµ.

With this established, Garsia and Procesi showed that the Frobenius series of Rµ satisfies a
simple recurrence that also characterizes the “cocharge” version of the transformed Hall-Littlewood
polynomials, thereby recovering the result in Proposition 3.4.14 (iii) by direct, elementary means.

Theorem 3.4.19 (Garsia-Procesi [26]). The Frobenius series of Rµ is given by

FRµ(z; t) = tn(µ)Hµ(z; t−1) =
∑

λ

K̃λµ(t)sλ.

In particular, K̃λµ(t) is a polynomial with non-negative integer coefficients.

Another aspect of Garsia and Procesi’s approach is worth mentioning here. Fix distinct complex
numbers α1, . . . , αl, and let a ∈ Cn be a point with µ1 coordinates equal to α1, µ2 equal to α2,
and so on. Let Ia ⊆ C[x] be the ideal of polynomials vanishing on the orbit Sn · a, and let gr Ia
denote its ideal of leading forms. Clearly dim C[x]/ gr Ia = dim C[x]/Ia = |Sn · a| =

(
n

µ1,...,µl

)
. It is

not hard to show, as Garsia and Procesi do in [26], that the Tanisaki generators ek(xS) belong to
gr Ia, and hence the dimension count implies that gr Ia = Iµ. In particular, Rµ affords the induced
representation 1 ↑Sn

Sµ
, where Sµ

∼= Sµ1 × · · · × Sµl
is the stabilizer of a. Written in terms of the

Frobenius characteristic, this says
FRµ(z; 1) = hµ(z).

Since the top degree part of Rµ is V µ, it follows that tn(µ)FRµ(z; t−1) has properties (i) and (iii) in
the characterization of Hµ(z; t) in Corollary 3.4.12. The remaining property (ii) is a consequence
of Proposition 3.3.1 and the following proposition.
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Proposition 3.4.20. The Sn-modules TorC[x]
i (Rµ,C) contain only irreducible representations Vλ

with λ ≥ µ′. In particular, Rµ has an Sn-equivariant graded free resolution over C[x] whose terms
are generated by Sn-modules containing only those irreducibles.

This proposition follows from the geometric theorems around the n! conjecture, but I think an
elementary proof should be possible. This would improve further on the results of Bergeron, Garsia
and Procesi by providing an even more direct route to the identification of the character of Rµ.

3.4.7. Characterization of the cocharge Kostka-Foulkes polynomials. For comparison with the Mac-
donald polynomials discussed in the next section it will be useful to reformulate the conditions
characterizing Hµ(z; t) in Corollary 3.4.12 in terms of their cocharge variant

H̃µ(z; t) =
def

tn(µ)Hµ(z; t−1) =
∑

λ

K̃λµ(t)sλ(t).

To do this, we note that K̃(n)µ(t) = 1 for all µ. This is clear from the geometric interpretation, since
K̃(n)µ(t) is the Hilbert series of the Sn invariants in Rµ. Alternatively, it is not difficult to deduce
from (41) that K(n)µ(t) = tn(µ). We also note that H̃µ[(1−t)Z; t] = tn(µ)(−t)|µ|ωHµ[(1−t−1)z; t−1],
which contains only Schur functions sλ with λ′ ≤ µ, or equivalently λ ≥ µ′. Hence the desired
characterization is as follows.

Corollary 3.4.21. The cocharge variant transformed Hall-Littlewood polynomials H̃µ(z; t) are
uniquely characterized by the properties

(i) H̃µ(z; t) ∈ Z[t]{sλ : λ ≥ µ};
(ii) H̃µ[(1− t)Z; t] ∈ Z[t]{sλ : λ ≥ µ′};
(iii) H̃µ[1; t] = 〈s(n), H̃µ(z; t)〉 = 1.

3.5. Macdonald polynomials.

3.5.1. Definition and transformed version; Kostka-Macdonald coefficients. We begin with Macdon-
ald’s original definition [60, 61] of his polynomials as deformations of the Hall-Littlewood polyno-
mials Pλ(z; t) with an extra parameter q. Macdonald first defines a q, t-deformation of the Hall
inner product which in our notation is

〈f, g〉q,t =
def

〈f(z), g[1−q
1−tZ]〉.

Definition 3.5.1. The Macdonald symmetric functions Pµ(z; q, t) are uniquely characterized by
the orthogonality and triangularity conditions

(i) Pµ(z; q, t) = sµ +
∑

λ<µ aλµ(q, t)sλ, for suitable coefficients aλµ ∈ Q(q, t);
(ii) 〈Pλ, Pµ〉 = 0 if λ 6= µ.

For all purposes that we will be concerned with here it is better to work with transformed versions
of the Macdonald polynomials, which are q-deformations of the cocharge variant transformed Hall-
Littlewood polynomials H̃µ(z; t).

Definition 3.5.2. The transformed Macdonald symmetric functions H̃µ(z; q, t) are uniquely char-
acterized by the conditions

(i) H̃µ[(1− q)Z; q, t] ∈ Q(q, t){sλ : λ ≥ µ};
(ii) H̃µ[(1− t)Z; q, t] ∈ Q(q, t){sλ : λ ≥ µ′};
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(iii) H̃µ[1; q, t] = 1.

Observe that from Corollary 3.4.21 it immediately follows that H̃µ(z; 0, t) = H̃µ(z; t). Of course
the existence of polynomials meeting the conditions in either of the above definitions requires
proof. We will prove in §3.5.2 that the H̃µ(z; q, t) exist, so let us now see that this implies that the
Pµ(z; q, t) exist. To this end, we define another q, t-inner product

(53) 〈f, g〉∗ =
def

〈f, ωg[(1− q)(1− t)Z]〉 = (−t)d〈f, g[(1− q)(1− t−1)Z]〉,

where the last equality is for f and g homogeneous of degree d in z. We have 〈H̃µ, H̃ν〉∗ =
〈H̃µ[(1− q)Z; q, t], ωH̃ν [(1− t)Z; q, t]〉. If this is non-zero then by (i) and (ii), we must have µ ≤ ν.
By symmetry, we must also have ν ≤ µ, so we have

(iv) 〈H̃µ, H̃ν〉∗ = 0 if µ 6= ν.

It follows that the symmetric functions

(54) Jµ(z; q, t) =
def

tn(µ)H̃µ[(1− t−1)Z; q, t−1]

have the orthogonality property (ii) of Definition 3.5.1, and they also have the triangularity property
(i), except that the leading coefficient need not be 1. But we can of course divide by the leading
coefficient to obtain the required polynomials Pµ(z; q, t).

Definition 3.5.3. The Kostka-Macdonald polynomials K̃λµ(q, t) are defined through the Schur
function expansion

H̃µ(z; q, t) =
∑

λ

K̃λµ(q, t)sλ(z).

From the usual proof of the existence theorem for Macdonald symmetric functions (see §3.5.2,
below) it is by no means obvious that the “polynomials” K̃λµ(q, t) are anything more than rational
functions of q and t. Their integrality property,

K̃λµ(q, t) ∈ Z[q, t],

remained unproven until circa 1995, when several proofs were independently discovered by a number
of people using a variety of methods [27, 28, 29, 49, 50, 55, 76]. I will mention one way of proving
integrality later.

Definition 3.5.3 is related to the original one of Macdonald in the following way. The symmetric
functions Jµ(z; q, t) defined in (54) are the integral forms of Macdonald, who defined coefficients
Kλµ(q, t) through the expansion

Jµ(z; q, t) =
∑

λ

Kλµ(q, t)sλ[Z/(1− t)].

By (54), this is equivalent to K̃λµ(q, t) = tn(µ)Kλµ(q, t−1). Macdonald defined the integral forms
Jµ(z; q, t) to be scalar multiples of Pµ(z; q, t) by an explicit normalizing factor. To see that our Jµ

is the same scalar multiple of Pµ as Macdonald’s, one may compare the identity K(n)µ(q, t) = tn(µ)

obtained by Macdonald [61] with our K̃(n)µ(q, t) = 1, which is another way of stating part (iii) of
Definition 3.5.2.
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3.5.2. Existence. We will prove that the polynomials H̃µ(z; q, t) meeting the conditions in Defini-
tion 3.5.2 exist by exhibiting them as eigenfunctions of the operator

(55) D =
def

1
(1− q)(1− t)

(1−D0),

where

(56) D0f = [u0]f [Z + (1− q)(1− t)u−1]Ω[−uZ].

We shall see that the existence theorem also follows as a consequence of the geometric results to be
discussed later. This is the case for various other aspects of the elementary theory of Macdonald
polynomials as well, such as integrality results. I have included the elementary existence proof here
for clarity and to keep this part of the discussion self-contained.

Lemma 3.5.4. Set D̂ = Π(1−t−1)D0Π−1
(1−t−1)

, or explicitly,

D̂f = [u0]f [Z − (1− q)u−1]Ω[(1− t)uZ].

Then D̂ is lower-triangular with respect to the Schur basis. More precisely,

(57) D̂sµ = (1− (1− q)(1− t)Bµ(q, t))sµ +
∑
λ<µ

bλµ(q, t)sλ

for suitable coefficients bλµ(q, t) ∈ Z[q, t], where

(58) Bµ(q, t) =
def

∑
(i,j)∈µ

qitj .

Proof. Write D̂ in terms of the modified Jing operators as D̂f = [u0]S̃t(u)f [Z + qu−1]. Then using
the dual Pieri rule as in the proof of Lemma 3.4.6, we have

D̂sµ =
∑
m

qm
∑

µ/λ∈Hm

S̃t
msλ.

As in the proof of Lemma 3.4.8, this is equal in n variables z1, . . . , zn to

tnsµ + (1− t)
∑
m,k

qm(−t)k
∑

µ/λ∈Hm

∑
γ/λ∈Vk

s(m−k,γ).

Also as in the proof of Lemma 3.4.8, the worst case is γ = λ+ (1k), and then s(m−k,γ) = 0 or ±sν

with ν of the form indicated there. The condition µ/λ ∈ Hm implies that µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ · · · ,
and it follows with little difficulty that ν ≤ µ.

By carefully examining how equality can be attained, one sees that the contribution to the
coefficient of sµ from the sum over m and k is equal to

∑n
j=1 t

j−1qµj , with µj interpreted as zero
for j > l(µ). But this is equal to [n]t − (1− q)Bµ(q, t), completing the proof. �

Lemma 3.5.4 implies that D̂ has distinct eigenvalues and that its eigenfunction F (z; q, t) with
eigenvalue 1 − (1 − q)(1 − t)Bµ(q, t) belongs to the space Q(q, t){sλ : λ ≤ µ}. Then H(z; q, t) =
F [Z/(1− t−1); q, t] is an eigenfunction of D with eigenvalue Bµ(q, t), and H[(1− t)Z; q, t] belongs
to Q(q, t){sλ : λ ≥ µ′}. But D is symmetric between q and t, so we have the following corollary.

Corollary 3.5.5. The operator D has eigenfunctions H̃µ(z; q, t) with eigenvalue Bµ(q, t) satisfying
conditions (i) and (ii) in Definition 3.5.2.
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To see that condition (iii) can also be satisfied we only have to verify that the eigenfunctions
have 〈s(n), H̃µ(z; q, t)〉 6= 0. But their specializations at q = 0 are non-zero scalar multiples of the
Hall-Littlewood polynomials H̃µ(z; t), so this is clear from Corollary 3.4.21.

Corollary 3.5.6. Polynomials H̃µ(z; q, t) satisfying conditions (i)-(iii) in Definition 3.5.2 exist.

Note that the solution of (i)-(iii) is necessarily unique, since the matrix giving any other solution
in terms of the basis {H̃µ} would have to be upper triangular by (i), lower triangular by (ii), and
1 on the diagonal by (iii).

3.5.3. Specializations. For special values of the parameters, there are simpler expressions for the
Macdonald symmetric functions, as follows.

Proposition 3.5.7. The Macdonald symmetric function H̃µ(z; 0, t) at q = 0 is equal to the Hall-
Littlewood symmetric function H̃µ(z; t). Equivalently, the Kostka-Macdonald polynomials at q = 0
reduce to the Kostka-Foulkes polynomials:

(59) K̃λµ(0, t) = K̃λµ(t).

Proof. Compare Corollary 3.4.21 with Definition 3.5.2. �

Proposition 3.5.8. The Macdonald symmetric function at q = 1 is given by

(60) H̃µ(z; 1, t) = (1− t)|µ|
(∏

i

[µ′i]t!
)
hµ′ [Z/(1− t)].

Corollary 3.5.9. The Macdonald symmetric function at q = t = 1 is given by

H̃µ(z; 1, 1) = en1 ,

for every partition µ. In other words, the Kostka-Macdonald polynomials satisfy

K̃λµ(1, 1) = χλ(1),

the number of standard Young tableaux of shape λ, independent of µ.

Proof. The operator D in (55) is well-defined in the limit as q → 1, and a calculation shows that
Dq=1 is a derivation: Dq=1(fg) = (Dq=1f)g + f(Dq=1g). Since Bµ(1, t) =

∑
i[µ

′
i]t, it follows that

H̃µ(z; 1, t) =
∏

i

H̃
(1µ′

i )
(z; 1, t).

Therefore we only need to show that H̃(1n)(z; 1, t) = (1− t)n[n]t!hn[Z/(1− t)]. This latter fact holds
even for q 6= 1, since condition (ii) in Definition 3.5.2 implies that H̃(1n)(z; q, t) is a scalar multiple
of hn[Z/(1 − t)], and the identity hn[1/(1 − t)] = 1/([n]t!(1 − t)n), which is a special case of (29),
fixes the scalar factor.

For the corollary, the Cauchy formula and (29) imply that

(1− t)n[n]t!hn[Z/(1− t)] = (1− t)n[n]t!
∑
|λ|=n

sλ(z)sλ[
1

1− t
]

=
∑
|λ|=n

sλ(z)
[n]t!∏

x∈λ[h(x)]t!
.



COMBINATORICS, SYMMETRIC FUNCTIONS, AND HILBERT SCHEMES 29

Setting t = 1, this becomes ∑
|λ|

sλ(z)χλ(1),

by the hook formula (2), and this is finally equal to en1 , the Frobenius characteristic of the regular
representation of Sn. �

Proposition 3.5.10. The Macdonald symmetric function H̃µ(z; q, q−1) at t = 1/q is given by

(61) H̃µ(z; q, q−1) = q−n(µ)
∏
x∈µ

(1− qh(x))sµ[Z/(1− q)],

where h(x) = 1 + a(x) + l(x) denotes the hook-length of the cell x in the diagram of µ.

Proof. One verifies immediately that sµ[Z/(1−q)] satisfies conditions (i) and (ii) in Definition 3.5.2
when t = 1/q, and hence H̃µ(z; q, q−1) is a scalar multiple of sµ[Z/(1− q)]. Formula (29) fixes the
scalar factor. �

In addition to the specializations the transformed Macdonald polynomials obey two fundamental
symmetries. The first one is obvious from the definition.

Proposition 3.5.11. For every µ we have H̃µ′(z; q, t) = H̃µ(z; t, q), or equivalently,

K̃λµ′(q, t) = K̃λµ(t, q).

Proposition 3.5.12. For every µ we have ωH̃µ(z; q, t) = tn(µ)qn(µ′)H̃µ(z; q−1, t−1), or equivalently,

K̃λ′µ(q, t) = tn(µ)qn(µ′)K̃λµ(q−1, t−1).

Proof. It is easy to see that ωH̃µ(z; q−1, t−1) satisfies conditions (i) and (ii) in Definition 3.5.2, and
hence is a scalar multiple of H̃µ(z; q, t). To fix the scalar, we need the identity

K̃(1n),µ = tn(µ)qn(µ′).

Somewhat surprisingly, this is one of the more subtle results in the elementary theory of Macdonald
polynomials. We will prove something a little more general in the next section, in Corollary 3.5.20.

�

3.5.4. The positivity problem. From the observations in the preceding section, we see that the
specializations K̃λµ(0, t), K̃λµ(q, 0), K̃λµ(1, t) and K̃λµ(q, 1) of the Kostka-Macdonald polynomials
K̃λµ(q, t) have non-negative integer coefficients. We shall also see explicitly in Corollary 3.5.20
below that K̃λµ(q, t) ∈ N[q, t] when λ is a hook shape partition. These facts and tables which he
had computed for n ≤ 6 led Macdonald to conjecture the following theorem, already in his 1988
paper [60].

Theorem 3.5.13 (Macdonald positivity conjecture). The Kostka-Macdonald polynomials K̃λµ(q, t)
are polynomials with non-negative integer coefficients.

