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1. ABSTRACT

We formulate the mask modeling as a parametric model order
reduction problem based on the finite element discretinaifdhe

There are three main steps in lithography simulation [1Jotph
mask modeling, aerial image simulation and photo resistisim
tion. This paper focuses on the photo mask modeling. Thegfoal

Helmholtz equation. By using a hew parametric mesh and a ma- this step is to compute the near field, the electric field atbibte

chine learning technique called Kernel Method, we conveet t
nonlinearly parameterized FEM matrices into affine formsisT
allows the application of a well-understood parametricurgithn
technique to generate compact mask model. Since this medel i
based on the first principle, it naturally includes diffiact and
couplings, important effects that are poorly handled by ekist-

ing heuristic mask models. Further more, the new mask model
offers the capability to make a smooth trade-off betwee sy

and speed.
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2. INTRODUCTION

From lithography simulation point of view, two classes of de
signs pose particularly challenging problems. The firssglia the
memory design. With just six or seven transistors, each nmgmo
cell has small layout. The carefully designed cell is digikc
hundred millions to billions of times. Since the manufaitgrde-
fects in one cell affect the entire row of cells, the memorgidge is
highly sensitive to such defects. Therefore, high acculiftoygra-
phy simulation is mandatory for the memory design. The sécon
class is the custom logic design. With a finite nhumber of uaiqu
standard cells as the building blocks, the layout is tyjbhidalrge,
in the order of 1x Imn¥. Therefore, highly efficient lithography
simulation is mandatory for the custom logic design. Singe t
ing and power are the main concerns, the accuracy of lithpdyra
simulation has to be good enough to model the impact of manu-
facturing imperfection to the timing and power. Clearly, @od
lithography simulation tool should inherently have theataifity to
make smooth trade-off between accuracy and speed for wadieu
signs. And it should be based on rigorous mathematical fatiowl
to ensure its robustness.
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tom of the computational domain that contains the mask patte
The existing approaches can be categorized into two grdigid:
solvers and heuristic models.

The field solver approach is to solve the Maxwell’'s equations
using well-known numerical techniques such as finite dffiee
time domain (FDTD) [2] or finite element method (FEM) [3]. §hi
is the most accurate and robust approach. But experienamted
that even the state-of-the-art field solvers are too slow emory-
bounded to handle a medium-size mask pattern.

In practice, the heuristic models are used instead to olbtein
approximate solution. A commonly used model is based on the
so-called Kirchhoff approximation [4]: if there is a maskenjing,
the light shines through it without any change in magnitudd a
phase; otherwise, light is completely blocked. This apjmnation
neglects the effects such as diffraction, polarization emapling.
Attempts have been made to obtain a modified mask model to im-
prove the accuracy [5, 6]. The piecewise constant curveditiip-
proach in [5, 6] is simple and efficient but not accurate aruliso.
For example, it has been shown in [7] that such model cantrigsul
wrong wafer imaging prediction.

The field solvers in [2, 3] and the heuristic models in [5, @] si
at the opposite corners in the accuracy-speed trade-ofixveatd
it is difficult to smoothly trade accuracy with speed. In oarlg
work [8], the mask modeling was formulated as a parametrideho
order reduction problem based on the finite element disztin
of the Helmholtz equation. The discretization in [8] usesidiarm
and rectangular mesh. This natually leads to the affine petram
ric form for the stiff and the mass matrices in FEM and henee th
well-understood parametric reduction technique [9, 10] ba di-
rectly applied to generate the compact mask model. Howéwer,
non-uniform and unstructure mesh is indispensable to leacath-
plicated mask patterns. Unfortunately, as will be showneiction
6, a direct application of the technique in [9] could resuoltarge
mask models.

In this paper, we present a new approach to approximate the
nonlinearly parameterized FEM matrices with affine formgisT
allows the direct application of the parametric reductiorid, 10]
again. Though we demonstrate this new technique for the kigitmn
equation that governs the photo mask modeling, it shouldrbight-
forward to apply the same approach to other partial difféaén
equations in the context of the parametric model order réaioc

3. PROBLEM FORMULATION

For the sake of simplicity, we present the problem formolati
based on the 2D example shown in Fig 1. The extension to 3D
cases is straightforward.

