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1. ABSTRACT
We formulate the mask modeling as a parametric model order

reduction problem based on the finite element discretization of the
Helmholtz equation. By using a new parametric mesh and a ma-
chine learning technique called Kernel Method, we convert the
nonlinearly parameterized FEM matrices into affine forms. This
allows the application of a well-understood parametric reduction
technique to generate compact mask model. Since this model is
based on the first principle, it naturally includes diffraction and
couplings, important effects that are poorly handled by theexist-
ing heuristic mask models. Further more, the new mask model
offers the capability to make a smooth trade-off between accuracy
and speed.
Categories and Subject Descriptors
B.7.2 [Integrated Circuits ]: Design Aides—Simulation
General Terms
Algorithms,Performance,Design
Keywords
Lithography, Mask Model, Parameterized Model Order Reduction

2. INTRODUCTION
From lithography simulation point of view, two classes of de-

signs pose particularly challenging problems. The first class is the
memory design. With just six or seven transistors, each memory
cell has small layout. The carefully designed cell is duplicated
hundred millions to billions of times. Since the manufacturing de-
fects in one cell affect the entire row of cells, the memory design is
highly sensitive to such defects. Therefore, high accuracylithogra-
phy simulation is mandatory for the memory design. The second
class is the custom logic design. With a finite number of unique
standard cells as the building blocks, the layout is typically large,
in the order of 1×1mm2. Therefore, highly efficient lithography
simulation is mandatory for the custom logic design. Since tim-
ing and power are the main concerns, the accuracy of lithography
simulation has to be good enough to model the impact of manu-
facturing imperfection to the timing and power. Clearly, a good
lithography simulation tool should inherently have the capability to
make smooth trade-off between accuracy and speed for various de-
signs. And it should be based on rigorous mathematical foundation
to ensure its robustness.
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There are three main steps in lithography simulation [1]: photo
mask modeling, aerial image simulation and photo resist simula-
tion. This paper focuses on the photo mask modeling. The goalof
this step is to compute the near field, the electric field at thebot-
tom of the computational domain that contains the mask pattern.
The existing approaches can be categorized into two groups:field
solvers and heuristic models.

The field solver approach is to solve the Maxwell’s equations
using well-known numerical techniques such as finite difference
time domain (FDTD) [2] or finite element method (FEM) [3]. This
is the most accurate and robust approach. But experience indicates
that even the state-of-the-art field solvers are too slow or memory-
bounded to handle a medium-size mask pattern.

In practice, the heuristic models are used instead to obtainthe
approximate solution. A commonly used model is based on the
so-called Kirchhoff approximation [4]: if there is a mask opening,
the light shines through it without any change in magnitude and
phase; otherwise, light is completely blocked. This approximation
neglects the effects such as diffraction, polarization andcoupling.
Attempts have been made to obtain a modified mask model to im-
prove the accuracy [5, 6]. The piecewise constant curve fitting ap-
proach in [5, 6] is simple and efficient but not accurate and robust.
For example, it has been shown in [7] that such model can result in
wrong wafer imaging prediction.

The field solvers in [2, 3] and the heuristic models in [5, 6] sit
at the opposite corners in the accuracy-speed trade-off matrix and
it is difficult to smoothly trade accuracy with speed. In our early
work [8], the mask modeling was formulated as a parametric model
order reduction problem based on the finite element discretization
of the Helmholtz equation. The discretization in [8] uses a uniform
and rectangular mesh. This natually leads to the affine paramet-
ric form for the stiff and the mass matrices in FEM and hence the
well-understood parametric reduction technique [9, 10] can be di-
rectly applied to generate the compact mask model. However,the
non-uniform and unstructure mesh is indispensable to handle com-
plicated mask patterns. Unfortunately, as will be shown in section
6, a direct application of the technique in [9] could result in large
mask models.

In this paper, we present a new approach to approximate the
nonlinearly parameterized FEM matrices with affine forms. This
allows the direct application of the parametric reduction in [9, 10]
again. Though we demonstrate this new technique for the Helmholtz
equation that governs the photo mask modeling, it should be straight-
forward to apply the same approach to other partial differential
equations in the context of the parametric model order reduction.