Part of the conjecture was the integrality property, K̃λµ(q, t) ∈ Z[q, t], which as we have mentioned
has since been proved by elementary methods. The additional positivity property, K̃λµ(q, t) ∈ N[q, t],
lies deeper, as might be expected from the fact that it is a serious theorem even for the Kostka-
Foulkes polynomials K̃λµ(0, t). The only proof known at present is the one based on the geometry
of Hilbert schemes that I will describe in §5.4.
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In the course of working on the positivity conjecture, Garsia and I and others were led to integral-
ity and positivity conjectures for other quantities related to the Kostka-Macdonald polynomials.
Some of these conjectures have now also been proven using geometric methods. In the rest of this
section I will explain some additional aspects of the theory that lead to these further conjectures.

3.5.5. Operators ∆ and ∇ and the plethystic formula. For any symmetric function f we define a
homogeneous linear operator ∆f on symmetric functions with coefficients in Q(q, t) by the formula

(62) ∆f H̃µ(z; q, t) = f [Bµ]H̃µ(z; q, t),

where Bµ = Bµ(q, t) is given by (58). In particular, the operator D of §3.5.2 is D = ∆e1 in this
notation. In [7] one can find formulas similar to (56), but more complicated, for the operators ∆f .
We also define

(63) ∇H̃µ(z; q, t) = tn(µ)qn(µ′)H̃µ(z; q, t),

which is equivalent to setting ∇f(z) = ∆enf(z) for f homogeneous of degree n. The operator ∇
plays an especially important role in the theory.

F. Bergeron, Garsia, Tesler and I studied these operators in [7, 25]. We proved integrality
properties and we conjectured positivity properties for them, and we showed that various results
previously discovered by others could be deduced easily with their aid. The next proposition, which
was proved in [7] by elementary means, also follows (in part) from a natural geometric interpretation
of the operators, as we shall see in §5.4.4.

Proposition 3.5.14 ([7]). The operators ∆f and hence also ∇ are integral, in the sense that if f
and F have coefficients in Z[q, t], then so does ∆fF . The operator ∇−1 is Laurent-integral, that is,
∇−1F has coefficients in Z[q, t, q−1, t−1]

Conjecture 3.5.15 ([7]). When expanded on the Schur basis {sλ}, the following quantities all have
coefficients in N[q, t]:

(I)
(−1)i(µ)∇msµ(z)

for all µ and all m ≥ 1, where i(µ) =
(
µ1

2

)
+
∑

µ′i<i−1 (i− 1− µ′i);
(II)

(−1)|µ|−l(µ)∇H̃µ(z; 0, t)
for all µ;

(III)
∇ωH̃µ(z; 0, t−1)

for all µ, and also
∇ωH̃µ(z; 0, t−1)−∇ωH̃ν(z; 0, t−1)

whenever µ ≥ ν;
(IV)

(−1)|µ|−l(µ)∇mµ(z)
for all µ, and moreover the coefficients are doubly unimodal in q and t;

(V)
∆sνen(z)

for all ν and n.
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All except (II) above have as special cases the quantity

∇en(z),

whose special significance will be explained below. Each of (I)–(V) has a geometric interpretation
in the Hilbert scheme setting, and in principle it should eventually be possible to prove all five
parts of the conjecture using geometric methods. To date, this has only been carried out for the
following weakened form of (V).

Theorem 3.5.16 ([40]). When expanded on the Schur basis, the quantity

∆sν∇en(z)

has coefficients in N[q, t] for all ν and n.

In [7] we proved Proposition 3.5.14 by considering the operator D1 defined by taking the co-
efficient of u1 instead of u0 in (56), and showing that there is an integral basis of the algebra of
symmetric functions consisting of elements of the form

uλ(z; q, t) = ea1D1e
λ1−1
1 D1e

λ2−1
1 · · ·D1e

λk−1,

where λ = (λ1, . . . , λk, 1a) with λk > 1. The proposition then follows from various commutation
relations between the operators ∆f , D1 and multiplication by e1. I will not go into further detail
on these relations here. The following fundamental result is proved in a similar way.

Proposition 3.5.17 ([25]). For any symmetric function f , we have

〈f, H̃µ[Z + 1; q, t]〉∗ = Kf [(1− q)(1− t)Bµ − 1; −1],

where
Kf (z;u) =

def
∇−1(f [Z − u])

and 〈−,−〉∗ is defined in (53).

Let me mention two important consequences that follow by straightforward calculations from
this proposition. The first of these is the plethystic formula for Kostka-Macdonald polynomials.

Corollary 3.5.18. Fix a partition γ of size k. Then the Kostka-Macdonald coefficients
K̃(n−k,γ)µ(q, t), where n = |µ| ≥ k + γ1, are given for all µ simultaneously by

K̃(n−k,γ)µ(q, t) = kγ [Bµ; q, t],

where
kγ [ Z+1

(1−q)(1−t) ; q, t] = ∇−1ω
(
sλ[ Z+1

(1−q)(1−t) − 1]
)
.

This corollary was first proved prior to Proposition 3.5.17, by Garsia and Tesler in [28], but
without the simple formula for kγ . Another consequence of Proposition 3.5.17 is the reciprocity
formula of Koornwinder and Macdonald, which takes the following pleasant form when written in
terms of the transformed Macdonald symmetric functions.

Proposition 3.5.19 ([61]). For all pairs of partitions λ, µ, we have

H̃µ[1− uAλ; q, t]Ω[uBµ] = H̃λ[1− uAµ; q, t]Ω[uBλ],

where Bµ = Bµ(q, t) is given by (58) and Aµ = 1− (1− q)(1− t)Bµ.
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As a particular consequence, by taking λ = ∅ in the reciprocity formula, we obtain the special-
ization theorem of Macdonald [61].

Corollary 3.5.20. Under the plethystic specialization Z 7→ 1− u, we have

H̃µ[1− u; q, t] = Ω[−uBµ].

Equivalently, for λ = (n− r, 1r) a hook shaped partition and all partitions µ of n, we have

(64) K̃λµ = er[Bµ − 1].

3.5.6. Raising operators. Operators on Macdonald symmetric functions analogous to the Jing op-
erators St

m in Definition 3.4.5 were first found by Lapointe and Vinet [55] and Kirillov and Noumi
[49]. Their work provides several different families of operators Bm which add a part to the indexing
partition of a Macdonald polynomial, that is,

(65) BmH̃µ(z; q, t) = H̃(m,µ)(z; q, t) for m ≥ µ1.

Equivalently, for every partition µ, there holds the Rodrigues formula

(66) H̃µ(z; q, t) = Bµ1Bµ2 · · ·Bµl
(1).

Note that in light of the symmetry given by Proposition 3.5.11 it is the same thing to give operators
B1m with the property

(67) B1mH̃µ(z; q, t) = H̃µ+(1m)(z; q, t) for m ≥ l(µ),

so that

(68) H̃µ′(z; q, t) = B
1µ′1
B

1µ′2
· · ·B

1µ′r (1).

Zabrocki subsequently discovered that such raising operators can be manufactured at will from any
operators which have the property in (67) for the Hall-Littlewood polynomials.

Theorem 3.5.21 ([29]). For any operator V on symmetric functions, define its q-deformation V q

by the formula
V qf = VY ( f [qZ + (1− q)Y ] ) |Y 7→Z ,

where VY denotes V acting on symmetric functions in the variables y and treating the variables z as
scalars (so in particular, V 0 = V and V 1f = V (1) · f). Let T1m be any linear operators whatsoever
that satisfy

(69) T1mH̃µ(z; t) = H̃µ+(1m)(z; t) for m ≥ l(µ).

Then

(70) T q
1mH̃µ(z; q, t) = H̃µ+(1m)(z; q, t) for m ≥ l(µ).

It turns out rather amazingly that this theorem is almost trivial to prove, once it is given that
there exists some family of operators satisfying both (69) and (70). Conveniently, the operators of
Kirillov and Noumi have the correct form, i.e., they are the Zabrocki q-deformations of their q = 0
specializations, and the result follows. One nice application of Zabrocki’s theorem is to give the
simplest of many proofs of the integrality theorem.

Corollary 3.5.22 ([29]). The Kostka-Macdonald polynomials are polynomials, K̃λµ(q, t) ∈ Z[q, t].
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Proof. It is easy to see that Theorem 3.5.21 is equivalent to the corresponding result for Hµ(z; t)
and Hµ(z; q, t) =

def
tn(µ)H̃(z; q, t−1). In this variant of the theorem, take for T1m the trivial operator

defined by

T1mHµ(z; t) =

{
Hµ+(1m)(z; t) if m ≥ l(µ),
0 otherwise.

Corollary 3.4.12, part (v) shows that the transformed Hall-Littlewood symmetric functions Hµ(z; t)
form an integral basis for the algebra of symmetric functions with coefficients in Z[t]. In particular,
the operators T1m act on the Schur basis with coefficients in Z[t], and their q-deformations T q

1m act
with coefficients in Z[q, t]. Then the Rodrigues formula implies that Hµ(z; q, t) ∈ Z[q, t]{sλ}, that
is, Kλµ(q, t) ∈ Z[q, t] for all λ and µ. By the symmetry in Proposition 3.5.12, this is equivalent to
K̃λµ ∈ Z[q, t] for all λ and µ. �

In is worthy of remark that the Jing operators St
m are just the Zabrocki t-deformations of the

Bernstein operators S0
m.

3.5.7. Operator ∇ and q-Lagrange inversion. The q-Catalan numbers discussed in §2.2, the inver-
sion enumerator for forests in §2.3, and more generally the q-Lagrange inversion coefficients kn(q)
in Proposition 2.4.2 turn out to have remarkable expressions involving the operator ∇ specialized
at t = 1.

Proposition 3.5.23. The quantity
∇t=1en

is given by the formula for kn(q) in Proposition 2.4.2, when the indeterminates ek in the formula
are interpreted as elementary symmetric functions.

Corollary 3.5.24. The Carlitz-Riordan q-Catalan numbers are given in terms of ∇ by

(71) Cn(q) = 〈en,∇t=1en〉,

while the inversion enumerator for forests, or weight enumerator for parking functions, is given by

(72) Jn(q) = 〈en1 ,∇t=1en〉.

Proof of the corollary. The inner product 〈en, eν〉 is equal to 1 for all ν, so the right-hand side of
(71) is the specialization of kn(q) at ek = 1 for all k. We have seen in §2.4 that this is the same as
Cn(q).

The inner product 〈en1 , eν〉 is equal to the multinomial coefficient
(

n
ν1,...,νl

)
. Using (14), we obtain

(72). �

Proposition 3.5.23 was proved in [23]. Here I will sketch a slick version of the proof. There are two
key points. The first is that Garsia’s original solution of the q-Lagrange inversion problem in [30]
can be recast in symmetric function language when the coefficients ek are understood as elementary
symmetric functions, to give another formula for kn(q), different from the one in Proposition 2.4.2,
namely

kn(q) =
∑
|µ|=n

qn(µ′)hµ[Z/(1− q)]fµ[1− q],
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where the fµ(z) = ωmµ(z) are the so-called forgotten symmetric functions. The second is that the
specialization in Proposition 3.5.8, taken with t = 1 instead of q = 1, implies that

∇t=1hµ[Z/(1− q)] = qn(µ′)hµ[Z/(1− q)].

But {hµ[Z/(1− q)]} and {mµ[(1− q)Z]} are dual bases with respect to the Hall-inner product, so
the Cauchy formula (45) yields

hn(Y Z) =
∑
|µ|=n

hµ[Z/(1− q)]mµ[(1− q)Y ].

Now applying ω in the Y variables and then setting Y = 1 yields

en(z) =
∑
|µ|=n

hµ[Z/(1− q)]fµ[1− q],

and hence
kn(q) = ∇t=1en.

The t = 1/q specialization of ∇en can be derived by similar devices.

Proposition 3.5.25. We have

∇t=q−1en = q−(n
2) 1

[n+ 1]q
en
[
[n+ 1]qZ

]
.

Note that the above formula is a kind of naive q-analog of the classical Lagrange inversion formula
(8).

The proof of Proposition 3.5.23 given above and the similar (unstated) proof of Proposition 3.5.25
evade the issue of determining ∇en explicitly. We did, however, find an explicit formula in [23].
Since we will need it later, I will review its derivation.

In order to apply ∇, we need to write en in terms of the transformed Macdonald polynomials.
To do this, we use the fact that the H̃µ(z; q, t) are orthogonal with respect to the inner product
〈−,−〉∗ in (53), together with the identity

(73) 〈H̃µ, H̃µ〉∗ = tn(µ)qn(µ′)
∏
x∈µ

(1− t1+l(x)q−a(x))(1− t−l(x)q1+a(x)).

Here a(x) and l(x) denote the arm and leg of x, as defined in §2.1. Identity (73) follows from
Macdonald’s formula for the inner product 〈Pµ, Pµ〉. However, rather than repeat its derivation
here, I prefer to appeal to the geometric proof that will be given in §5.4.3. The latter proof is more
illuminating than the elementary one because it explains the meaning of the factors in (73).

The 〈−,−〉∗ orthogonality and (73) yield as an instance of the Cauchy formula

ωΩ
[

Y Z

(1− q)(1− t)

]
=
∑

µ

t−n(µ)q−n(µ′)H̃µ(y; q, t)H̃µ(z; q, t)∏
x∈µ(1− t1+l(x)q−a(x))(1− t−l(x)q1+a(x))

.

Taking the homogeneous component of degree n, setting Y = 1−u, and using Corollary 3.5.20, we
arrive at

en

[
(1− u)Z

(1− q)(1− t)

]
=
∑
|µ|=n

t−n(µ)q−n(µ′)Ω[−uBµ]H̃µ(z; q, t)∏
x∈µ(1− t1+l(x)q−a(x))(1− t−l(x)q1+a(x))

.
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Dividing both sides by 1− u and setting u = 1 in what remains produces

(−1)n−1pn

[
Z

(1− q)(1− t)

]
=
∑
|µ|=n

t−n(µ)q−n(µ′)Πµ(q, t)H̃µ(z; q, t)∏
x∈µ(1− t1+l(x)q−a(x))(1− t−l(x)q1+a(x))

,

where

(74) Πµ =
def

Ω[Bµ − 1] =
∏

(i,j)∈µ
(i,j) 6=(0,0)

(1− qitj).

Finally, applying the operator D = ∆e1 to both sides yields, by a calculation on the left-hand side
and using Corollary 3.5.5 on the right,

en(z) =
∑
|µ|=n

t−n(µ)q−n(µ′)(1− q)(1− t)Πµ(q, t)Bµ(q, t)H̃µ(z; q, t)∏
x∈µ(1− t1+l(x)q−a(x))(1− t−l(x)q1+a(x))

.

This proves the following proposition.

Proposition 3.5.26. We have explicitly

(75) ∇en(z) =
∑
|µ|=n

(1− q)(1− t)Πµ(q, t)Bµ(q, t)H̃µ(z; q, t)∏
x∈µ(1− t1+l(x)q−a(x))(1− t−l(x)q1+a(x))

,

with Bµ(q, t) as in (58) and Πµ(q, t) as in (74).

4. The n! and (n+ 1)n−1 conjectures

4.1. The n! conjecture. The proof of the Macdonald positivity conjecture rests on the interpreta-
tion of H̃µ(z; q, t) as the Frobenius series of a suitable doubly graded Sn module. This interpretation,
which Garsia and I proposed in 1991, is what has come to be known as the n! conjecture. I will
present it here in a way that I hope gives a flavor of how we discovered it. The results below
and some of our other early results on the n! conjecture were announced in [22] and given a fuller
treatment in [24].

In §3.4.6, we saw that the Kostka-Foulkes polynomials K̃λµ(t) describe multiplicities of Sn char-
acters χλ in the graded character of the Garsia-Procesi ring Rµ, which is the same thing as the
cohomology ring H∗(Bµ) of a springer fiber. We also saw that these rings are quotients of the ring

R1n(x) = C[x]/I

of coinvariants for the natural action of Sn on the polynomial ring C[x] = C[x1, . . . , xn].
From Propositions 3.5.7 and 3.5.11 we know that the Kostka-Macdonald polynomials K̃λµ(q, t)

specialize to
K̃λµ(0, t) = K̃λµ(t); K̃λµ(q, 0) = K̃λµ′(q).