Assuming an S-polarization (TE) case, the governing 2D Heliz
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Figure 1. The structure of the 2D phase-shift mask. Variabls
w1, W» and sare the parameters in the reduced mask model.

W,

equation is
0%u— wPepu= D%u+KPu=0 (1)

whereu(x,y) is thez-component of the total electric fieldyis the
frequency,e and are respectively the dieletric constant and per-
meability. Following the standard FEM procedure [11], weaii
the weak form

/dﬂ]v-l]u—wz/d$uvu—/ dIVDEN(u)
Q Q 0

—Z/tdethN(uin),
(2)

where Q and 0Q are respectively the computational domain and
its boundary,v is the testing functiony;, is the known incidence
plane wave and the D)l operator defines the transparent bound-
ary condition [12]. In this paper, we assume the periodicriiauy
condition at the east and the west side of the computatiamahth
and transparent or non-reflecting boundary condition omtiréh
and the south side of the computational domain.

Using the standard FEM piecewise polynomial basis funstion
[11] to discretize (2), we arrive at the parameterized systgjua-
tion

[SW.§) ~M(W,§] - BlI=T. ®)
where vectomw andsrespectively contain the widths and the spac-
ings in the layout, the stiff matri§(w,s) corresponds to the first
term in (2), the mass matriM (w, S) corresponds to the second term
in (2), the matrixB corresponds to the third term in (2), and vector
r corresponds to the right-hand-side term in (2).

For mask patterns with fixed topology but different width and
spacing values, computing the near field involves solvingaégn
(3) for differentw ands.” This kind of multiple-inquery scenario
is precisely what the parametric model order reduction apgh is
designed for.

4. PARAMETRIC MODEL ORDER REDUC-
TION

A parametric model order reduction technique called Reduce
Basis method has been developed by the finite element résearc
community [9]. A similar idea has also been independentty- pr
posed in the area of parameterized model order reductionirfor
cuit simulation [10]. As will be shown later, the Reduced Bas
a very powerful idea on top of which we can build our new mask
model to achieve the desirable accuracy and speed tradétefé
we summarize its key steps. Please refer to [9] for more ldetai

Suppose the parameterized governing equation for the gurobl
at hand is

A(O)u= (4)

A0+Zfi(6)Ai] 0=,

where the scalar functiofi(a) can be arbitrary and the size of vec-
tor u, r and constant matri®; is N x 1, N x 1 andN x N, respec-
tively. In practical applications\l can be as large as a few millions

for a medium-sized 3D structure. The Reduced Basis method in
[9] has two stages: the off-line pre-characterization dreddn-line
evaluation.

Off-line pre-characterization stage We randomly generate a set
ok = {0X, 0k, ...} using the given ranges a and solve (4) for

Ug . After a few sampling solves, we collect all solutions inte t
projection matrix

P =[Ug,Up,...,Um] (5)
and perform projection
A =PTAP; F =PTF. (6)
Now we arrive at the reduced governing equation
AAO‘FZfi(C_’)Ai} a=F, (7
I

where the size of matri)& isM x M andM is the number of sam-
pling solves.

Similar to the standard procedure in the Model Order Reduc-
tion [10], the columns in the projection matri are orthogonal-
ized using techniques such as incremental QR decompasittia
makes the matri¥ well conditioned. In addition, both theoretical
and practical ways to estimate the error of the reduced mael
readily available [9, 10]. Hence the off-line model genierican
be made incremental.

On-line evaluation stage We substitute the given set into (7)
and solve foru” The approximate solution to equation (4) is ob-
tained from

u=P0.

®)

The key observation here is that the CPU time of the on-line
stage is only related t¥, not toN in (4). And M is typically
many orders of magnitude smaller thelnas shown by the exten-
sive experiments in [9, 10]. Hence equation (7) is a much more
efficient but still accurate reduced model than the origmaldel
in (4). However, this dramatic efficiency gain criticallypinds on
the fact that matrix; in (4) is not a function of. Otherwise, the
projection step in (6) involves calculatiig(o) at a particular value
oX. This essentially means that the CPU time used by the reduced
model in (7) is related to the original problem sideand hence we
have gained no efficiency at all [9, 13]. This issue of repnéag
the potentially arbitrary nonlinearity iA(a) in the form amenable
to the projection framework in (6) is one of the main challesiin
the nonlinear Model Order Reduction [14].