3. PROBLEM FORMULATION
For the sake of simplicity, we present the problem formulation

based on the 2D example shown in Fig 1. The extension to 3D
cases is straightforward.

Assuming an S-polarization (TE) case, the governing 2D Helmholtz
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Figure 1: The structure of the 2D phase-shift mask. Variables
w1, w2 and sare the parameters in the reduced mask model.

equation is

∇2u−ω2εµu= ∇2u+k2u = 0 (1)

whereu(x,y) is thez-component of the total electric field,ω is the
frequency,ε andµ are respectively the dieletric constant and per-
meability. Following the standard FEM procedure [11], we obtain
the weak form
Z

Ω
ds∇v·∇u−ω2

Z

Ω
dsεµvu−

Z

∂Ω
dlvDtN(u) =−2

Z

∂Ω
dlvDtN(uin),

(2)
whereΩ and ∂Ω are respectively the computational domain and
its boundary,v is the testing function,uin is the known incidence
plane wave and the DtN()̇ operator defines the transparent bound-
ary condition [12]. In this paper, we assume the periodic boundary
condition at the east and the west side of the computational domain
and transparent or non-reflecting boundary condition on thenorth
and the south side of the computational domain.

Using the standard FEM piecewise polynomial basis functions
[11] to discretize (2), we arrive at the parameterized system equa-
tion

[S(w̄, s̄)−M(w̄, s̄)−B]ū = r̄, (3)

where vector ¯w ands̄ respectively contain the widths and the spac-
ings in the layout, the stiff matrixS(w̄, s̄) corresponds to the first
term in (2), the mass matrixM(w̄, s̄) corresponds to the second term
in (2), the matrixB corresponds to the third term in (2), and vector
r̄ corresponds to the right-hand-side term in (2).

For mask patterns with fixed topology but different width and
spacing values, computing the near field involves solving equation
(3) for different w̄ and s̄. This kind of multiple-inquery scenario
is precisely what the parametric model order reduction approach is
designed for.

4. PARAMETRIC MODEL ORDER REDUC-
TION

A parametric model order reduction technique called Reduced
Basis method has been developed by the finite element research
community [9]. A similar idea has also been independently pro-
posed in the area of parameterized model order reduction forcir-
cuit simulation [10]. As will be shown later, the Reduced Basis is
a very powerful idea on top of which we can build our new mask
model to achieve the desirable accuracy and speed trade-off. Here
we summarize its key steps. Please refer to [9] for more details.

Suppose the parameterized governing equation for the problem
at hand is

A(σ̄)ū =

[

A0 +∑
i

fi(σ̄)Ai

]

ū = r̄, (4)

where the scalar functionfi(σ̄) can be arbitrary and the size of vec-
tor ū, r̄ and constant matrixAi is N×1, N×1 andN×N, respec-
tively. In practical applications,N can be as large as a few millions

for a medium-sized 3D structure. The Reduced Basis method in
[9] has two stages: the off-line pre-characterization and the on-line
evaluation.
Off-line pre-characterization stage. We randomly generate a set
σ̄k = {σk

1,σ
k
2, ...} using the given ranges ofσi and solve (4) for

ūk . After a few sampling solves, we collect all solutions into the
projection matrix

P = [ū1, ū2, ..., ūM] (5)

and perform projection

Âi = PTAiP; r̂ = PT r̄. (6)

Now we arrive at the reduced governing equation
[

Â0 +∑
i

fi(σ̄)Âi

]

û = r̂, (7)

where the size of matrix̂Ai is M×M andM is the number of sam-
pling solves.