This suggests that H̃µ(z; q, t) might be the Frobenius series of a doubly graded ring Rµ(x,y),
a quotient of the polynomial ring C[x,y] = C[x1, y1, . . . , xn, yn] in two sets of variables, whose
components of degree zero in the y and x variables are Rµ(x) and Rµ′(y), respectively. In other
words, we may expect Rµ(x,y) to be a suitable quotient of

Rµ(x)⊗Rµ(y) ∼= H∗(Bµ)⊗H∗(Bµ′).
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Other information about the K̃λµ(q, t) gives more clues. In particular, by Corollary 3.5.9, we want
Rµ(x,y) to afford the regular representation of Sn. To this end, recall that the defining ideal of
Rµ(x) is generated by the leading forms of polynomials p(x) that vanish on the Sn-orbit of a point
a = (a1, . . . , an) ∈ Cn with µi coordinates aj equal to αi, for distinct complex numbers αi. Suppose
now that we fix a point

(76) b = (a1, b1, . . . , an, bn) ∈ C2n

by assigning distinct numbers αj to each row j in the diagram of µ and βi to each column i,
and setting ak = αjk

, bk = αik , where (i1, j1), . . . , (in, jn) is a list of the cells (i, j) ∈ µ in some
arbitrary order. The n pairs (ak, bk) are all distinct, so the Sn orbit of b in C2n = (C2)n is a regular
orbit, with n! distinct points. Let Jb be the ideal of leading forms of polynomials p(x,y) that
vanish on the orbit Sn · b, and put Rb = C[x,y]/Jb. Then we have automatically that Rb affords
the regular representation of Sn. Projecting b on the x coordinates gives a point with coordinate
multiplicities µ, so the subring of Rb generated by x is isomorphic to Rµ. The subring generated
by y is isomorphic to Rµ′ by symmetry. In short, the ring Rb has the properties we desire, except
that it is apparently only singly, not doubly, graded.

In practice, it always turns out that the ideal Jb is doubly homogeneous. Another way to say this
is that if we assign the x variables different weights from the y variables for the purpose of defining
“leading forms,” the resulting ideal does not depend on the weights. It also turns out that the ring
Rb is always Gorenstein, and this property is the key to reformulating the problem independently
of the choice of b. A special case of the definition will suffice for the moment.

Definition 4.1.1. The socle of a finite-dimensional graded C-algebra R is the set soc(R) of ele-
ments x ∈ R annihilated by the maximal homogeneous ideal R+. The algebra R is Gorenstein if
dim soc(R) = 1.

Note that the highest degree homogeneous component Rdmax is always contained in soc(R), so if
R is Gorenstein, then Rdmax = soc(R). Recall also that the only one-dimensional representations
of Sn are the trivial representation and the sign representation. Hence if R has an action of Sn by
algebra automorphisms, and R is Gorenstein, then the socle of R must afford either the trivial or
the sign representation.

Now suppose that R is a graded Gorenstein quotient of Rµ(x) ⊗ Rµ′(y). The ring Rµ contains
only Sn modules Vλ with λ ≥ µ, while Rµ′ contains only Vλ with λ ≥ µ′ (see Corollary 3.4.21).
However, the sign representation ε = V(1n) can only occur in tensor products of the form Vλ ⊗ Vλ′ .
Hence it occurs only once in Rµ ⊗Rµ′ , in the top degree component (Rµ)n(µ) ⊗ (Rµ′)n(µ′). If
we assume that this unique copy of the sign representation is not in the kernel of the canonical
projection Rµ ⊗Rµ′ → R, then its image in R must be equal to soc(R). These considerations lead
to the following result.

Proposition 4.1.2. There is a unique Sn-invariant Gorenstein (doubly) graded ideal Jµ ⊆
Rµ(x)⊗Rµ′(y) such that Rµ(x,y) = C[x,y]/Jµ contains a copy of the sign representation. A
polynomial f ∈ C[x,y] belongs to Jµ if and only if the principal ideal (f) generated by its image in
Rµ(x)⊗Rµ′(y) has zero intersection with the unique copy of the sign representation.

Proof. Define Jµ to be the set of polynomials f satisfying the stated criterion. It is easy to see that
Jµ is a doubly homogeneous ideal and that Rµ(x,y) = C[x,y]/Jµ is a quotient of Rµ(x)⊗Rµ′(y)
in which the socle is the sign representation. Hence it is Gorenstein. For uniqueness, note that any
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ideal in a finite-dimensional graded algebra has non-zero intersection with the socle. On one hand,
if R is any Gorenstein quotient R of Rµ(x)⊗Rµ′(y) in which the sign representation survives, this
implies that every f ∈ Jµ must vanish in R. Hence R is a quotient of Rµ(x,y). On the other hand,
any proper ideal in Rµ(x,y) contains the socle, so R = Rµ(x,y). �

Henceforth we will simply write
Rµ = C[x,y]/Jµ

for the ring in Proposition 4.1.2, and use the notation Rµ(x), Rµ′(y) to distinguish the Garsia-
Procesi rings in one set of variables. Before continuing further, let me give also a more elementary
description of Rµ. As before let (i1, j1), . . . , (in, jn) be a list of the cells (i, j) ∈ µ in some order,
and set

(77) ∆µ(x,y) = det

x
j1
1 y

i1
1 xj1

2 y
i1
2 . . . xj1

n yi1
n

...
. . .

...
xjn

1 y
in
1 xjn

2 y
in
2 . . . xjn

n yin
n

 .
It is not hard to prove the following characterization of the defining ideal Jµ of Rµ.

Proposition 4.1.3. The ideal Jµ in Proposition 4.1.2 coincides with the ideal of polynomial dif-
ferential operators that annihilate ∆µ, that is, we have f ∈ Jµ if and only if

f(
∂

∂x1
,
∂

∂y1
, . . . ,

∂

∂xn
,
∂

∂xn
)∆µ = 0.

Consider once again the ideal of leading forms Jb of the vanishing ideal of an orbit Sn ·b, with b as
in (76). We will prove that every f ∈ Jb satisfies the condition in Proposition 4.1.2, so Jb ⊆ Jµ. If
f ∈ Jb, then by definition f coincides on Sn · b with some polynomial g of lower degree. There is an
essentially unique function ε on Sn · b that affords the sign representation. It cannot be represented
by a polynomial of degree less than n(µ) + n(µ′), because Rµ(x)⊗Rµ′(y) has no copy of the sign
representation in lower degree. Suppose now that hf is a homogeneous multiple of f of degree
n(µ) + n(µ′) which coincides on Sn · b with ε. Then hg also represents ε and has smaller degree,
a contradiction. This shows that f satisfies the condition in Proposition 4.1.2. The containment
Jb ⊆ Jµ, has the following consequences.

Proposition 4.1.4. We have dimRµ ≤ n!. If equality holds, then Jb = Jµ. In particular, Jb

is then doubly homogeneous and does not depend on the choice of b, and Rµ affords the regular
representation of Sn.

At this point the interpretation we have been seeking for the Macdonald symmetric function
H̃µ(z; q, t) becomes natural and plausible to conjecture.

Theorem 4.1.5 (n! conjecture). The Frobenius series of Rµ is the transformed Macdonald sym-
metric function

FRµ(z; q, t) = H̃µ(z; q, t).

In particular Rµ affords the regular representation of Sn, and hence dimRµ = n!.

The “in particular” follows by Corollary 3.5.9. The Macdonald positivity conjecture, Theo-
rem 3.5.13, is a corollary to this theorem.
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4.1.1. Examples. Let us briefly consider the simplest case of the n! conjecture, when µ = (1n). In
this case ∆µ is the Vandermonde determinant ∆(x) in the x variables, and R(1n) = R(1n)(x) is the
coinvariant ring of Sn acting on Cn, or the cohomology ring H(B) of the flag variety. Here we are
in a classical situation, and the n! conjecture is an instance of the following more general result.

Proposition 4.1.6. Let W be a group generated by complex reflections on a vector space h. Then
the coinvariant ring R = C[h]/W affords the regular representation of W . It is Gorenstein, and
the representation of W on its socle is the determinant of the representation on h. When W is the
Weyl group of a semisimple Lie algebra g, then R is isomorphic to the cohomology ring of the flag
variety for the corresponding Lie group G.

It is also instructive to relate the known symmetries and specializations of the Kostka-Macdonald
polynomials to Theorem 4.1.5. We have already seen that the specializations q = 0 and t = 0, and
also q = t = 1, are in agreement with the theorem. These led us to the construction of Rµ in the
first place.

The specialization q = 1 (and by symmetry t = 1) can be obtained with a bit of effort from the
identification of Jµ as the ideal of leading forms Jb for an orbit Sn · b. To do this one uses the fact
noted above that Jb is independent of the choice of weights for leading forms, which allows one to
take leading forms in the x variables first and the y variables afterwards.

The symmetry H̃µ′(z; q, t) = H̃µ(z; q, t) is in obvious agreement with the theorem.
More interesting is the symmetry K̃λ′µ(q, t) = tn(µ)qn(µ′)K̃λµ(q−1, t−1). This symmetry reflects

the Gorenstein property of Rµ, which implies that multiplication gives a perfect pairing of comple-
mentary degrees

(Rµ)r,s ⊗ (Rµ)n(µ)−r,n(µ)−s → (Rµ)n(µ),n(µ′) = soc(Rµ).
The pairing is Sn equivariant, and it pairs complementary irreducible representations Vλ and Vλ′

because the socle affords the sign representation. Hence Vλ and Vλ′ have the same multiplicities in
complementary degrees.

4.2. The (n+ 1)n−1 conjecture.

4.2.1. Diagonal harmonics and coinvariants. The rings Rµ involved in the n! conjecture are graded
quotients of C[x,y] that afford the regular representation of Sn. In particular, their only copy of
the trivial representation is given by the constants, and so every Rµ is a quotient of the diagonal
coinvariant ring

(78) Rn = C[x,y]/In,

where In is the ideal generated by the space C[x,y]Sn
+ of invariant polynomials without constant

term. Because of this connection, Garsia and I were led during our early investigation of the rings
Rµ to study also the ring Rn. The result was the discovery of its remarkable combinatorial aspects,
as related in the introduction. Below I will review some of these aspects in more detail.

First we should take note of some basic facts about Rn. The first is that the ideal In has a
well-known set of generators.

Proposition 4.2.1 (Weyl [85]). The ideal In is generated by the bivariate power-sums

pr,s(x,y) =
def

n∑
i=1

xrys, 1 ≤ r + s ≤ n.
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The corresponding result also holds for more than two sets of variables x,y, . . . , z.

The second fact is that as far as the study of its Frobenius series is concerned, it doesn’t matter
whether we work with the coinvariant ring Rn or the space of harmonics.

Definition 4.2.2. The space DH n of diagonal harmonics for Sn is the set of polynomials f ∈ C[x,y]
annihilated by all Sn-invariant constant coefficient differential operators without constant term, that
is, by C[∂x, ∂y]Sn

+ .

Since Rµ is a quotient ofRn, it follows from Proposition 4.1.3 that the polynomial ∆µ is a diagonal
harmonic. It at first seemed more natural in the early days to work with the space of derivatives
of ∆µ rather than with Rµ, and with DH n rather than Rn, but in the end it is immaterial, by the
following easy proposition.

Proposition 4.2.3. The canonical projection of DH n on Rn is an isomorphism. Similarly, if
Dµ = C[∂x, ∂y]∆µ, then the canonical projection of Dµ on Rµ is an isomorphism.

4.2.2. The initial conjectures. In §2 we have described q-enumerations of Catalan numbers, forests
and parking functions. They turn out to be connected with the Frobenius and Hilbert series of Rn.

Theorem 4.2.4 ((n+ 1)n−1 conjecture). Let Rn denote the ring of diagonal coinvariants and Rε
n

its subspace of antisymmetric elements. Their characters, dimensions, and Hilbert series enjoy the
following properties.

(i)
dimRn = (n+ 1)n−1.

(ii)

dimRε
n = Cn =

1
n+ 1

(
2n
n

)
,

the n-th Catalan number.
(iii)

HRn(q, q−1) = q−(n
2)[n+ 1]n−1

q .

(iv)

HRε
n
(q, q−1) = q−(n

2) 1
[n+ 1]q

[
2n
n

]
q

.

(v)
HRn(q, 1) = Jn(q) =

∑
F

qi(F ),

the enumerator of forests on n vertices by number of inversions, or parking functions by
weight.

(vi)
HRε

n
(q, 1) = Cn(q),

the Carlitz-Riordan q-Catalan number.
(vii) As an Sn-module, Rn is isomorphic to ε⊗PF, where PF is the permutation representation

on parking functions.
(viii) Ignoring the y-degrees and grading Rn only by x-degrees, the isomorphism ε⊗Rn

∼= PF is
homogeneous, where PF is graded by weights.
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We have listed items (i)-(viii) cumulatively for clarity, but of course some of them are redundant.
Specifically, (i)-(ii) are special cases of both (iii)-(iv) and (v)-(vi), (viii) is of course stronger than
(vii), and both (v) and (vi) follow from (viii).

4.2.3. The master conjecture. To appreciate the effect that the empirical discovery of the facts in
Theorem 4.2.4 had at the time, it must be borne in mind that the connection between q-Lagrange
inversion and the operator ∇ discussed in §3.5.7 was not then known. In hindsight, however, armed
with Propositions 3.5.23 and 3.5.25, we can readily recognize that everything in Theorem 4.2.4 is
implied by the following master formula.

Theorem 4.2.5. The Frobenius series of the diagonal coinvariant ring is given by

FRn(z; q, t) = ∇en(z).

Indeed, part (viii) is equivalent to Proposition 3.5.23, and parts (v)-(vi) are its Corollary 3.5.24.
Parts (iii) and (iv) follow from Proposition 3.5.25 using the symmetric function identities

〈en1 , en
[
[n+ 1]qZ

]
〉 = [n+ 1]nq

〈en, en
[
[n+ 1]qZ

]
〉 =

[
2n
n

]
q

.

5. Hilbert scheme interpretation

Theorems 4.1.5 and 4.2.5 and the various entities associated with them—the Macdonald sym-
metric functions H̃µ(z; q, t) and the operators ∆f and ∇—can be understood geometrically in the
context of Hilbert schemes of points in the plane. I will explain in some detail how this comes
about in §5.4, below. First we need some background material on Hilbert schemes, and a review
of classically known results and the new theorems that have made possible the solution of the n!
and (n+ 1)n−1 conjectures.

5.1. The Hilbert scheme and isospectral Hilbert scheme.

Definition 5.1.1. Let R = C[x, y] = O(C2) denote the coordinate ring of the affine plane. The
Hilbert scheme Hn = Hilbn(C2) of n points in the plane is the algebraic variety parametrizing ideals
I ⊆ R such that dimCR/I = n.

The definition of Hilbert schemes and other facts about them stated below without specific
attribution are due to Grothendieck [35]. The term parametrizing in the definition has the following
technical meaning. By definition, the ideals parametrized by Hn correspond one-to-one with zero-
dimensional subschemes S ⊆ C2 of length n, so we may also think of Hn as parametrizing these
subschemes. Now there is a flat family, the universal scheme

(79)

Fn ⊆ Hn × C2yπ

Hn,

over Hn, whose fiber over a point of Hn is the corresponding subscheme S. The structure of Hn as
an algebraic variety is characterized by the universal property that any family Y ⊆ T ×C2, flat and
finite of degree n over a scheme T , is the pullback of the universal family F via a unique morphism
T → Hn.
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Let us pause to see what various points of Hn might look like. In the “generic” case, the
subscheme S ⊆ C2 is a set of n distinct points and I = I(S) its vanishing ideal. The least generic
case, but most important for us, is when I is a monomial ideal. In that case, there are n monomials
xjyi not in I, which form a basis of R/I, and their exponents (i, j) are the cells in the diagram of
a partition µ. We index the monomial ideals by their corresponding partitions, writing

I = Iµ.

For example, I(1n) = (xn, y) and I(n) = (x, yn). The subscheme S = V (Iµ) defined by a monomial
ideal is non-reduced and concentrated at the origin. It may be usefully and correctly pictured as
an infinitesimal copy of the diagram of µ.

The first result on Hn is Fogarty’s theorem.1

Theorem 5.1.2 ([18]). The Hilbert scheme of points in the plane (or any smooth surface) is
irreducible and nonsingular, of dimension 2n.

The irreducibility part of the theorem means that the “generic” subschemes S ⊆ C2 consisting
of n distinct points really are generic, in the sense that they are dense in Hn.

Next we need an auxiliary variety, called the isospectral Hilbert scheme. To define it, we first
need to introduce the Hilbert-Chow morphism. For each ideal I ∈ Hn, the ring R/I is isomorphic
to the direct product of its local rings (R/I)P at each point P ∈ V (I). Hence the multiplicities
mP (I) = dimC(R/I)P sum to n, so that to I corresponds a zero-dimensional algebraic cycle

(80) σ(I) =
∑
P

mP (I) · P

of weight n. These cycles may be identified with the points of the the orbit variety (C2)n/Sn, where
Sn acts on (C2)n by permuting coordinates.

Proposition 5.1.3. The map
σ : Hn → C2n/Sn

described by (80) is a projective and birational morphism of algebraic varieties. In particular it is
a desingularization of the quotient singularity C2n/Sn.