The main contribution in this paper is to show how to convert
S(w,s) and M(w,s) into the appropriate form similar to that in
equation (4) so that we can apply the congruence projeatig®)i
This is done in two steps: parameterization of mesh and petexm
ization of the FEM matrices.

5. PARAMETERIZE MESH

In this section, we show an effective technique to pararimter
the unstructured triangular mesh in an affine form of the getoyn
parametersvands. This is an important first step toward parame-
terizing the stiff matrixS(w, s) and the mass matrid (w,s) in (3).

When the size of a geometric feature changes,vgain Fig 1,
the mesh points surrounding the feature will move as wellwHo
ever, to capture the changes in the resulting electric fiedd,all
mesh points in the computational domain have to be movedy Onl
mesh points within a certain distance from the changing ggom
feature need to be moved. To measure such a distance, wavborro
a well-established concept called distance function froendele-
brated Level Set Method [15].



5.1 The Distance Function

We use a simple example to explain the basic ideas in the dis-
tance function. Lefx1,y1) and(xg,y») be the lower-left and upper-
right corner of a rectangle, respectively. The distancenfeopoint
(x,y) to such a rectangle is defined as

d(x,y) = —min(min(y —y1,y2 —y),min(x—x,x2 — X)), (9)

where functiormin(a, b) returns the smaller value of the two vari-
ables. Fig. 2 shows the contour plot of the distance fundiom
square wherg; =y; =5 andx, =y, = 10. It should be noted that
the zero level set corresponds to the boundary of the squslte.
points outside of the square have positive distance andoaitgp
inside the square have negative distance.

5.2 The Blending Function

Figure 2: Contour plot of the distance to a square.

The movement of mesh points due to geometry changes depend

on the distance of the mesh points to the changing geomeixy: |
itively, the function that characterizes such movemenukheat-
isfy the following constrains

bn) = 1, if n=0 (10)
@ < 0, if 0O<n<1 (1)
dn ) n
bn) = 0, if n>1 12)
db .
ﬁ 0, if n=1 (13)
wheren is the normalized distance defined as
_dixy)
n=—g". (14)

B is a user-defined radius of influence, aifick,y) is the distance
function like the one defined in (9). Equation (10) means that

mesh points on the geometry move by the same amount as that of,

the moving geometry features. Equation (11) means that tvem
ment magnitude decreases monotonically as the mesh pots a
away from the geometry. Equation (12) means that the movemen
magnitude is zero if the mesh point is not inside the influelece
gion. Equation (13) ensures a smooth transition of the mevem
at the boundary of the influence region. In spirit, functtgm) is
similar to the so-called blending function in [16] used togeate

the mesh for the computational domain with moving boundarie

this paper we have chosen the following function as the lend
function

b(n) = 2(1-p(3 +05)), ne 0,1 (15)
wherep(n) is a third-order polynomial
Pa(n) =3n%—2n°. (16)

5.3 The Parametric Form of Mesh

Armed with the blending function in (15) based on the diséanc
function like the one defined in (9), we are ready to paraneter

Figure 3: Triangular mesh for the 2D mask in Fig. 1. Notice
the deformation of the 90-degree triangles due to the changa
1 and wa.

where

_ dr (%0, Y0)
b = (=5, g
(X0,Yo) is the initial location, andl, (Xo,Yo) anddr(Xo,Yo) are its
distance to the left and the right side wall, respectively.

Using linear superposition, one can easily generalize {d #e
multiple parameter cases

di (%0, Yo) bR = b ) (19)

X = Xo+<bo> (20)

where < ;> is the inner product, ant; is the blending term for
parameteo; which represents the changewf, w, or sin Figure
1. Clearly the parametric form in (20) is an affine functiontioé
perturbation in each geometry parameter. It should be edintit
that the simple parametric form in (17) and (18) can be easily

the movement of the mesh points due to the change of geometrictended to handle parameter changes along arbitrary directBut

features. Without loss of generality, we use the parametein
Fig. 1 as an example. Suppoge is changed byw,. Further
more, again without loss of generality, suppose that théeceasf
the opening does not move, only the left and the right wall enov
b —5—‘2’2 and5—"2"2, respectively. Within the influence region around
the left and the right side wall, the locatig¢r,y) of a mesh point
can be expressed as

br—b
X = Xo—‘—%éWz:Xo—i-bzéWz, 17)

Y = Yo (18)

for the purpose of modeling masks, it is probably sufficientdn-
sider just the cases where the parameters are changing lonly a
the horizontal direction (x-direction for 2D). This will kbe case
in the remaining part of this paper. Figure 3 shows the dederm
tion in the triangular mesh for the mask shown in Fig. 1 duénéo t
change inwv; andws.