Similar to the standard procedure in the Model Order Reduc-
tion [10], the columns in the projection matrixP are orthogonal-
ized using techniques such as incremental QR decomposition. This
makes the matrixP well conditioned. In addition, both theoretical
and practical ways to estimate the error of the reduced modelare
readily available [9, 10]. Hence the off-line model generation can
be made incremental.
On-line evaluation stage. We substitute the given set̄σ∗ into (7)
and solve for ˆu. The approximate solution to equation (4) is ob-
tained from

u = Pû. (8)

The key observation here is that the CPU time of the on-line
stage is only related toM, not to N in (4). And M is typically
many orders of magnitude smaller thanN, as shown by the exten-
sive experiments in [9, 10]. Hence equation (7) is a much more
efficient but still accurate reduced model than the originalmodel
in (4). However, this dramatic efficiency gain critically depends on
the fact that matrixAi in (4) is not a function of̄σ. Otherwise, the
projection step in (6) involves calculatingAi(σ̄) at a particular value
σ̄k. This essentially means that the CPU time used by the reduced
model in (7) is related to the original problem sizeN and hence we
have gained no efficiency at all [9, 13]. This issue of representing
the potentially arbitrary nonlinearity inA(σ̄) in the form amenable
to the projection framework in (6) is one of the main challenges in
the nonlinear Model Order Reduction [14].

The main contribution in this paper is to show how to convert
S(w̄, s̄) and M(w̄, s̄) into the appropriate form similar to that in
equation (4) so that we can apply the congruence projection in (6).
This is done in two steps: parameterization of mesh and parameter-
ization of the FEM matrices.

5. PARAMETERIZE MESH
In this section, we show an effective technique to parameterize

the unstructured triangular mesh in an affine form of the geometry
parameters ¯w ands̄. This is an important first step toward parame-
terizing the stiff matrixS(w̄, s̄) and the mass matrixM(w̄, s̄) in (3).

When the size of a geometric feature changes, sayw2 in Fig 1,
the mesh points surrounding the feature will move as well. How-
ever, to capture the changes in the resulting electric field,not all
mesh points in the computational domain have to be moved. Only
mesh points within a certain distance from the changing geometric
feature need to be moved. To measure such a distance, we borrow
a well-established concept called distance function from the cele-
brated Level Set Method [15].



5.1 The Distance Function
We use a simple example to explain the basic ideas in the dis-

tance function. Let(x1,y1) and(x2,y2) be the lower-left and upper-
right corner of a rectangle, respectively. The distance from a point
(x,y) to such a rectangle is defined as

d(x,y) = −min(min(y−y1,y2−y),min(x−x1,x2−x)), (9)

where functionmin(a,b) returns the smaller value of the two vari-
ables. Fig. 2 shows the contour plot of the distance functionfor a
square wherex1 = y1 = 5 andx2 = y2 = 10. It should be noted that
the zero level set corresponds to the boundary of the square.All
points outside of the square have positive distance and all points
inside the square have negative distance.

5.2 The Blending Function
The movement of mesh points due to geometry changes depend

on the distance of the mesh points to the changing geometry. Intu-
itively, the function that characterizes such movement should sat-
isfy the following constrains

b(η) = 1, i f η = 0 (10)
db
dη

< 0, i f 0 < η < 1 (11)

b(η) = 0, i f η ≥ 1 (12)
db
dη

= 0, i f η = 1 (13)

whereη is the normalized distance defined as

η =
d(x,y)

B
, (14)

B is a user-defined radius of influence, andd(x,y) is the distance
function like the one defined in (9). Equation (10) means thatthe
mesh points on the geometry move by the same amount as that of
the moving geometry features. Equation (11) means that the move-
ment magnitude decreases monotonically as the mesh points are
away from the geometry. Equation (12) means that the movement
magnitude is zero if the mesh point is not inside the influencere-
gion. Equation (13) ensures a smooth transition of the movement
at the boundary of the influence region. In spirit, functionb(η) is
similar to the so-called blending function in [16] used to generate
the mesh for the computational domain with moving boundaries. In
this paper we have chosen the following function as the blending
function

b(η) = 2(1− p(
η
2

+0.5)), η ∈ [0,1] (15)

wherep(η) is a third-order polynomial

p3(η) = 3η2−2η3
. (16)

5.3 The Parametric Form of Mesh
Armed with the blending function in (15) based on the distance

function like the one defined in (9), we are ready to parameterize
the movement of the mesh points due to the change of geometric
features. Without loss of generality, we use the parameterw2 in
Fig. 1 as an example. Supposew2 is changed byδw2. Further
more, again without loss of generality, suppose that the center of
the opening does not move, only the left and the right wall move
by− δw2

2 and δw2
2 , respectively. Within the influence region around

the left and the right side wall, the location(x,y) of a mesh point
can be expressed as

x = x0 +
bR−bL

2
δw2 = x0 +b2δw2, (17)

y = y0 (18)
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Figure 2: Contour plot of the distance to a square.