Definition 5.1.4. The isospectral Hilbert scheme is the reduced fiber product

(81)

Xn
f−−−−→ C2n

ρ

y y
Hn

σ−−−−→ C2n/Sn.

Specifically, Xn is the underlying reduced subscheme of the scheme-theoretic fiber product (which
is not reduced).

Let me explain the motivation for the term isospectral. For each point I of Hn, the operators of
multiplication by x and y are commuting endomorphisms of the n-dimensional vector space R/I.
Their joint spectrum consists of n pairs of eigenvalues (αi, βi) ∈ C2, which are just the points of
σ(I), with repetitions given by the multiplicities. A point of Xn is then a tuple (I, P1, . . . , Pn) in
Hn × (C2)n where (P1, . . . , Pn) is some ordering of the joint spectrum.

1I am told that this theorem was actually proved earlier but not published by Hartshorne.
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The projection ρ of Xn on Hn is finite. Its degree is n!, since for a generic I = I(S) there are n!
possible orderings (P1, . . . , Pn) of the n distinct points of S.

5.1.1. Torus action. The algebraic torus group

(82) T2 = (C∗)2

acts linearly on C2 as the group of 2× 2 diagonal matrices

(83) τt,q =
[
t−1 0
0 q−1

]
.

The inverse signs in (83) make T2 act on the coordinate ring C[x, y] of C2 by

τt,qx = tx; τt,qy = qy.

The action of T2 on C2 induces an action on Hn, Xn, the universal family Fn, etc., so that all
relevant morphisms are equivariant. There are induced T2 actions on various vector spaces such
as the coordinate ring C[x,y] of C2n, the space of global sections of any T2-equivariant vector
bundle, or the fiber of such a bundle at a torus-fixed point in Hn. The T2 action on such a space
is equivalently described by a Z2-grading: namely, an element f is homogeneous of degree (r, s) if
and only if τt,qf = trqsf . In most cases, the grading induced by the torus action coincides with an
obvious “natural” double grading, as for example in C[x,y].

Proposition 5.1.5. The T2-fixed points of Hn are the monomial ideals Iµ, and every I ∈ Hn has
a fixed point in the closure of its orbit.

Proof. An ideal I ⊆ R = C[x, y] is fixed if and only if it is doubly homogeneous, i.e., if and only
if it is a monomial ideal. The initial ideal of I with respect to any term order on R is a monomial
ideal in the closure of the T2-orbit of I. �

5.1.2. Zero-fiber. We will need some basic results on the zero-fiber of the Hilbert-Chow morphism
σ : Hn → C2n/Sn over the origin in C2n/Sn, which we denote by

Zn = σ−1({0}).

The definition may be understood either in the set-theoretic or scheme-theoretic sense, since we
will see shortly that the scheme-theoretic zero-fiber is reduced. In a naive sense, Zn parametrizes
subschemes S ⊆ C2 supported at the origin. One has to be a bit careful about this, however: by
Skjelnes [80], the functor of families supported at the origin is not representable. What Zn does
represent is the restriction of this functor to families with reduced base scheme.

The first property of Zn that we need is classical.

Proposition 5.1.6 (Briançon [9]). The zero-fiber Zn is irreducible, of dimension n− 1.

We also need a further property of Zn that had not been known before.

Proposition 5.1.7 ([38]). The zero-fiber Zn is scheme-theoretically reduced and Cohen-Macaulay.

This is proved by considering the zero-fiber Z̃n in the universal family Fn over Hn, that is, the
fiber over the origin of the composite map

σ ◦ π : Fn → Hn → C2n/Sn.
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The universal family Fn is Cohen-Macaulay, since it is flat and finite over Hn (see the discussion
following Theorem 5.2.1 below for more on this point). An explicit calculation in local coordinates
on Fn, using the generators of the ideal of {0} in C2n/Sn given by Proposition 4.2.1, shows that
Z̃n is a generically reduced local complete intersection in Fn, hence reduced and Cohen-Macaulay.
It is easy to show that the projection π : Fn → Hn maps Z̃n isomorphically onto Zn, completing
the proof.

5.2. Main theorem on the isospectral Hilbert scheme. The next theorem is the key result
from which all else follows.

Theorem 5.2.1 ([39]). The isospectral Hilbert scheme Xn is Cohen-Macaulay and Gorenstein.
Equivalently, the projection

ρ : Xn → Hn

is flat and the coordinate ring of its scheme-theoretic fiber over each point Iµ is a finite dimensional
(doubly) graded Gorenstein algebra, in the sense of Definition 4.1.1.

A few clarifying remarks may be in order here. By definition, a scheme is Cohen-Macaulay
(resp. Gorenstein) if its local ring at every point is so. A local ring is Cohen-Macaulay if some, or
equivalently every, system of parameters is a regular sequence. Phrased geometrically, this means
that a scheme X is Cohen-Macaulay if some, or equivalently every, finite morphism X → H with
H nonsingular, is flat. In particular this applies to the morphism ρ.

A local ring A is Gorenstein if it is Cohen-Macaulay first of all, and in addition, for some, or
equivalently every, ideal J generated by a system of parameters, the Artin local ring A/J has
one-dimensional socle. In the graded case this reduces to Definition 4.1.1. Since Iµ is a T2-fixed
point, the coordinate ring O(ρ−1(Iµ)) of its fiber is doubly graded, and it is precisely of the form
A/J , where A = OXn,Qµ is the local ring of Xn at the unique point Qµ lying over Iµ, and J is
generated by local coordinates on Hn at Iµ. So the rings O(ρ−1(Iµ)) are Gorenstein if and only if
Xn is Gorenstein at each point Iµ. However, the Gorenstein locus in Xn is open and T2-invariant,
so this is equivalent to Xn being Gorenstein everywhere, by Proposition 5.1.5.

There is an important way to reformulate Theorem 5.2.1. For any finite group G of order g
acting faithfully on V = Cm, one defines the G-Hilbert scheme

(84) V //G

as in Ito and Nakamura [43] to be the closure in Hilbg(V ) of the locus parametrizing regular G-
orbits in V . The fibers of the universal family X over V //G are G-invariant subschemes S ⊆ V
whose coordinate rings afford the regular representation of G. In particular, G acts on X, and
X/G = V //G. The projection X → V then induces a Hilbert-Chow morphism V //G→ V/G.

The case of interest here is V = C2n, G = Sn. Because the subgroup Sn−1 has index n in Sn,
the quotient X/Sn−1 of the universal family over C2n//Sn is flat and finite of degree n. A simple
argument based on Proposition 4.2.1 shows that the coordinates xn and yn on C2n generate the
Sn−1-invariants in the coordinate ring of each fiber of X. Hence X/Sn−1 can be identified with a
subscheme of (C2n//Sn)×C2. The universal property of the Hilbert scheme then yields a morphism

φ : C2n//Sn → Hn,

and it is easy to see that it commutes with the Hilbert-Chow morphisms.
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Conversely, the flatness of the projection ρ : Xn → Hn, given by Theorem 5.2.1, means that we
have a morphism Hn → Hilbn!(C2n) mapping generic subschemes S ⊆ C2 to regular Sn-orbits in
C2n. Since Hn is irreducible, this factors through a morphism

η : Hn → C2n//Sn.

Because both morphisms φ and η commute with the Hilbert-Chow morphism, they are mutually
inverse generically and hence everywhere. We have proved the following corollary.

Corollary 5.2.2. The Hilbert scheme of Sn-orbits C2n//Sn is isomorphic to the Hilbert scheme
Hn of points in the plane. The isomorphism identifies the isospectral Hilbert scheme Xn with the
universal family on C2n//Sn.

We remark that Theorem 5.2.1 and Corollary 5.2.2 hold with C2 replaced by any smooth quasipro-
jective surface, since the properties in question are local in the étale topology.

5.3. Theorem of Bridgeland, King and Reid. When G is a finite subgroup of SL(V ), the
quotient singularity V/G is Gorenstein, and in some cases it possesses a particularly nice type of
desingularization.

Definition 5.3.1. Let V = Cm and G ⊆ SL(V ). A resolution of singularities

Y → V/G

is crepant if the sheaf ωY of differential m-forms is trivial, i.e., ω ∼= OY .

A crepant resolution is automatically minimal and has other interesting properties, among them
the generalized McKay correspondence, conjectured by Reid [72] and proved by Batyrev [2], which
says that the Betti numbers of Y enumerate the conjugacy classes of G according to certain weights.
The classical McKay correspondence is its two-dimensional case.

In dimensions two and three, the G-Hilbert scheme V //G turns out always to be a crepant
resolution. Seeking to explain and generalize this fact, Bridgeland, King and Reid [10] proved the
following theorem.

Theorem 5.3.2 ([10]). Let G be a finite subgroup of SL(V ), and consider the diagram

(85)

X
f−−−−→ V

ρ

y y
V //G

σ−−−−→ V/G,

Let D(V //G) be the bounded derived category of coherent sheaves on V //G and DG(V ) the sim-
ilar derived category of G-equivariant sheaves on V . Suppose that the Hilbert-Chow morphism
σ : V //G→ V/G satisfies the following smallness criterion: for every d, the locus of points x with
dimσ−1(x) ≥ d has codimension at least 2d− 1 in V/G. Then

(i) V //G is a crepant resolution V/G;
(ii) the functor

Φ = Rf∗ ◦ ρ∗ : D(V //G) → DG(V )

is an equivalence of categories.



COMBINATORICS, SYMMETRIC FUNCTIONS, AND HILBERT SCHEMES 45

Proposition 5.1.6 implies that the Chow morphism σ : Hn → C2n/Sn satisfies the smallness
criterion in Theorem 5.3.2. Combining this theorem with Corollary 5.2.2 we therefore obtain a
powerful tool for the study of the Hilbert scheme Hn.

Corollary 5.3.3. In diagram (81), the functor

Φ = Rf∗ ◦ ρ∗ : D(Hn) → DSn(C2n)

is an equivalence of categories.

We remark that it is has long been known (see Beauville [3]) that Hn is a crepant resolution of
C2n/Sn. Thus the interesting aspect of the Bridgeland-King-Reid theorem in this context is part
(ii).

5.4. How the conjectures follow. Now let us see how Theorems 4.1.5 and 4.2.5 follow from our
theorems on the Hilbert scheme. To begin, we need names for some vector bundles of geometric
origin on Hn. We put

(86) B = π∗OFn ,

the sheaf of regular functions on the universal family, pushed down to a sheaf on the Hilbert scheme,
and

(87) P = ρ∗OXn ,

the push-down of the sheaf of regular functions on the isospectral Hilbert scheme. Here we are
identifying vector bundles with their (locally free) sheaves of sections. The sheaf P is locally free
by virtue of Theorem 5.2.1.

The bundle B is the tautological bundle whose fiber at I ⊆ R is R/I. In particular it is a bundle
of algebras which are quotients of R = C[x, y]. The bundle P is the tautological bundle on C2n//Sn,
regarded as a sheaf on Hn via the isomorphism in Corollary 5.2.2. As such it is a bundle of algebras
which are quotients of C[x,y] by Sn-invariant ideals, with Sn acting by the regular representation
on each fiber. The Gorenstein property of Xn in Theorem 5.2.1 means that the fibers of P are
Gorenstein algebras.

We also put

(88) O(1) = ∧nB,

the tautological line bundle on the Hilbert scheme. In fact O(1) is a very ample line bundle for Hn

as a variety projective over C2n/Sn, as I will explain later (see Proposition 6.1.5). As usual we also
write O(k) with k ∈ Z for the tensor powers of O(1) or its dual O(−1).

5.4.1. The n! conjecture. The first result is the “n!” part of the n! conjecture.

Proposition 5.4.1. The ring Rµ in the n! conjecture is the fiber P (Iµ) of the bundle P at the
point Iµ in the Hilbert scheme. In particular, dimRµ = n!.

Proof. Consider an orbit Sn · b ⊆ C2n with b associated to µ as in (76). Its ideal Jb is a point of
C2n//Sn. The corresponding point of Hn is the ideal I = I(S), where S is the set of coordinate
pairs (ai, bi) in b. In effect, the set S is the picture in C2 of the diagram of µ.2

2For this to come out right we should think of the x-axis as vertical and the y-axis as horizontal. Unfortunately
neither the English nor the French convention for Young diagrams matches the Cartesian convention for axes in the
plane.
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The ideal J of leading forms of Jb is the limit as u → 0 of Jub. More precisely, consider the
one-parameter torus C∗ = {τu−1,u−1} ⊆ T2. The C∗ orbit of Jb consists of the ideals Jub for u 6= 0.
This orbit extends to an affine line C1 ↪→ C2n//Sn, with the origin mapping to J .

The point of Hn corresponding to J is similarly the limit as u→ 0 of I(uS), that is, the ideal of
leading forms of I(S). For (r, s) outside the diagram of µ, the polynomial

f(x, y) =
∏
j<s

(x− αj)
∏
i<r

(y − βi)

belongs to I(S). The leading form of f is xsyr, so the ideal of leading forms of I(S) is Iµ. Hence
J is the defining ideal of the fiber P (Iµ) = C[x,y]/J , and in particular C[x,y]/J is Gorenstein.

Recall from §4.1 that Rµ is uniquely characterized as the Gorenstein quotient of C[x,y]/J in
which the sign representation is not killed. But C[x,y]/J is already Gorenstein, so it is equal to
Rµ. �

To identify the Frobenius series of Rµ we can use the functorial equivalence Φ in Corollary 5.3.3.
The method I will outline is a bit different from the one in [39].

Proposition 5.4.2. The Sn-modules TorC[x]
i (Rµ,C) contain only irreducible representations V λ of

Sn with λ ≥ µ′.

Before I indicate the proof of this proposition, let us take note of its consequences. For one thing
it implies Proposition 3.4.20. Just as Proposition 3.4.20 provides a triangularity condition on the
Frobenius series of the Garsia-Procesi ring, so does Proposition 5.4.2 for its doubled analog Rµ.
Specifically, using Proposition 3.3.1, it implies

FRµ [(1− t)Z; q, t] ∈ Z[q, t] · {sλ : λ ≥ µ′},

which is condition (ii) in Definition 3.5.2. Taking y in place of x we see by symmetry that FRµ(z; q, t)
also satisfies condition (i) in the definition of H̃µ(z; q, t). Finally, the trivial representation of Sn

occurs uniquely in degree (0, 0) in Rµ, so 〈s(n), FRµ(z; q, t)〉 = 1, which is another way of stating
condition (iii) in the definition. Hence we have

FRµ(z; q, t) = H̃µ(z; q, t).

Now let us turn to the proof of Proposition 5.4.2. We first need to say something about the locus
Wy ⊆ Hn parametrizing subschemes S with support on the y-axis V (x) ⊆ C2. The locus Wy has
a well-known explicit description. Given a partition µ of n, consider the set of points S ∈ Wy for
which the multiplicities of the points of S are the parts of µ. For every µ this set has dimension
n. First there are l(µ) degrees of freedom to choose the support of S on the y-axis. For each
point of the support, the choice of a non-reduced scheme structure there is locally (in the analytic
topology) the same as the choice of a point in the zero-fiber of the Hilbert-Chow morphism for Hµi .
By Briançon’s theorem (Proposition 5.1.6) this contributes µi− 1 degrees of freedom for each i, for
a total of

l(µ) +
∑

i

(µi − 1) = n.

The locus Wy is the union of these n-dimensional locally closed subsets Wy,µ, whose closures are
its irreducible components.
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The functor Φ in Corollary 5.3.3 has the explicit inverse

(89) Ψ = O(−1)⊗ (ρ∗ ◦ Lf∗(−))ε,

where the notation (·)ε stands for the subsheaf of Sn-antisymmetric elements. Note that DSn(C2n)
is just the derived category of finitely generated Sn-equivariant C[x,y]-modules. The key point in
proving Proposition 5.4.2 is to identify the objects

Ψ(V λ ⊗ C[y]) = Ψ(V λ ⊗ C[x,y]/(x))

in the derived category D(Hn). To do this we observe that the coordinates x = x1, x2, . . . , xn

form a regular sequence in OXn at every point where they vanish. The reason for this is that
their vanishing locus V (x) ⊆ Xn is finite over Wy, hence has dimension n, so it is a complete
intersection in the Cohen-Macaulay scheme Xn. Moreover, a simple calculation at a generic point
in each component of Wy shows that V (x) is scheme-theoretically reduced, generically and hence
everywhere. These facts imply that Lf∗(V λ ⊗ C[y]) = V λ ⊗OV (x). By (89), we have

Ψ(V λ ⊗ C[y]) = O(−1)⊗HomSn(V λ′ , ρ∗OV (x)).