Figure 3: Triangular mesh for the 2D mask in Fig. 1. Notice
the deformation of the 90-degree triangles due to the changein
w1 and w2.

where

bL = b(
dL(x0,y0)

B
), bR = b(

dR(x0,y0)

B
) (19)

(x0,y0) is the initial location, anddL(x0,y0) anddR(x0,y0) are its
distance to the left and the right side wall, respectively.

Using linear superposition, one can easily generalize (17)to the
multiple parameter cases

x = x0+ < b̄, σ̄ > (20)

where< ,̇>̇ is the inner product, andbi is the blending term for
parameterσi which represents the change ofw1, w2 or s in Figure
1. Clearly the parametric form in (20) is an affine function ofthe
perturbation in each geometry parameter. It should be pointed out
that the simple parametric form in (17) and (18) can be easilyex-
tended to handle parameter changes along arbitrary directions. But
for the purpose of modeling masks, it is probably sufficient to con-
sider just the cases where the parameters are changing only along
the horizontal direction (x-direction for 2D). This will bethe case
in the remaining part of this paper. Figure 3 shows the deforma-
tion in the triangular mesh for the mask shown in Fig. 1 due to the
change inw1 andw2.

6. PARAMETERIZE THE FEM MATRICES
For the isoparametric linear triangular elements defined onthe

triangle element with vertexes(xi ,yi), i = 1,2,3, the element stiff



matrix and mass matrix are respectively [11]

Se = W
δ̄xδ̄T

x + δ̄yδ̄T
y

4A
WT (21)

and

Me = 4AMc (22)

whereA is the area of the triangle and can be written as

A =
1
2
|det([δ̄x, δ̄y])|, (23)

δ̄x = [x1−x3,x2−x1]
T
, (24)

δ̄y = [y3−y1,y1−y2]
T
, (25)

W =

[

−1 −1
1 0
0 1

]

, (26)

Mc =
1
24

[

2 1 1
1 2 1
1 1 2

]

. (27)

6.1 The Parametric Element FEM Matrices
Suppose a triangle element is within the region of the influence

defined in section 5, in view of (20) and (18), (24) and (25) become

δ̄x =

[

x1−x3
x2−x1

]

=

[

x1,0−x3,0+ < d̄13, σ̄ >

x2,0−x1,0+ < d̄21, σ̄ >

]

(28)

δ̄y =

[

y3,0−y1,0
y1,0−y2,0

]

(29)

where(xi,0,yi,0) is the nominal position for the node-i, d(k)
i j = b(k)

i −

b(k)
j andb(k)

i is thek-th component of the vector̄b in (20) for node-
i. For the sake of clarity, we assume that the triangle is a 90-degree
triangle that satisfies

[

x1,0−x3,0
x2,0−x1,0

]

=

[

0
hx

]

,

[

y3,0−y1,0
y1,0−y2,0

]

=

[

hy
0

]

, (30)

then we have

δ̄x = hx

[

<
d̄13
hx

, σ̄ >

1+ <
d̄21
hx

, σ̄ >

]

= hx

[

Y
1+Z

]

(31)

δ̄y = hy

[

1
0

]

, (32)

A = 0.5hxhy(1+Z) (33)

whereY =<
d̄13
hx

, σ̄ > andZ =<
d̄21
hx

, σ̄ >. Substituting (31), (32)
and (33) into (21), we obtain the parametric element stiff matrix

Se =
hx

2hy
W

[

Y2

1+Z Y
Y 1+Z

]

WT +
hy

2hx

1
1+Z

W

[

1 0
0 0

]

WT

=
hx

2hy

(

W

[

0 0
0 1

]

WT +W

[

0 Y
Y Z

]

WT
)

+
Y2

1+Z
hx

2hy
W

[

1 0
0 0

]

WT +
1

1+Z

hy

2hx
W

[

1 0
0 0

]

WT

= Se
0 +

Np

∑
k=1

σkSe
k +

Y2

1+Z
Se

Np+1 +
1

1+Z
Se

Np+2 (34)

where

Se
0 =

hx

2hy
W

[

0 0
0 1

]

WT
, Se

k =
1

2hy
W

[

0 d(k)
13

d(k)
13 d(k)

21

]

WT (35)

Se
Np+1 =

hx

2hy
W

[

1 0
0 0

]

WT
, Se

Np+2 =
hy

2hx
W

[

1 0
0 0

]

WT
.