Now ρ∗OV (x) is supported on Wy and its Sn action is induced from that on Xn. Over the subset
Wy,µ of Wy, the fiber of V (x) consists of

(
n

µ1,...,µl

)
reduced points, and Sn permutes them transi-

tively, with the stabilizer of each one having the form Sµ1 × · · · × Sµl
. From this one sees that

HomSn(V λ′ , ρ∗OV (x)) is supported on the components W y,µ with µ ≤ λ′. In turn one deduces that
HomSn(V λ′ , ρ∗OV (x)) is locally zero at Iµ unless µ′ ≤ λ′.

To complete the proof, Proposition 5.4.2 is equivalent to

(90) Exti(Vλ ⊗ C[y], Rµ) = 0 for all i, unless λ′ ≥ µ′

in the derived category DSn(C2n). But Proposition 5.4.1, stated in the language of Corollary 5.3.3,
says simply that ΦkIµ = Rµ, where kIµ = OHn,Iµ/mIµ ∈ D(Hn) is the “skyscraper sheaf” of the
point Iµ. Hence by Corollary 5.3.3, the Ext groups in (90) are equal to the Ext groups

Exti(Ψ(V λ ⊗ C[y]), kIµ).

We have just seen that these are zero unless λ′ ≥ µ′.

5.4.2. The (n+1)n−1 conjecture. To prove Theorem 4.2.5, we need stronger consequences of Corol-
lary 5.3.3 than the ones we used in the preceding section. The next result is the second of our two
main theorems on Hn (the first being Theorem 5.2.1).

Theorem 5.4.3 ([40]). With the notation B and P as in (86), (87) for the tautological vector
bundles on the Hilbert scheme, we have

(91)
H i(Hn, P ⊗B⊗l) = 0 for all i > 0 and all l; and

H0(Hn, P ⊗B⊗l) = R(n, l),

where R(n, l) is the coordinate ring of a certain union of linear subspaces Z(n, l) ⊆ C2n+2l (the
polygraph). Moreover, we have the similar statements on the zero-fiber

(92)
H i(Zn, P ⊗B⊗l) = 0 for all i > 0 and all l; and

H0(Zn, P ⊗B⊗l) = R(n, l)/mR(n, l),
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where m = C[x,y]Sn
+ is the homogeneous maximal ideal in the ring of invariants C[x,y]Sn, that is,

the ideal of {0} in C2n/Sn.

The definition of the polygraph Z(n, l) will be given in §6, and need not concern us here ex-
cept when l = 0. In that case, Z(n, 0) = C2n and R(n, 0) = C[x,y]. In particular, the ring
R(n, l)/mR(n, l) on the right-hand side in (92) reduces for l = 0 to the diagonal coinvariant ring
Rn. We can use Theorem 5.4.3 to calculate the Frobenius series of Rn in terms of Macdonald
symmetric functions, with the aid of the following auxiliary result, which is a corollary to the proof
of Proposition 5.1.7.

Proposition 5.4.4. On Hn, we have a T2-equivariant locally free resolution of the coordinate sheaf
OZn of the zero-fiber,

(93) · · · → B ⊗ ∧k(B′ ⊕Ot ⊕Oq) → · · · → B ⊗ (B′ ⊕Ot ⊕Oq) → B → OZn → 0,

where B′ is a canonical direct summand of the tautological bundle B,

B = O ⊕B′,

and Ot, Oq denote the twistings O ⊗ Ct and O ⊗ Cq by one-dimensional representations of T2 in
which τt,q acts as t or q, respectively.

This given, we can make the desired calculation using a suitable version [83] of the classical
Lefschetz formula of Atiyah and Bott [1]. What the formula gives us is actually the Frobenius
series Euler characteristic

(94)
∑

i

(−1)iFHi(Zn,P )(z; q, t).

But from (92) we see that the only nonzero term here is i = 0, and that term is just FRn(z; q, t).
The formula gives (94) as a sum of local data for each T2-fixed point Iµ on the Hilbert scheme.
The required local datum at Iµ is the Frobenius series of the fiber of OZn ⊗P there, divided by the
determinant of the T2 action on the cotangent space at Iµ.

From Proposition 5.4.1 and Theorem 4.1.5, we know that the Frobenius series of P (Iµ) is
H̃µ(z; q, t). We have to multiply this by a Hilbert series Euler characteristic for the fiber at Iµ
of the resolution of OZn in (93). Note that the Hilbert series of B(Iµ) = R/Iµ is none other than
the expression Bµ(q, t) in (58). From this we calculate the factor attributable to (93) as

(1− q)(1− t)Πµ(q, t)Bµ(q, t),

with Πµ(q, t) defined as in (74).
For the denominator factor we need the following lemma, which is a reformulation of a classical

result of Ellingsrud and Strömme [17].

Lemma 5.4.5 ([38]). The eigenvalues of τt,q ∈ T2 on the cotangent space of the Hilbert scheme at
the fixed point Iµ are given by the 2n monomials

t1+l(x)q−a(x), t−l(x)q1+a(x) : x ∈ µ,

where a(x) and l(x) are the arm and leg of the cell x in the diagram of µ.
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Putting all this together yields the formula

FRn(z; q, t) =
∑
|µ|=n

(1− q)(1− t)Πµ(q, t)Bµ(q, t)H̃µ(z; q, t)∏
x∈µ(1− t1+l(x)q−a(x))(1− t−l(x)q1+a(x))

.

Comparing this with Proposition 3.5.26 we see that we have proved Theorem 4.2.5.

5.4.3. Orthogonality of the Macdonald symmetric functions. As promised earlier, there is a nice
geometric proof of the identity (73), along with the orthogonality of the Macdonald symmetric
functions H̃µ(z; q, t) with respect to the inner product 〈−,−〉∗. The ideas that go into it will also
enable us to deduce other results.

The equivalence of categories in Corollary 5.3.3 induces an isomorphism of Grothendieck groups

Φ: K0
T(Hn) ∼= K0

Sn×T(C2n).

HereK0
T(Hn) is the Grothendieck group of torus-equivariant coherent sheaves on the Hilbert scheme,

and K0
Sn×T(C2n) is the Grothendieck group of finitely generated Sn-equivariant doubly-graded

C[x,y]-modules. These Grothendieck groups are modules over the representation ring

Z[q, t, q−1, t−1]

of the torus T2. More specifically, K0
Sn×T(C2n) is freely generated as a Z[q, t, q−1, t−1] module by

the free C[x,y]-modules V λ ⊗ C[x,y]. By Proposition 3.3.1, the Frobenius series of V λ ⊗ C[x,y] is

FV λ⊗C[x,y](z; q, t) = sλ

[
Z

(1− q)(1− t)

]
.

An object A ∈ D(Hn) is supported on the zero-fiber if and only if ΦA is supported at 0, and
a finitely-generated graded module is supported at 0 if and only if it is finite-dimensional. The
Grothendieck group of finite-dimensional Sn-equivariant C[x,y]-modules is freely generated by the
irreducible Sn-modules V λ, regarded as C[x,y]-modules annihilated by (x,y). We can summarize
these observations as follows.

Proposition 5.4.6. The Frobenius series composed with the functor Φ in Corollary 5.3.3 gives an
isomorphism of the Grothendieck group K0

T2(Hn) onto the algebra of symmetric functions f with
the property that f [(1− q)(1− t)Z] has coefficients in Z[q, t, q−1, t−1]. Under this isomorphism, the
subgroup of objects supported on the zero-fiber corresponds to the subalgebra of symmetric functions
f which already have coefficients in Z[q, t, q−1, t−1].

To make this more explicit, if [Iµ] ∈ K0
T2(Hn) denotes the class of the skyscraper sheaf kIµ , then

Proposition 5.4.1 and Theorem 4.1.5 give

(95) Φ[Iµ] = H̃µ(z; q, t).

Also, the formula for the inverse map in (89) implies that

Ψ(V λ ⊗ C[x,y]) = HomSn(V λ′ ,O(−1)⊗ P ).

With λ = (n), this shows in particular that the line bundle of antisymmetric elements P ε is
isomorphic to O(1). Recall that fibers of P are Gorenstein algebras, and the fibers of P ε are their
socles. The Gorenstein property implies that there is a perfect pairing

(96) P ⊗ P → P ε ∼= O(1),
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so O(−1)⊗ ε⊗ P ∼= P ∗. Now define character bundles

Pλ =
def

HomSn(V λ, P ).

Then the above considerations yield

(97) ΦP ∗λ = sλ[Z/(1− q)(1− t)].

Corollary 5.4.7. For T2 equivariant objects A, B in D(Hn), the Hilbert series Euler characteristic
of their Tor groups is given by∑

i

(−1)iHTori(A,B)(q, t) = 〈Φ[A],Φ[B]〉.,

where
〈f, g〉. =

def
〈∇−1f, g〉∗

Proof. Both sides depend bilinearly on the classes [A] and [B] in the Grothendieck group. Evaluat-
ing at A = P ∗λ and B = kIµ , we have K̃λµ(q−1, t−1) on the left-hand side. On the right-hand side,
using (95) and (97), we have 〈H̃µ, sλ[Z/(1− q)(1− t)]〉., which is also equal to K̃λµ(q−1, t−1). �

Now for the promised proof of (73).

Corollary 5.4.8. We have 〈H̃µ, H̃ν〉∗ = 0 if µ 6= ν, and

〈H̃µ, H̃µ〉∗ = tn(µ)qn(µ′)
∏
x∈µ

(1− t1+l(x)q−a(x))(1− t−l(x)q1+a(x)).

Proof. From the definition of ∇ we have 〈H̃µ, H̃ν〉∗ = tn(µ)qn(µ′)〈H̃µ, H̃ν〉.. The result now follows
from Corollary 5.4.7 and Lemma 5.4.5, since Tori(kIµ , kIµ) is the i-th exterior power of the cotangent
space to Hn at Iµ. �

5.4.4. Integrality and positivity for the operators ∆f . The operators ∆f defined in (62) have a
simple interpretation in terms of the isomorphism of Grothendieck groups in Proposition 5.4.6. To
explain it we need to recall that the Schur functor Sλ corresponding to a partition λ of n is defined
by

Sλ(W ) = HomSn(V λ,W⊗n).
If W is (doubly) graded, then so is Sλ(W ), and its Hilbert series is given by

HSλ(W )(q, t) = sλ[HW (q, t)].

In particular, the Hilbert series of the fiber at Iµ of the vector bundle Sλ(B), where B is the
tautological bundle on the Hilbert scheme, is given by sλ[Bµ(q, t)]. Together with (95), this implies
the following result.

Proposition 5.4.9. The operator ∆sλ
on symmetric functions corresponds under the isomorphism

in Proposition 5.4.6 to the operator on the Grothendieck group of the Hilbert scheme induced by the
functor

(Sλ(B)⊗−).
In particular, the operators ∇ and ∇−1 correspond to the functors

(O(1)⊗−), (O(−1)⊗−).
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This gives immediately a partial proof of Proposition 3.5.14.

Corollary 5.4.10. The operators ∆sλ
, ∇ and ∇−1 have the Laurent-integrality property in Prop-

erty 3.5.14, that is, they map the algebra of symmetric functions with coefficients in Z[q, t, q−1, t−1]
into itself.

Finally let us turn to the proof of Theorem 3.5.16. In the language of Proposition 5.4.6, Theo-
rem 4.2.5 tells us that

ΦOZn = ∇en(z),
and therefore we also have

Φ(Sλ(B)⊗OZn) = ∆sλ
∇en(z).

To establish that this has coefficients in N[q, t], it suffices to show that

H i(Zn, P ⊗ Sλ(B)) = 0, for i > 0

and that the graded C[x,y]-module H0(Zn, P ⊗ Sλ(B)) is zero in negative degrees. But Sλ(B) is
a direct summand of B⊗l, where l = |λ|, so both assertions follow from Theorem 5.4.3.

6. Discussion of proofs of the main theorems

In this section I will outline the proofs of Theorem 5.2.1 (the Cohen-Macaulay and Gorenstein
properties of Xn) and Theorem 5.4.3 (the cohomology vanishing theorem). Procesi has also given
a nice synopsis of the proof of Theorem 5.2.1 in his review article [71], and I have followed here his
way of organizing the logic.

6.1. Theorem on the isospectral Hilbert scheme. We are to prove thatXn is Cohen-Macaulay
and Gorenstein. We proceed by induction on n. Over a point I of the Hilbert scheme whose support
σ(I) is not of the form n · P , we have locally a product structure

(98) Xn
∼= Xk ×Xl.

So we can assume by induction that Xn is locally Cohen-Macaulay and Gorenstein where the n
points do not all coincide. In order to handle the most degenerate points, we make use of the
nested Hilbert scheme Hn−1,n and its corresponding isospectral scheme Xn−1,n. The nested Hilbert
scheme parametrizes pairs of ideals

In ⊆ In−1 ⊆ R

such that dimR/In = n and dimR/In−1 = n − 1. Parallel to Fogarty’s theorem we have the
theorem of Tikhomirov and Cheah [13] that Hn−1,n is irreducible and nonsingular. Now all these
schemes for n− 1 and n fit into a big commutative diagram

(99)

Xn−1,n
g−−−−→ Xn

↘
yy Hn−1,n −→ Hny

Xn−1 −→ Hn−1.

By induction, the bottom horizontal arrow is flat of degree (n − 1)! with Gorenstein fibers. From
this fact it is easy to deduce that the square involving the bottom arrow is a scheme-theoretic fiber
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square. Consequently Xn−1,n is Cohen-Macaulay and Gorenstein, since Hn−1,n is nonsingular and
the diagonal arrow is flat and finite with Gorenstein fibers.

For the next step we need to calculate the canonical line bundles on some of the schemes in (99).
On Hn−1,n, and also on Xn−1,n via pullback, we define

O(k, l) = p∗n−1OHn−1(k)⊗ p∗nOHn(l),

where pn−1, pn are the projections on Hn−1, Hn and O(1) denotes the highest exterior power of
the tautological bundle, as in (88). The canonical bundle on Hn−1 is trivial, and the pairing in
(96), which holds on Hn−1 by induction, implies that the canonical bundle on Xn−1 is O(−1). It
follows that the relative canonical bundle of Xn−1,n over Hn−1,n in our fiber square is O(−1, 0) in
the notation above.

Lemma 6.1.1 ([39]). The canonical sheaf on Hn−1,n is ωHn−1,n = O(1,−1).

This is proved by direct computation in local coordinates. We conclude that the canonical bundle
on Xn−1,n is

ωXn−1,n = O(0,−1).

The important point here is that ωXn−1,n is the pullback of a line bundle on Xn through the map
g in diagram (99).

Claim 6.1.2. For the map g in (99) we have Rg∗OXn−1,n = OXn.

Suppose we prove the claim. Since ωXn−1,n = g∗OXn(−1) we shall also have Rg∗ωXn−1,n =
OXn(−1). By duality theory it follows that OXn(−1) is the dualizing complex on Xn. But this
means exactly that Xn is Cohen-Macaulay and Gorenstein, with canonical bundle O(−1), so our
theorem will be proved.

As to the claim, the nested isospectral Hilbert scheme, like Xn, has a local product structure

Xn−1,n
∼= Xk,k−1 ×Xl

where the the n points do not all coincide. The map g in diagram (99) factors locally as

gk × 1l : Xk,k−1 ×Xl → Xk ×Xl.

We can assume that Claim 6.1.2 holds for gk as part of the induction. Then the claim holds locally
away from the most degenerate points. In particular, it holds outside the locus defined by the
equations

y1 = y2 = . . . = yn.

The following lemma is proved by a standard local cohomology argument.

Lemma 6.1.3. Let g : Y → X be a proper morphism of algebraic varieties. Suppose given m global
regular functions z1, . . . , zm on X, and let Z be the subvariety of X where they vanish; U = X \ Z
its complement. Assume the following conditions hold.

(i) The zi form a regular sequence in every local ring OX,x, x ∈ Z.
(ii) The zi form a regular sequence in every local ring OY,y, y ∈ g−1(Z).
(iii) Every fiber of g has dimension < m− 1.
(iv) On the open set U , the canonical homomorphism OX → Rg∗OY is an isomorphism.

Then the canonical homomorphism OX → Rg∗OY is an isomorphism everywhere.
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To prove Claim 6.1.2 we apply this to the morphism g : Xn−1,n → Xn, taking zi = yi − yi+1,
i = 1, . . . , n− 1. We need to verify assumptions (i)-(iv).

We have already seen that we can assume (iv) by induction.
For (iii) we have to analyze the fibers of the map Hn−1,n → Hn. The fiber over a point I in Hn

is just a projective space of dimension dim soc(R/I)− 1. This is always maximized at a fixed point
I = Iµ, and then a simple calculation shows that dim soc(R/I) < n− 2 when n > 3. For n ≤ 3 the
induction hypotheses have to be verified directly.