(36)
In view of (33) and (22), the parametric element mass matrix is

Me(σ̄) = 2hxhy(1+Z)Mc = Me
0 +

Np

∑
k=1

σkMe
k (37)

whereMe
0 = 2hxhyMc andMe

k = 2hyMcd(k)
21 .

6.2 The Assembled FEM Matrices
The standard way of generating matricesS(w̄, s̄) andM(w̄, s̄) is

by a procedure called stamping. The 3× 3 element stiff matrix
Se(w̄, s̄) and the 3×3 element mass matrixMe(w̄, s̄) are first gener-
ated for each element. Using the local-to-global vertex index map,
the entries ofSe andMe are directly added (stamped) to the large
matricesS(w̄, s̄) andM(w̄, s̄), respectively. The parametric stiff ma-
trix is

S(σ̄) = S0 +
Np

∑
k=1

σkS(k)
1 +

N1

∑
i=1

fi(σ̄)S(i)
2 +

N2

∑
j=1

g j (σ̄)S( j)
3 (38)

where matricesS0, S(k)
1 , S(i)

2 andS( j)
3 are respectively the reults of

the stamping of the element matricesSe
0, Se

k, Se
Np+1 andSe

Np+2 in
(34),

fi(σ̄) =
Y2

i

1+Zi
, g j (σ̄) =

1
1+Z j

, (39)

Yi =<
d̄(i)

13
hx

, σ̄ >, Zi =<
d̄(i)

21
hx

, σ̄ >, (40)

N1 andN2 are respectively the number of uniquefi(σ̄) andg j (σ̄)
for all the triangle elements in the computation domain,Np is the
number of parameters in the vectorσ̄. Similarly, the parametric
mass matrix is

M(σ̄) = M0 +
Np

∑
k=1

σkM(k)
1 , (41)

where matricesM0 andM(k)
1 are respectively the reults of the stamp-

ing of the element matricesMe
0 andMe

k in (37).

6.3 Regression Using the Kernel Method
The parametric forms in (38) and (41) are very similar to that

in (4). But sinceN1 andN2 are related to the number of elements
in the computational domain, so is the size of the reduced model.
Hence we have not obtained a mask model that is independent of
the original problem size yet. In fact, this is the main reason why
we can not directly apply the technique in [9] to generate there-
duced mask model. The next critical task is to approximatelyrep-
resent the large number offi(σ̄) andg j (σ̄) by the linear combina-
tion of a small number of the so-called Kernel functions thatare
independent of the original problem size. Essentially we seek to
approximate a high-dimension space where the nonlinear function
fi and g j reside with a much lower dimension space. This kind
of approximation has been well-studied in the Machine Learning
literatures and the so-called Kernel Method has been shown to be
effective [17].

The gist of the Kernel Method is the following. Consider repre-
senting a scalar functionf (x̄) : Rn → Rof multi-variable argument.
An interesting class of approximations are of the form

f (x̄) =
Nk

∑
k=1

αkK(x̄, x̄k) (42)



wherex̄ ∈ Rn is the evaluation point,K(x̄, ȳ) : Rn×Rn → R is the
Kernel, and theNk vectors ¯xk ∈ Rn are denoted as the “support vec-
tors”. The basic kernel methods [17] use simple function forms for
the kernels and pick the coefficientαk based on certain loss func-
tions.

In this paper, we choose the kernel form to be the same as the
nonlinear functions to be approximated. So the kernel regression
form is

fi(σ̄) ≈
Nk

∑
k=1

α(i)
k K1(ξk), g j (σ̄) ≈

Nk

∑
k=1

β( j)
k K2(ξk), (43)

where

K1(ξk) =
ξ2

k

1+ξk
, K2(ξk) =

1
1+ξk

, (44)

andξk =< d̄k, σ̄ >, Nk is the number of kernels necessary to achieve
the desired accuracy. As shown in section 8, 10 to 15 kernels can

achieve 3 to 4 digits of accuracy. The coefficientsα(i)
k and β( j)

k
are obtained by the simple Least Square Fitting, the simplest loss
function form [17]. The support vectors̄dk are selected from all

possible values of̄d(i)
13 and d̄(i)

21 in (40) by the K-mean Clustering
Methods [17].

It should be noted that due to the locality of the parametric mesh,
each mesh node is influenced by a small number of parameters, typ-
ically 2 in the 2D cases and 4 in the 3D cases. This means that the

length of the vectord̄(i)
13 and d̄(i)

21 is 2 for 2D cases and 4 for 3D
cases, respectively. Essentially the number of clusters isindepen-
dent of the number of the parameters in the mask structures. This is
a key benefit from using the parametric mesh in section 5. Cover-
ing a relatively low-dimensional space with the K-mean clustering
usually means small cluster numberNk in (43). Hence the mask
model size is largely determined by the number of sampling solves
in (5).

Substituting (43) into (38), we obtain the final parametric form
of the stiff matrix

S(σ̄) ≈ S0 +
Np

∑
k=1

σkS(k)
1 +

Nk

∑
k=1

K1(ξk)S
(k)
2 +

Nk

∑
k=1

K2(ξk)S
(k)
3 (45)

whereS(k)
2 andS(k)

3 are the results of the stampingα(i)
k Se

Np+1 and

β( j)
k Se

Np+2, respectively.

7. PARAMETRIC MASK MODEL
Now we are ready to put everything together to present the final

mask model. Substituting (45) and (41) into (3), we obtain
[

A0 +
Np

∑
k=1

σkA(k)
1 +

Nk

∑
k=1

K1(ξk)A
(k)
2 +

Nk

∑
k=1

K2(ξk)A
(k)
3

]

ū = r̄, (46)

whereA0 = S0−M0−B, A(k)
1 = S(k)

1 −M(k)
1 , A(k)

2 = S(k)
2 , andA(k)

3 =

S(k)
3 . Using the congruence projection in (6), we obtain the reduced

model
[

Â0 +
Np

∑
k=1

σkÂ(k)
1 +

Nk

∑
k=1

K1(ξk)Â
(k)
2 +

Nk

∑
k=1

K2(ξk)Â
(k)
3

]

û = r̂. (47)

The usage of this mask model is similar to that described in sec-
tion 4. But there is a key difference. In lithography simulation flow,
we only care about the near field at the bottom of the mask. In view
of (8), this can be accomplished by using

ūn = Λū = ΛPû = Pnû, (48)

whereūn is the portion of ¯u that corresponds to the near field at the
bottom of the mask, and the sparse matrixΛ selects those entries

from ū. An important benefit from (48) is that we only need to
storePn = ΛP in the mask model. MatrixPn is much smaller than
matrixP. The algorithmic details for the offline and the online stage
are shown in Algorithm 1 and Algorithm 2, respectively. We want
to emphasize again that the cost of online stage isO(N3

s + (Np +

Nk)N2
s ). This is clearly independent of the orginal problem sizeN.

Algorithm 1: Offline Stage to generate mask model
Input: Range of parameters in̄σ; mesh;Ns:
number of samplings;tol: truncation tolerance
for rank revealing QR

Output: Â0, Â(k)
1 ,Â(k)

2 ,Â(k)
3 ; r̂; Pn

(1) Form matricesA0,A
(k)
1 ,A(i)

2 ,A( j)
3 and

r̄ in (46)
(2) foreach k = 1 : Ns

(3) Randomly samplēσ(k) using the
given ranges

(4) Solve (46) for ¯u(k)

(5) P = [P ū(k)]
(6) Run rank-revealing incremental

QR to obtain rankr and the full-
rank columnsP1,P2, ...,Pr using
the given truncation tolerancetol

(7) if r < k, i.e.,P is rank deficient
(8) P = [P1,P2, ...,Pr ]
(9) Exit the sampling loop
(10) Use P as projector and compute