Both (i) and (ii) reduce to the corresponding problem for the sequence y1, . . . , yn. For (ii), the
local rings of Xn−1,n are Cohen-Macaulay, so we only need to show that the locus y = 0 in Xn−1,n

has dimension n. This follows from the cell decomposition of Hn−1,n in Cheah [13].
The crucial part is (i), which amounts to the following statement.

Proposition 6.1.4. The morphism Xn → Cn given by projection on the y coordinates is flat.

At this point we have pushed our geometric induction argument as far as it will go, and must
approach the proof of Proposition 6.1.4 head-on. The first step is construct Hn and Xn as blowups.

Proposition 6.1.5 ([38]). Let A = C[x,y]ε be the subspace of antisymmetric elements and let
J = C[x,y]A be the ideal it generates. Define graded Rees algebras

S =
⊕
d≥0

Ad; T = C[x,y][tJ ] =
⊕
d≥0

Jd,

with the convention that A0 = C[x,y]Sn. Then Hn = ProjS and Xn = ProjT .

Proof. The result for Xn follows easily from the one for Hn. For Hn, observe that the fibers of
the tautological bundle B are quotients of R = C[x, y], so the fibers of O(1) = ∧nB are quotients
of ∧nR = A. So we get an algebra homomorphism φ : S →

⊕
dH

0(Hn,O(d)), and the sections
of O(1) coming from S do not vanish simultaneously anywhere on Hn. Hence φ is induced by a
morphism f : Hn → ProjS, and OHn(1) is the pullback f∗O(1) of the twisting sheaf on ProjS.
Since f is a birational morphism of schemes projective over C2n/Sn, it is projective and hence
surjective.

Consider the section α of OHn(1) given by the Vandermonde determinant ∆(x) ∈ A. The open
set Uα where α 6= 0 consists of the ideals I such that {1, x, . . . , xn−1} is a basis of R/I. One can
see with explicit coordinates that Uα

∼= C2n. In fact Uα is the open cell in the cell decomposition
of Hn given by Ellingsrud and Strömme [17]. From the cell decomposition one also sees that the
divisor Z = Hn \ U is irreducible. These facts imply that the Picard group of Hn is isomorphic to
Z, and OHn(1) = f∗O(1) is ample. It follows that f is injective. �

To prove Proposition 6.1.4 it suffices to prove that for every d the ideal Jd is a free C[y]-module.
To do this we introduce an auxiliary object.

Definition 6.1.6. Let [l] stand for the set {1, . . . , l}. To every function f : [l] → [n] associate
the map πf : (C2)n → (C2)l sending (P1, . . . , Pn) to (Pf(1), . . . , Pf(l)) and let Wf ⊆ C2n+2l be its
graph. The polygraph Z(n, l) is the union of the linear subspaces Wf ⊆ C2n+2l over all functions
f : [l] → [n].
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We denote the coordinates on C2n by xi, yi and those on C2l by ai, bi, so the coordinate ring
R(n, l) of Z(n, l) is the quotient

R(n, l) = C[x,y,a,b]/(
⋂
f

If ),

where

If =
l∑

i=1

(ai − xf(i), bi − yf(i)).

The connection with the ideals Jd is as follows.

Proposition 6.1.7. Put l = dn and let Sd
n act on R(n, l) = R(n, dn) by permuting the dn coordinate

pairs ai, bi in blocks of size n. Then Jd is isomorphic as a C[x,y]-module to the space R(n, dn)ε of
antisymmetric elements with respect to Sd

n.

Proof. Fix the function f0 : [dn] → [n] defined by f0(kn + i) = i for i ∈ [n] and 0 ≤ k < d. Let
Wf0 be the corresponding component of Z(n, l). Restriction of functions from Z(n, l) to Wf0 is a
homomorphism of C[x,y]-algebras φ : R(n, l) → C[x,y] mapping akn+i, bkn+i to xi, yi. It is easy
to see that φ maps R(n, l)ε surjectively onto Jd.

We need to prove that φ is injective on R(n, l)ε. Every antisymmetric function p vanishes
on Wf if f(kn + i) = f(kn + j) for some 0 ≤ k < d and some i, j ∈ [n] with i 6= j. But
if f(kn + 1), . . . , f(kn + n) are distinct for each k, then f is in the Sd

n-orbit of f0 and so p is
determined on Wf by its restriction to Wf0 . �

Hence our problem is reduced to a special case of the following theorem.

Theorem 6.1.8. The coordinate ring R(n, l) of the polygraph is a free module over the polynomial
ring C[y].

This theorem is proved in [39] using induction and some commutative algebra to produce a
basis of R(n, l) as a free module. The proof is quite constructive and one can extract from it an
algorithm to generate the basis elements in any given degree. More usefully, one can deduce that
that the basis elements are indexed by some simple combinatorial data. Unfortunately, the proof
is also extremely complicated, and I will be the first to admit that it is rather unsatisfactory from
a conceptual point of view.

I should point out, however, that the polygraph is not merely an artifice to make the proof of
Proposition 6.1.4 more combinatorial. It is also the object whose coordinate ring R(n, l) appears in
Theorem 5.4.3 as the space of global sections of the tensor product of tautological bundles P ⊗B⊗l.
As such it is a geometrically natural entity. From this point of view we can see for example that
the identification of Jd with R(n, dn)ε in Proposition 6.1.7 is secretly the representation of the line
bundle O(d) as the summand (∧nB)⊗d of B⊗dn.

6.2. Vanishing theorem. Now let us see how the vanishing theorem, Theorem 5.4.3, comes about.
The first point is to restate the theorem using the Bridgeland-King-Reid functor as the pair of
identities

(100)
Φ(B⊗l) = R(n, l),

Φ(OZn ⊗B⊗l) = R(n, l)/mR(n, l).
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The next point is that the second identity can be deduced from the first in a straightforward way,
using the resolution of OZn in Proposition 5.4.4. So we only have to prove the first identity, which
we may rewrite using the Bridgeland-King-Reid theorem as

ΨR(n, l) = B⊗l.

To put it a bit more precisely, the fiber product over the Hilbert scheme Xn × F l
n/Hn projects on

C2n+2l with image Z(n, l). Functions on Z(n, l) pull back to global functions on Xn×F l
n/Hn, that

is, to global sections of P ⊗B⊗l, and this induces a map R(n, l) → Φ(B⊗l). Applying Ψ we have a
canonical map ΨR(n, l) → B⊗l and we are to prove it is an isomorphism.

I wish to point out here the full strength of this seemingly trivial substitution. The functor
Φ involves sheaf cohomology, in the guise of the derived functor Rf∗. The inverse functor Ψ,
however, involves only commutative algebra: to compute ΨA for any object A you only need an
Sn-equivariant free resolution of A.

It develops that Theorem 6.1.8 is exactly what we need in order to calculate ΨR(n, l). The
theorem implies immediately that R(n, l) has a free resolution over C[x,y] of length at most n, but
we can do a little better using the translation invariance of the polygraph with respect to C2. This
yields that R(n, l) is actually a free C[x1,y]-module and hence has a free resolution of length n−1.

Next we observe that when not all n points coincide, so we have the local product structure in
(98), both R(n, l) and B⊗l decompose into smaller pieces, in a manner compatible with the map
ΨR(n, l) → B⊗l. Therefore we can assume by induction that our map is locally an isomorphism
away from the most degenerate points.

This much turns out to be almost enough to prove the theorem. Consider an exact triangle

C[−1] → ΨR(n, l) → B⊗l → C

in the derived category D(Hn). We are to prove that C = 0. We have just shown that it has a
locally free resolution of length n (from the resolution of R(n, l) plus the extra term B⊗l), and that
it vanishes on an open set whose complement has codimension n−1. If the codimension were n+1
instead, it would imply that C = 0 by the intersection theorem of Peskine, Szpiro and Roberts
[70, 74, 75]. All we need to do is kill off C on a slightly bigger open set.

Let Ux be the open set, called Uα in the proof of Proposition 6.1.5, where the monomials
1, x, . . . , xn−1 are independent modulo I, and let Uy be the same with y in place of x. The theorem
follows from two more facts.

Lemma 6.2.1. Let W be the locus where not all n points coincide. Then the complement of the
open set W ∪ Ux ∪ Uy in the Hilbert scheme has codimension n+ 1.

Lemma 6.2.2. On Ux, the canonical map ΨR(n, l) → B⊗l is an isomorphism.

Lemma 6.2.1 is an easy application of the Ellingsrud-Strömme cell decomposition.
Lemma 6.2.2 is a computation in explicit coordinates on Ux. Its proof contains two delicate

points, which I will mention without giving details. First we have to check that the free resolution
of R(n, l) remains exact when pulled back to the open set in Xn lying over Ux. This is done
using Theorem 6.1.8 again. Second, we have to check that on Ux the canonical map O(−1) ⊗
(ρ∗f∗R(n, l))ε → B⊗l is an isomorphism (recall the formula for Ψ in (89)). Once written out in
coordinates, it is easy to see that this map is surjective. For injectivity one has to show that certain
elements that are not obviously zero do in fact vanish in f∗R(n, l), which requires a bit of care.
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7. Current developments

7.1. Combinatorial advances. It remains an open problem to find a combinatorial formula for
the Kostka-Macdonald polynomials K̃λµ(q, t) along the lines of Theorem 3.4.15 or 3.4.16, but there
has recently been encouraging progress on the corresponding problem for the coefficients of the
Frobenius series of diagonal coinvariants, ∇en(z).

In view of (71) there exist t-analogs of the Carlitz-Riordan q-Catalan numbers

Cn(q, t) =
def

〈en,∇en〉.

By Theorem 4.2.5, this q, t-Catalan polynomial is the Hilbert series of the antisymmetric part Rε
n

of the diagonal coinvariant ring. Hence it is a polynomial with positive integer coefficients. Unlike
most of the other quantities that can be shown to be positive by geometric methods, this one has a
known combinatorial interpretation, discovered by Haglund and proved by him and Garsia. I will
state a variant of their theorem that lends itself better to generalization.

Theorem 7.1.1 ([20, 21]). Denote by b(λ) the number of cells x in the diagram of λ for which
the arm and leg of x are related by l(x) ≤ a(x) ≤ l(x) + 1. Let δn be the staircase partition
(n − 1, n − 2, . . . , 1). Then the q, t-Catalan polynomial is the sum over partitions λ with diagram
contained inside the diagram of δn

(101) Cn(q, t) =
∑
λ⊆δn

q(
n
2)−|λ|tb(λ).

To prove this, define more generally Sn,k(q, t) to be the same sum taken only over those λ that
contain precisely k cells on the outermost diagonal of δn. Garsia and Haglund find a recurrence
for Sn,k(q, t) and an expression in terms of symmetric functions that satisfies the same recurrence.
Their expression reduces to 〈en,∇en〉 for Sn+1,0(q, t), which is the same as the sum in (101).

Interestingly, there is a way of rewriting the combinatorial formula (101) as a sum of products
of Gauss binomial coefficients, formally resembling the Kirillov-Reshetikhin formula (51) for the
Kostka-Foulkes polynomials.

Corollary 7.1.2. The q, t-Catalan polynomial can be written as

(102) Cn(q, t) =
∑

r

∑
k1+···+kr=n

q
P

i(i−1)ki t
P

i (ki
2 )

r−1∏
i=1

[
ki + ki+1 − 1

ki − 1

]
t

,

the sum ranging over compositions of n into positive integers k1, . . . , kr.

Proof. Encode each λ ⊆ δn by the sequence (e1, e2, . . . , en) with ei = n − i − λi and en = 0. The
constraints on the possible sequences are 0 ≤ ei ≤ ei+1 +1 for each i. Let km be the number of ei’s
equal to m− 1. If r = 1 + max(e1, . . . , en), the constraints imply that k1, . . . , kr are all non-zero.

The exponent
(
n
2

)
−|λ| of q in (101) is

∑
j ej =

∑
i(i−1)ki. The exponent b(λ) of t is the number

of pairs i < j with ej = ei, contributing
∑

i

(
ki
2

)
, plus the number of pairs with ej = ei + 1. The

constraints imply that for each m, the subsequence formed by the ei’s in {m− 1,m} ends with an
m − 1. The others may be interspersed in any order, contributing the factor

[km+km+1−1
km−1

]
t

as we
sum over all possibilities. One can show that the choices of interspersing order for each m may be
made independently, and together they determine the sequence. �
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Curiously, the symmetry Cn(q, t) = Cn(t, q), which is obvious from the definition, appears as
quite a surprising property of formula (101) or (102).

The Garsia-Haglund theorem has two conjectured extensions that have been verified computa-
tionally up to reasonably large values of n. The first conjecture I will discuss is mine; the second
is due to Haglund and Loehr [36]. Define “higher” q, t-Catalan polynomials by the formula

C(m)
n (q, t) = 〈en,∇men〉.

They are polynomials with positive coefficients by Theorem 3.5.16, and the following specializations
can be derived similarly to the case m = 1:

C(m)
n (q, 1) =

∑
λ⊆mδn

qm(n
2)−|λ|;

C(m)
n (q, q−1) = q−m(n

2) 1
[mn+ 1]q

[
(m+ 1)n

n

]
q

.

From the discussion in §5.4.4 we see that C(m)
n (q, t) has a natural geometric interpretation as the

Hilbert series of the space of sections of the line bundle O(m) on the zero-fiber Zn of the Hilbert
scheme. More concretely, this space of sections is Jm/(x,y)Jm, where J is the ideal generated by
all antisymmetric polynomials in C[x,y], as in Proposition 6.1.5.

Conjecture 7.1.3. Denote by b(m)(λ) the number of cells x ∈ λ whose arm and leg satisfy l(x) ≤
a(x) ≤ l(x) +m. For the higher q, t-Catalan polynomials we have the formula

C(m)
n (q, t) =

∑
λ⊆mδn

qm(n
2)−|λ|tb

(m)(λ).

The other conjecture I want to discuss is Haglund and Loehr’s conjecture for the Hilbert series
of the whole diagonal coinvariant ring, or by Theorem 4.2.5, for the polynomial

Dn(q, t) =
def

〈en1 ,∇en〉.

Recall that Dn(q, 1) enumerates parking functions by weight. Haglund and Loehr define an analog
for parking functions of the statistic b(λ) in Theorem 7.1.1.

We have seen that a parking function can be represented by a standard tableau on the skew
shape (λ+ (1n))/λ, where λ ⊆ δn. Here is example (15) again to illustrate this.

5
3
2

6
4
1

Call the k-th diagonal the set of cells (i, j) with i+ j = k. Now let f be a parking function, T the
corresponding tableau, λ ⊆ δn the corresponding shape, and define b(f) to be the number of pairs
of cells x, y ∈ (λ+ (1n))/λ such that the label on x is less than the label on y, and either:

(i) x and y are on the same diagonal and y is in a higher row than x, or
(ii) x and y are on consecutive diagonals k and k+ 1, respectively, and y is in a lower row than

x.
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In the example above we have b(f) = 3, for the pairs {1, 3}, {3, 4} and {4, 5}. For any given λ the
maximum value of b(f) is b(λ), attained by the unique tableau T formed by labeling the cells in
increasing order of diagonals, and from lowest row to highest within each diagonal.

Conjecture 7.1.4 ([36]). The Hilbert series of the diagonal coinvariant ring is given by the sum

Dn(q, t) =
∑

f

qw(f)tb(f)

over parking functions f on {1, . . . , n}, with weight w(f) =
(
n
2

)
− |λ| and b(f) as defined above.

7.2. Extensions to other groups. It it natural to ask which of the results about the Hilbert
scheme, diagonal coinvariants, and n! conjecture might hold and in what form with a more general
finite group G in the role of Sn.

The first obvious possibility is to take for G a Coxeter group acting diagonally on two copies h⊕h
of its defining representation, or more generally a complex reflection group acting on h⊕h∗. In this
setting only a limited generalization of the n! conjecture seems to be possible, but it appears that
the phenomena involving diagonal coinvariants generalize beautifully. Very recently, I. Gordon [34]
has proved a conjecture of mine along these lines.

A second possibility is to take for G the wreath product Γn = Γ oSn, where Γ is a finite subgroup
of SL2(C). The possible groups Γ are classified by Dynkin diagrams of type ADE, via the McKay
correspondence [64]. Associated to each affine ADE diagram and its fundamental weight at the
affine node are quiver varieties of Nakajima [66], which provide crepant resolutions of C2n/Γn, with
the Hilbert scheme as the special case when Γ is trivial. In this setting there appears to be a good
generalization of the n! conjecture.

Most interesting is the intersection of the above two settings, when Γ = Z/rZ is cyclic, so
G = Γ o Sn is the complex reflection group G(r, 1, n) with its doubled reflection representation
h ⊕ h∗. Here as for Sn we have the T2 action, with fixed points indexed by r-tuples of partitions.
Conjecturally we expect analogs of the bundle P on the Hilbert scheme, with the graded characters
of its fibers given by new wreath Macdonald polynomials.