Â0, Â
(k)
1 , Â(i)

2 , Â( j)
3 , r̂ as shown in (6)

(11) Pn = ΛP as shown in (48)

Algorithm 2: Online Stage to evaluate mask model

Input: σ̄*; Â0, Â
(k)
1 , Â(k)

2 , Â(k)
3 ; r̂;Pn

Output: ūn: the near field at the bottom of the
mask
(1) Instantiate the compact mask model

in (47) usingσ̄∗
(2) Solve (47) for ˆu
(3) ūn = Pnû as shown in (48)

8. EXPERIMENTAL EVIDENCE
We use the mask in Figure 1 to validate our ideas. For the 32nm

node, the nominal values ofw1, w2 andsare assumed to be 128nm.
They have identically independent distribution with the variance
being 10%. This 20% variation range is probably more than suffi-
cient for practical consideration. It should be noted that if we add
correlation among these parameters, it will only change thesam-
pling but not the main steps in algorithm 1 and 2. With a randomly
generated parameter setσ̄∗, we substitute (38) and (41) into (3) and
solve (3) forū1. This is treated as the accurate solution. This way,
we can clearly see the error introduced separately by the Kernel-
based fitting in (43) and the model order reduction in Algorithm
1.
A) Kernel-based Regression Accuracy With the same parame-
ter setσ̄∗ mentioned above, we solve (46) for ¯u2 and then compute

the relativeL2 norm error‖ū1−ū2‖2

‖ū1‖2
. The relative error vs. the num-

ber of kernels is shown in Fig. 4.
B) Model Order Reduction Accuracy In this experiment,Nk =
20 kernels are used in (47). The corresponding small error inkernel
fitting ensures that the MoR error in (47) dominates the overall er-
ror, as is clearly seen in Figure 5. With the increase of the number
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Figure 4: Relative error in regression.

of samplesNs in Algorithm 1, the relative error due to model order
reduction decreases rapidly in Figure 5.
C) Mask Model Accuracy Figure 5 also shows the overall error
in the approximate solution provided by the new mask model. With
about 8 kernels and 10 samples, the mask model can achieve a 1%
overall relative error or 2-digits of accuracy.
D) Mask Model Speed The main cost of using the reduced mask
model is to instantiate the small dense matrices in (47) and then
invert one small dense matrix. Instantiating a few 10× 10 dense
matrices and then inverting a 10×10 dense matrix takes about 1e−
4 second. For the simple two-dimensional phase-shift mask shown
in Fig. 1, direct use of FEM approach would result in a sparse
matrixA(σ̄) in (46) withN being around 5000. The CPU time used
by a direct sparse solver for such a system would be in the order of
a few seconds on a desktop PC. So we see a 4-order of magnitude
improvement in speed.

In addition, since the CPU time at the online stage directly relates
to the number of samples in Algorithm 1, the smooth trade-offbe-
tween the accuracy and the CPU time is clearly demonstrated in
Figure 5. Further more, our empirical studies indicate thatnumber
of samples is a weak function of the original problem size or the
number of parameters. This is certainly a very attractive feature of
the new mask model proposed in this paper.

9. CONCLUSIONS
In this paper, we propose two key new ideas to improve our work

on the parametric mask model in [8]: 1) Parametric unstructured
mesh using the distance function and the blending function;2)
Kernel-based regression to significantly reduce the numberof para-
metric terms in the final system. Numerical experiments demon-
strate that the new mask model offers smooth accuracy-speedtrade-
off and hence can be tuned to different design applications.The
model generation in Algorithm 1 is inherently incremental and both
theoretical and practical ways to estimate the model error are read-
ily available. In addition, the parametric mesh allows the decou-
pling between the mesh generation and the parametrization of the
FEM matrices, a considerable simplification from implementation
point of view.
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Figure 5: Convergence of the L2 norm relative error in field
distribution for the mask shown in Figure 1. Each parame-
ter varies between−10%and +10% from its nominal value of
128nm. “MoR” refers to the error caused by the model reduc-
tion stage. “Fit” refers to the error caused by the regression fit
in (43). “Overall” refers to the overall error due to both.
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