Let me now explain some of these developments in more detail.

7.2.1. Principal nilpotent pairs. The commuting variety of a semisimple Lie algebra g is the set

C(g) = {(X,Y ) ∈ g : [X,Y ] = 0}.
It is not known whether the equations [X,Y ] = 0 generate the ideal of the commuting variety, so
in principle we should distinguish the possibly non-reduced commuting scheme defined by these
equations. It is known that C(g) is irreducible, of dimension dim g + rk g. For gln this is an old
theorem of Motzkin and Taussky [65]; it was extended to all g by Richardson [73]. Equivalently,
the commuting regular semisimple pairs are dense in C(g).

One proves easily that the dimension of the Zariski tangent space to the commuting scheme at
(X,Y ) is equal to dim g + dim z(X,Y ), where z(X,Y ) is their common centralizer. Set

Creg(g) = {(X,Y ) ∈ C(g) : dim z = rk g},
the nonsingular locus of the commuting scheme, which at least on this locus clearly coincides with
the commuting variety. A point of C(gln) is just a pair of commuting n × n matrices X, Y , and
they make Cn into a C[x, y]-module. Neubauer and Saltman [69] showed that (X,Y ) ∈ Creg(gln) if
and only if Cn considered as a C[x, y]-module is locally cyclic or cocylic at every point (x, y) ∈ C2.
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Their theorem implies that for every (X,Y ) ∈ Creg(gln), the ideal of relations I = {f(x, y) ∈
C[x, y] : f(X,Y ) = 0} has dimC C[x, y]/I = n, yielding a morphism

(103) Creg(gln) → Hn

of Creg(gln) onto the Hilbert scheme.
The points of Creg(gln) lying over a T2-fixed point in Hn are exactly the principal nilpotent pairs,

as defined more generally for any g by Ginzburg.

Definition 7.2.1 ([33]). A principal nilpotent pair is an element (e1, e2) ∈ Creg(g) such that the
orbit Ad(G)(e1, e2) is a fixed point for the action of T2 on the set of such orbits.

Here the T2 action is the obvious one on the two components of (X,Y ) ∈ C(g).
The principal nilpotent pairs up to Ad(G) conjugacy have been classified by Elashvili and Panyu-

shev [16]. For gln, two pairs dual to each other lie over each fixed point Iµ in the Hilbert scheme (or
one self-dual pair if µ is rectangular). For other types they are much more rare, and the elements
e1, e2 can belong only to very special nilpotent orbits.

Now let h be a Cartan subalgebra of g and W the Weyl group. To each principal nilpotent
pair e (apart from an exception in type E7) Ginzburg associates a W -antisymmetric polynomial
∆e ∈ C[h⊕ h] generalizing our polynomial ∆µ in (77), which is the gln case. Letting Je ⊆ C[h⊕ h]
be the ideal of polynomials f such that f(∂)∆e = 0, the analog of our ring Rµ would appear naively
to be

Re =
def

C[h⊕ h]/Je.

It would be tempting to conjecture that dimRe = |W | and Re affords the regular representation
of W , but that is false for g = sp6.

There seem to be two ways to fix this trouble. The first has been proposed by Kumar and
Thomsen [54], who would replace the ring Re by the coordinate ring De of the scheme-theoretic
intersection of h ⊕ h with the closure Oe, where Oe is the orbit of e under a group Ge which is
Ad(G) enlarged by certain outer automorphisms of g. By definition their ring De is a again a
quotient of C[h ⊕ h] by a doubly homogeneous W -invariant ideal, and they conjecture that De is
Gorenstein and affords the regular representation of W . Unfortunately, it appears their conjecture
cannot be true as stated since the properties of De would imply that Re = De. However, I think a
small modification may work.

Conjecture 7.2.2. Let Õe be the normalization of the orbit closure Oe defined by Kumar and
Thomsen, when it is irreducible, or a suitable seminormalization when it is not. Then the coordinate
ring D̃e of the scheme-theoretic fiber product of Õe and h⊕h over C(g) is Gorenstein, has dimension
|W |, and affords the regular representation of |W |.

Observe that the original ring De is a subring of D̃e, the image of the canonical homomorphism
C[h⊕h] → D̃e. It seems plausible to expect that De = Re, so De should in fact be Gorenstein, but
its dimension will be too small in general. In the case of gln, when Re = Rµ has the full dimension
n!, the normalization step is unnecessary, and the Kumar-Thomsen conjecture should be correct in
its original form. Even for gln it is open.

There is another way to enlarge Re to what should turn out to be the same ring D̃e as in
Conjecture 7.2.2. Restriction of functions defines a homomorphism of coordinate rings

C[C(g)] → C[h⊕ h],
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and by an important theorem of Wallach [84] and Joseph [46], it induces an isomorphism of invari-
ants

C[C(g)]G ∼= C[h⊕ h]W .

Thus we get a ring homomorphism C[h ⊕ h]W → C[C(g)] and a G-invariant morphism of alge-
braic varieties C(g) → (h ⊕ h)/W . Now define the isospectral commuting variety X(g) to be the
normalized, reduced fiber product

(104)

X(g) −−−−→ h⊕ hy y
C(g) −−−−→ (h⊕ h)/W.

The Weyl group W acts on X(g), and the projection X(g) → C(g) is finite of degree |W | with W
acting by the regular representation on its generic fibers.

Conjecture 7.2.3. The isospectral commuting variety X(g) is Cohen-Macaulay and Gorenstein.
In particular the coordinate ring of its fiber over each point of Creg(g) is a Gorenstein ring on which
W acts by the regular representation.

Note that the fiber ring over a point (X,Y ) ∈ C(g) depends only on its Ad(G) orbit. The most
interesting fibers are those over principal nilpotent pairs e, where the coordinate ring D̂e of the fiber
is doubly graded. Assuming the conjecture holds, the naive ring Re is the image of the canonical
map C[h ⊕ h] → D̂e, and it seems reasonable to expect that D̂e is isomorphic to the ring D̃e in
Conjecture 7.2.2.

For the case of gln, Conjecture 7.2.3 in its full strength is open. Over the regular locus Creg,
however, it is true—this is equivalent to Theorem 5.2.1. The conjecture implies the famous con-
jecture generally attributed to Hochster that C(gln) is Cohen-Macaulay. In the gln case, I expect
that the reduced fiber product in (104) is already normal. For other types it is not.

7.2.2. Diagonal coinvariants and Gordon’s theorem. Let W be a Coxeter group and h its (complexi-
fied) defining representation. Then h is self-dual and it is best to identify the diagonal representation
with the W -module h ⊕ h∗, which has a natural symplectic structure. For W = Sn, we have seen
that the coinvariant ring

CW = C[h⊕ h∗]/(C[h⊕ h∗]W+ )
has dimension (n+ 1)n−1. It is natural for many reasons to predict that the analogous dimension
formula in general should be (h + 1)n, where h is the Coxeter number of W and n = dim h is the
rank, but this turns out not to be quite right. For W of type B4, for example, the formula gives 94,
but the actual dimension is 94 + 1. In [37] I conjectured that after passing to a suitable quotient of
the coinvariant ring, one should have the following result, which has now been proven by Gordon.

Theorem 7.2.4 (Gordon [34]). There is a canonically defined doubly graded quotient ring RW of
the coinvariant ring CW with the following properties.

(i) dimRW = (h+ 1)n, where h is the Coxeter number and n is the rank;
(ii) The Hilbert series of RW satisfies HRW (t−1, t) = t−hn/2[h+ 1]nt ;
(iii) The image of C[h] in RW is the classical coinvariant ring;
(iv) If W is a Weyl group, then ε ⊗ RW is isomorphic as a W -module to the permutation

representation on Q/(h+ 1)Q, where Q is the root lattice.
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Let us remark that (ii) obviously implies (i). In fact (ii) also implies (iii), because the image of
C[h] is in any event a quotient of the classical coinvariant ring. If it were a proper quotient, then
its socle would be killed and there would be no thn/2 term in HRW (t−1, t).

Note that HRW (t−1, t) is the Hilbert series of RW in the grading that assigns degree 1 to the
coordinates on h and −1 to those on h∗, which is the natural grading from the symplectic point
of view. In fact Gordon fully determines the graded character of RW in this grading, which
implies both (ii) and (iv). It seems to be difficult to understand the second grading using Gordon’s
approach. It also seems to be difficult to describe the ideal of RW in CW . In particular, for W = Sn,
Gordon’s theorem only implies that (n+ 1)n−1 is a lower bound for dimRn.

Gordon proves Theorem 7.2.4 using representation theory of Cherednik algebras, more specifi-
cally their rational degenerations Hc which have been studied by Dunkl [15], Opdam and Rouqier
[unpublished], Berest, Etingof and Ginzburg [5, 6], and Guay [unpublished] among others. To see
how Cherednik algebras enter the picture, we first describe the coinvariant ring in a different way.

Consider the skew group algebra C[h ⊕ h∗]W , and let e = 1
|W |
∑

w∈W w be the invariant idem-
potent. A C[h ⊕ h∗]W -module is the same thing as a W -equivariant C[h ⊕ h∗]-module, and the
subalgebra eC[h⊕h∗]We is the ring of invariants C[h⊕h∗]W . Regard C as a trivial C[h⊕h∗]W -module
annihilated by the ideal C[h⊕ h∗]W+ . Then the coinvariant ring can be described as

CW = C[h⊕ h∗]We⊗eC[h⊕h∗]We C.

Alternatively, let eε = 1
|W |
∑

w∈W ε(w)w be the sign idempotent. Then we also have

(105) ε⊗ CW = C[h⊕ h∗]Weε ⊗eεC[h⊕h∗]Weε
C.

The rational Cherednik algebra Hc (depending on a parameter c) is the algebra of operators on
C[h] generated by

(i) multiplication operators by coordinates xi on h;
(ii) Dunkl-differential operators

yi = ∂/∂xi − c
∑
s∈S

〈αs, x
∗
i 〉

1− s

αs
,

where {x∗i } is a dual basis of coordinates on h∗, S is the set of reflections in W , and αs is
a linear form vanishing on the fixed hyperplane of s;

(iii) the group W .
The operators yi commute. Thus Hc contains a copy of C[h] generated by the xi’s, a copy of C[h∗]
generated by the yi’s, and a copy of CW . It has a Poincaré-Birkhoff-Witt decomposition

(106) Hc
∼= C[h]⊗ CW ⊗ C[h∗]

and commutation relations

[yi, xj ] = δij − c
∑
s∈S

〈αs, x
∗
i 〉〈xi, α

∨
s 〉s,

where α∨s is the coroot vector such that sv = v − 〈αs, v〉α∨s . Under the filtration of Hc assigning
degree zero to CW and degree 1 to xi, yi, we have

(107) grHc
∼= C[h⊕ h∗]W.
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The decomposition (106) implies that for each irreducible W -module τ there is a standard
“Verma” module Mc(τ) isomorphic to C[h]⊗ τ as a C[h]W module and annihilated by C[h∗]+. It
has a unique irreducible quotient Lc(τ). Put hk = ∧kh, which is always an irreducible W -module.

Gordon proves that for the special value c = (1 + h)/h of the parameter, the following things
happen. First, there is a decomposition

Lc(h0) =
∑

k

(−1)kMc(hk)

in the Grothendieck group of Hc-modules. Second, the degree operator d = 1
2

∑
i(xiyi + yixi)

induces a grading on these modules, such that deg(xi) = 1, deg(yi) = −1, and Mc(hk) has the same
grading as C[h] ⊗ hk with the generators in degree −hn/2 + k(h + 1). It follows that the Hilbert
series of Lc(h0) is equal to

t−hn/2[h+ 1]nt ,
as we want to prove for RW . The same computation also determines the character of Lc(h0) as
a graded W -module. Finally, the subalgebra eεHceε has a unique 1-dimensional unital module C
(with degree zero), and Lc(h0) is the induced module

Lc(h0) ∼= Hceε ⊗eεHceε C.
Passing to the associated graded using (107), and comparing with (105), we get a canonical surjec-
tion

CW → ε⊗ grLc(h0)
of C[h⊕ h∗]W -modules. Hence RW =

def
ε⊗ grLc(h0) has the desired properties.

Shortly before Gordon’s work appeared I had conjectured another way to pick out the correct
quotient of CW , as follows.

Conjecture 7.2.5. Let R̃W be the quotient of CW by the unique largest ideal J ⊆ CW such that
J ∩ (CW )ε = 0. Then R̃W has the properties in Theorem 7.2.4.

Conjecture 7.2.5 is true for W = Sn, that is, we have Rε
n = socRn. This follows from [40,

Theorem 4.1]. I can prove it for W of type Bn, and have verified it by computer for type D4.

Proposition 7.2.6. If Conjecture 7.2.5 holds for W , then the ring R̃W in the conjecture is the
same as Gordon’s ring RW .

Proof. Suppose Conjecture 7.2.5 holds. Then dim(CW )ε = dim(R̃W )ε = dim(RW )ε. This implies
that the defining ideal of Gordon’s ring RW is contained in the ideal J in the conjecture. But
dim R̃W = dimRW = (h+ 1)n, so R̃W = RW . �

7.2.3. Quiver varieties. In this section and the next, the role of Sn will be played by the wreath
product Γn = Γ oSn, where Γ is a finite subgroup of SL2(C). Then Γn acts on C2n and is normalized
by Sn; the wreath product Γn is their semidirect product. The presentation here is a synopsis of a
preprint [41] that I hope to make available on the servers soon.

The quotient singularities C2n/Γn have crepant resolutions by quiver varieties, generalizing the
Hilbert scheme in the case Γ = 1. Our first goal will be to formulate a conjectured analog of the
Cohen-Macaulay property of the isospectral Hilbert scheme, Theorem 5.2.1.

The possible groups Γ are classified by the McKay correspondence. Let χ0, χ1, . . . , χr−1 be a
list of the irreducible characters of Γ, with χ0 = 1, and let ζ be the character of the defining



COMBINATORICS, SYMMETRIC FUNCTIONS, AND HILBERT SCHEMES 63

representation C2. The McKay graph is the graph on vertex set I = {0, 1, . . . , r − 1} with an edge
{i, j} if 〈χi ⊗ ζ, χj〉 6= 0. Since ζ is self-dual, this relation is symmetric in i and j. The McKay
graphs turn out to be the affine Dynkin diagrams of type Â, D̂ and Ê, as follows.

• Type Âr−1: Γ = Z/rZ is cyclic.
• Type D̂r+2: Γ is the binary dihedral group, the preimage of the dihedral group D2r by the

double cover SU 2(C) → SO3(R).
• Type Ê6, Ê7, Ê8: the binary tetrahedral, octahedral and icosahedral groups.

Fix Γ and its associated affine Dynkin diagram. Let P be the weight lattice, P+ the dominant
weights, Q the root lattice, Q+ the cone spanned by the simple roots α0, . . . , αr−1, and δ the
smallest positive imaginary root. The corresponding root lattice Q0 of finite type can be identified
with Q/Zδ. To each character χ =

∑
imiχi corresponds the element

∑
imiαi ∈ Q+, and a key

property of the McKay correspondence is that δ corresponds to the character 1Γ
1 of the regular

representation.
Denote by MΓ

θ (λ, µ) the quiver variety associated by Nakajima [66] to the McKay graph I of Γ,
elements λ ∈ P+ and µ ∈ Q+, and a stability condition given by a linear function θ : Q→ R. The
quiver varieties MΓ

θ (λ, µ) have many remarkable properties. For generic θ they are nonsingular and
have a symplectic (and even a hyper-Kähler) structure. Nakajima has shown that for each λ the top
cohomology groups

⊕
µH

top(MΓ
θ (λ, µ),C) carry the irreducible highest-weight representation L(λ)

of the Kac-Moody algebra attached to I, with MΓ
θ (λ, µ) contributing the weight space L(λ)λ−µ.

We will only be concerned with MΓ
θ (λ, µ) for λ = λ0, the fundamental weight at the affine node

of I, and θ(αi) = 1 for all i, the standard stability condition. The highest-weight module L(λ0) is
the basic representation. The stabilizer of λ0 in the affine Weyl group W is the finite Weyl group
W0, so every element of Q0 has a unique representative ν0 ∈ Q such that λ0 − ν0 is W -conjugate
to λ0. The weight spaces L(λ0)λ0−ν0 are one-dimensional. We write every ν ∈ Q uniquely as

ν = ν0 + nδ, n ∈ Z,

with ν0 the distinguished representative of its coset. The weight space L(λ0)λ0−ν is non-zero, and
the quiver variety MΓ

1(λ0, ν) is non-empty, if and only if n ≥ 0. For such ν set

YΓ,ν = MΓ
1(λ0, ν).

Proposition 7.2.7. With ν = ν0 + nδ as above, the quiver variety YΓ,ν is a crepant resolution of
C2n/Γn.

One way to prove this is to use Nakajima’s reflection functors [68] to identify YΓ,ν with MΓ
θ (λ0, nδ)

for a different stability condition θ. Now MΓ
θ (λ0, nδ) is projective and birational over the affine

quiver variety MΓ
0 (λ0, nδ) and it is not hard to show that MΓ

0 (λ0, nδ) ∼= C2n/Γn.
There is another, more illuminating, way to understand Proposition 7.2.7. The quiver varieties

YΓ,ν are exactly the irreducible components of the fixed loci HΓ
m in the Hilbert schemes Hm, for

all possible m. This fact, which is well-known to the experts, is a consequence of the McKay
correspondence and results of Kronheimer and Nakajima [53], Nakajima [67], and Crawley-Boevey
[14]. It develops that these fixed loci also have the following geometrically explicit description.

Proposition 7.2.8. For each distinguished coset representative ν0 as above, there is a unique Γ-
invariant ideal Iν0 ⊆ R = C[x, y] such that char(R/Iν0) = χν0, the character of Γ corresponding to
ν0. Set ν = ν0 + nδ and m = χν0(1) + n|Γ|. The quiver variety YΓ,ν is the closure of the open set
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in HΓ
m parametrizing subschemes S ⊆ C2 of the form V (Iν0) ∪ T , where T is a union of n disjoint

non-zero Γ-orbits.

From the proposition we see that the image of YΓ,ν under the Chow morphism consists of algebraic
cycles of the form χν0(1) · 0 + C, where C =

∑n
i=1

∑
g∈Γ gPi. But C2n/Γn can be identified with

the set of cycles C, and subtracting the terms χν0(1) · 0 gives an isomorphism of the image of YΓ,ν

onto C2n/Γn.

Definition 7.2.9. An ideal Iν0 as in Proposition 7.2.8—i.e., a Γ-invariant ideal in C[x, y] with no
Γ-invariant deformations—is a Γ-core.

The motivation for this definition is the remarkable fact that for Γ = Z/rZ, the Γ-cores are
exactly the monomial ideals Iµ such that the partition µ is an r-core in the classical sense (see
§7.2.4, below).

In terms of the picture given by Proposition 7.2.8 we distinguish an open set U ⊆ YΓ,ν consisting
of points with at most one degeneracy: either one orbit collapses to zero or two orbits coincide.
For a given n, the quiver varieties YΓ,ν are all birational to C2n/Γn and hence to each other.

Proposition 7.2.10. For fixed n and ν = ν0 + nδ, ν ′ = ν ′0 + nδ, the birational map YΓ,ν ∼ YΓν′ is
given by an isomorphism of the open set U ⊆ YΓ,ν described above with the corresponding open set
U ′ ⊆ YΓ,ν′. Moreover these open sets meet every divisor.

The proposition identifies all the Picard groups Pic(YΓ,ν) for a given n with the Picard group
Pic(UΓ,n) of their common open subvariety. We can regard the quiver varieties YΓ,ν as different
projective completions of UΓ,n over C2n/Sn, distinguished by different ample cones in Pic(UΓ,n).

Each quiver variety YΓ,ν with ν = ν0 + nδ carries a tautological bundle M whose fibers are
C[x, y]Γ-modules with character n · 1Γ

1 (the character corresponding to nδ) and a distinguished Γ-
invariant section. To define M , we once again identify YΓ,ν with MΓ

θ (λ0, nδ) for a different stability
condition θ; then M is the usual tautological bundle of quiver data.

We are now almost ready to formulate our conjectured extension of Theorem 5.2.1. It would be
absurd to conjecture that YΓ,ν is isomorphic to the Hilbert scheme C2n//Γn. Not only do we get
different crepant resolutions as ν0 varies, but in general C2n//Γn is not a crepant resolution (this
already happens for Γ = Z/2Z and n = 2). Our conjecture instead will be that YΓ,ν is a moduli
space of stable constellations.

Definition 7.2.11. Let G be a finite subgroup of GL(V ). A G-constellation is a G-equivariant
C[V ] module that affords the regular representation of V . Let θ : X (G) → R be a linear function
on characters of G with θ(1G

1 ) = 0. A constellation M is θ-stable if for every proper G-invariant
C[V ]-submodule N ⊆ M we have θ(N) < 0. A family of G-constellations on a scheme Y is a
locally free sheaf P of G-equivariant OY ⊗ C[V ]-modules whose fibers as a vector bundle over Y
are G-constellations.

When θ(1) = 1 and θ(χ) < 0 for all χ 6= 1, a constellation is stable if and only if it is a
quotient of C[V ], in which case it is called a G-cluster. By standard geometric invariant theory
techniques one constructs for generic θ a scheme Mθ projective over V/G that parametrizes θ-
stable G-constellations, in the technical sense that it represents the relevant functor of families.
The scheme Mθ is the moduli scheme of θ-stable constellations. The G-Hilbert scheme V //G is an
irreducible component of the moduli scheme of clusters. The definition and construction go back to
Kronheimer [52], although the terminology of constellations and clusters seems to be due to Reid.
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Note that if P is a family of Γn-constellations, normalized so that the line bundle of invariants
PΓn is trivial, then its sub-bundle of Γn−1-invariants PΓn−1 is a family of C[x, y]Γ-modules with a
distinguished Γ-invariant section and its fibers have character n · 1Γ

1 .

Proposition 7.2.12. On the open set UΓ,n ⊆ YΓ,ν there is a unique family of Γn-constellations P
such that PΓn−1 coincides with the tautological bundle M .

We remark that although the open set UΓ,n is common to every YΓ,ν , the restriction of the
tautological bundle M to UΓ,n depends on which Weyl chamber in Q0 contains ν0).

Conjecture 7.2.13. On every YΓ,ν there is a family of Γn-constellations P , unique by Proposi-
tion 7.2.12, such that PΓn−1 coincides with M . Moreover, P is a family of θ-stable constellations
for some θ.

The proof of the Bridgeland-King-Reid theorem in [10] goes through almost verbatim with V //G
replaced by the component birational to V/G in a moduli space of stable G-constellations. Hence
Conjecture 7.2.13 has the following consequence, which should be important for the study of the
quiver varieties YΓ,ν .

Corollary 7.2.14. Assume Conjecture 7.2.13 holds. Then the functor

Φ = RΓ(P ⊗−) : D(YΓ,ν) → DΓn(C2n)

is an equivalence of categories.

Conjecture 7.2.13 is true for ν0 sufficiently far from the walls of its Weyl chamber. In this case
YΓ,ν coincides with the Hilbert scheme of points Hilbn(XΓ) on the unique minimal resolution XΓ

of C2/Γ, and the conjecture can be deduced from Corollary 5.2.2 applied to Xn
Γ/Sn.

I have checked Conjecture 7.2.13 by computer for Γ = Z/2Z and n = 3. This case implies
that Conjecture 7.2.3 holds locally at the points of X(sp6) lying over principal nilpotent pairs
in sp6, confirming our improved analog of the n! conjecture. Recall that among these pairs are
counterexamples to the more naive analog of the n! conjecture.

Further evidence for Conjecture 7.2.13 lies in phenomena it predicts for Γ = Z/rZ, as I will now
explain.

7.2.4. Cores, wreath Macdonald polynomials, and a new positivity conjecture. For the rest of the
discussion, fix r and Γ = Z/rZ, the group of 2× 2 matrices[

ωk 0
0 ω−k

]
, ω = e2πi/r.

In this case, the representation of Γn on C2n splits into two invariant subspaces h ⊕ h∗, with Γn

acting as the complex reflection group G(r, 1, n) on h.
The torus group T2 in (82) commutes with Γ and acts on YΓ,ν . By Proposition 7.2.8, each Γ-core

Iν0 must be a monomial ideal. Using this to identify ν0 with a partition, the T2-fixed points of YΓ,ν

are monomial ideals Iµ for suitable partitions µ ⊇ ν0. To see which partitions are involved, we first
need to recall the combinatorial theory of r-cores and r-quotients (see James and Kerber [44] or
Macdonald [61]).

A ribbon in a partition λ is a connected skew sub-diagram λ/ν containing no 2× 2 rectangle. To
each cell x ∈ λ corresponds a ribbon of size equal to the hook length h(x), running from the end
of the leg of x to the end of its arm.
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Definition 7.2.15. The partition λ is an r-core if it contains no ribbon of size r. The r-core
Corer(λ) of any λ is the partition that remains after one removes as many r-ribbons in succession
as possible (the result is independent of choices made).

Here is an example for r = 4, with the numbered cells showing one possible sequence of 4-ribbon
removals. The blank cells form the 4-core.

2 2 2
4 4 2 1 1 1

4 4 3 3 1
3 3

Define the content of a cell x = (i, j) ∈ λ to be c(x) = i− j. Let y, z be the cells at the end of
the arm and leg of x, and define the row-residue ρ(x) and column-residue γ(x) to be the residues
of the contents c(y), c(z) (mod r). Observe that h(x) ≡ 0 (mod r) if and only if γ(x) ≡ ρ(x) + 1.
For each residue class i, the cells x ∈ λ with γ(x) ≡ i and ρ(x) ≡ i− 1 form an “exploded” copy of
the diagram of a partition λi, with rows and columns not necessarily adjacent, and with a shifted
origin.

Definition 7.2.16. The r-quotient of a partition λ is the sequence of partitions

Quotr(λ) =
def

(λ0, . . . , λr−1)

constructed as above.

Here is an example with r = 3. In the first picture the ends of rows and columns are labeled
with their contents (mod 3). In the second, the cells forming the exploded diagrams are labeled
by their γ(x) value.

2
0 1 2 0 1 2

0
1
2 0

0
1 1

2 2 2
1 1

Quot3(λ) =
(

, ,

)

Proposition 7.2.17. For any partition λ, if Corer(λ) = ν is its r-core and Quotr(λ) =
(λ0, . . . , λr−1) is its r-quotient, then

|λ| = |ν|+ r
∑

i

|λi|.

For any fixed r-core ν0, the map λ 7→ Quotr(λ) is a bijection from {λ : Corer(λ) = ν0} onto the set
of all r-tuples of partitions.

Now we can describe the fixed points of YΓ,ν .

Proposition 7.2.18. For Γ = Z/rZ, the Γ-cores are exactly the monomial ideals Iν0, where the
partition ν0 is an r-core, and the T2-fixed points of YΓ,ν0+nδ are the monomial ideals Iµ where
|µ| = |ν0|+ nr and Corer(µ) = ν0. In particular, they are in natural bijective correspondence with
r-tuples of partitions (µ0, . . . , µr−1) of total size

∑
i |µi| = n.

We have abused notation by writing ν0 for both an r-core and a character of Γ. Explicitly, the
character corresponding to ν0 is

∑
imiχi, where mi is the number of cells x ∈ ν0 with content

c(x) ≡ i (mod r), and χi(
[

ωk 0
0 ω−k

]
) = ωik.
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Recall the standard indexing of irreducible characters of Γn by r-tuples (λ0, . . . , λr−1) of parti-
tions with

∑
i |λi| = n. If V λ is an irreducible Sn-module and Wi = C considered as a Γ-module

with character χi, then V λ ⊗Wi becomes a Γn-module via natural homomorphisms Γn → Sn and
Γn → Γ. Setting ki = |λi|, the induced module(

r−1⊗
i=0

(V λi ⊗Wi)

)
↑Γn
Γk0

×···×Γkr−1

is irreducible, and we write χ(λ0,...,λr−1) for its character.
Assuming Conjecture 7.2.13 holds, the fiber of the family of constellations P over a fixed point

Iµ in YΓ,ν is a doubly-graded Γn-equivariant C[x,y]-module affording the regular representation of
Γn, and we should expect its character to be an analog of the Macdonald polynomial H̃µ(z; q, t).
We could define the Frobenius series of a graded Γn-module as a symmetric function in r sets of
variables, but it is simpler to work in the space Xq,t(Γn) of virtual characters with coefficients in
Q(q, t). So, for a doubly graded Γn-module A =

⊕
i,j Ai,j , set

FA(q, t) =
∑
i,j

tiqj charAi,j .

Conjecture 7.2.13 and some plausible extra assumptions about the geometry of YΓ,ν lead to the
following conjecture/definition. The first part of the conjecture is an analog for Γn characters of the
definition of Macdonald polynomials (Definition 3.5.2) and makes no explicit reference to quiver
varieties.

Conjecture 7.2.19. Fix r, Γ = Z/rZ and an r-core ν0. Let h = Cn be the defining representation
of the complex reflection group G(r, 1, n) ∼= Γn.

Existence: there exists a basis {Hµ(q, t)} of Xq,t(Γn) indexed by partitions µ of size |µ| = |ν0|+nr
with Corer(µ) = ν0, characterized by the following properties.

(i) Hµ(q, t)⊗
∑

i(−q)i char(∧ih) ∈ Q(q, t){χQuotr(λ) : λ ≥ µ, Corer(λ) = ν0};
(ii) Hµ(q, t)⊗

∑
i(−t)−i char(∧ih) ∈ Q(q, t){χQuotr(λ) : λ ≤ µ, Corer(λ) = ν0};

(iii) 〈Hµ(q, t), 1Γn〉 = 1.
Terminology: The characters Hµ(q, t) (assuming they exist) are wreath Macdonald polynomials.
Positivity: The wreath Macdonald polynomials have coefficients in N[q, t, q−1, t−1].
Geometry: The wreath Macdonald polynomials are the graded characters of the fibers P (Iµ) of

the family of Γn-constellations in Conjecture 7.2.13 on YΓ,ν0+nδ,

Hµ(q, t) = FP (Iµ)(q, t).

I will close with a few remarks about this conjecture. Like Conjecture 7.2.13 (and for the same
reasons), it is true for ν0 sufficiently far from the walls of its Weyl chamber. The wreath Macdonald
polynomials for such ν0 depend only on the chamber and can be written explicitly in terms of the
classical Macdonald polynomials H̃µ(z; q, t). Note that although there are infinitely many r-cores
ν0, they induce for each n only finitely many different orderings on the characters χQuotr(λ), and
the wreath Macdonald polynomials depend only on the ordering. Similarly, there are only finitely
many non-isomorphic quiver varieties YΓ,ν0+nδ for each Γ and n.

The existence and positivity assertions in the conjecture are easy to check by computer, and I
have done so for a fairly large number of cases. The geometry assertion is much harder to verify.
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The basic trouble is that there is a description analogous to the n! conjecture only for the image of
C[x,y] in P (Iµ), which is nearly always a proper subalgebra. However, the existence and positivity
can themselves be regarded as evidence for the geometry, especially because the geometry predicts
other properties of the characters Hµ(q, t) that are confirmed by the computations.

Let q−k be the lowest power of q that occurs in Hµ(q, t). We can regard Hµ(t) =
def

qkHµ(q, t)|q=0

as wreath Hall-Littlewood polynomials. They are characterized (for fixed ν0) by suitable orthogo-
nality and triangularity properties. The generalized Green functions for G(r, 1, n) defined by Shoji
[79] satisfy the same orthogonality as our Hµ(t) but a different kind of triangularity. For us, the
ordering of characters depends on ν0 via the r-quotient, whereas Shoji uses an ordering based on
generalized Lusztig symbols. Shoji’s ordering is incompatible with ours in general, resulting in
different polynomials, although some of them are (accidentally?) the same for small r and n.

Finally, when r = 2, Γn is the Weyl group of type Bn or Cn. It turns out that ν0 = 0,
corresponding to the empty partition, is type Cn, while ν0 = α0, corresponding to the partition
(1), is type Bn. The reason for this is that there are canonical Ad(G)-invariant morphisms

(108)
Creg(sp2n) → YΓ,0+nδ

Creg(so2n+1) → YΓ,α0+nδ.

The preimages of T2-fixed points in YΓ,ν are the principal nilpotent pairs in Creg(g). In contrast
to (103), the above morphisms are not surjective, and YΓ,ν has many T2-fixed points that are
not images of principal nilpotent pairs. One can show that in this situation, the restriction of
Conjecture 7.2.13 to the image of the morphism in (108) is equivalent to Conjecture 7.2.3, restricted
to the part of X(g) lying above Creg(g).
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geometric combinatorics (Naples, 1978), CNR, Rome, 1981, pp. 129–156.

[57] Alain Lascoux and Marcel-Paul Schützenberger, Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris
Sér. A-B 286 (1978), no. 7, A323–A324.

[58] G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178.
[59] George Lusztig, Character sheaves. V, Adv. in Math. 61 (1986), no. 2, 103–155.
[60] I. G. Macdonald, A new class of symmetric functions, Actes du 20e Séminaire Lotharingien, vol. 372/S-20,
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