6. PARAMETERIZE THE FEM MATRICES

For the isoparametric linear triangular elements definedhen
triangle element with vertexes,yi),i = 1,2,3, the element stiff



matrix and mass matrix are respectively [11]

5y +3d)
=W—-2W 21
s A (21)
and
M€ = 4AMc (22)
whereA is the area of the triangle and can be written as
1 - —
A= 5 |det([dx,3y])]; (23)
§x= X1 —Xg, % —Xa] T, (24)
& =1ly3—y1y1—V2|', (25)
-1 -1
W= { 1 0 ] , (26)
0o 1
1 { 2 11 }
Mc = 1 21 (27)
2407 1 2

6.1 The Parametric Element FEM Matrices

Suppose a triangle element is within the region of the infteen
defined in section 5, in view of (20) and (18), (24) and (25)dmee

s _ [x-x]_[ *xo—xot+<di30>

O = { X2 — X1 } o { Xp.0 — %10+ < Op1,0 > (28)
5 _ ¥30—Y1,0

o = { Y10 —Y2,0 } (29)

where(X o, ¥i.0) is the nominal position for the nodedi<jk) = bi(k> —

bgk) andbi(k> is thek-th component of the vectdrin (20) for node-

i. For the sake of clarity, we assume that the triangle is acifyek
triangle that satisfies

X10—X30 | _ [ O Y30—Y10 | _ | hy
{ X2,0 —X1,0 } T hx }’ { Y10 — Y20 } B { 0 }’ (30)
then we have
_ o
— <& g> Y
— h UEaa h { } 31
& X_1+<%,0>} 1+2 5D
= 1
6}’ = hy 0 :| ’ (32)
A = 05hhy(1+2) (33)

whereY =< d“ ,0>andZ =< %2—1,0 >. Substituting (31), (32)

and (33) into (21) we obtain the parametric element stiffrma

hx 2oy hy 1 1 0,7
= —W| I:Z wh+ L _—w w
= o { voo1iz |V Tz [0 0
o 0 0T 0 Y T
= g (w0 1]wiw|y 2w
Y2 hy 10 1 hy 1 0],
— X — Yw W
* 1+22hy {o 0} TIrZ 2 {o 0}
v2 1
= %+ Z 0-k$+ 1_‘_Z$|p+l 1+Z$p+2 (34)
where

(k)
s 8 2 s e

21

10 T _hy 10 T
N1 = 2hy {0 O}W ; $Ip+2*2_hxw|: 0 O}W ~
(36)
In view of (33) and (22), the parametric element mass madrix i

Np

ME(3) = 2hhy(1+Z)Mc =M+ Y okM¢ (37)
k=1

whereM§ = 2h,h,Mc andMg = 2h,Mcdjy.

6.2 The Assembled FEM Matrices

The standard way of generating matricsv,s) andM(w,s) is
by a procedure called stamping. Thex<3 element stiff matrix
S°(w, S) and the 3< 3 element mass matriM®(w, s) are first gener-
ated for each element. Using the local-to-global vertexexnchap,
the entries ofs* and M€ are directly added (stamped) to the large
matricesS(w, s) andM(w, §), respectively. The parametric stiff ma-
trix is

Np Ny ) N, .
SO =%+ 3 o8+ 3 (@9 + 3 6@
K=1 i= =1

(38)

where matricesy, S(i é) andS(3> are respectively the reults of

the stamping of the element matricg} §, K, 41 ad K, 42 in
(34),

(@)= @)= (39)
=1z 99T
a) ol
Vo< L5, z-<Z 5, (40)
hx hx

N; andN, are respectively the number of unigfi¢o) andg; (o)
for all the triangle elements in the computation domaip,is the
number of parameters in the vector Similarly, the parametric
mass matrix is

NP
M(3) = Mo+ 3 oMy, (41)
k=1

where matrice®g andM< X are respectively the reults of the stamp-
ing of the element matrlce!\sie andMg in (37).

6.3 Regression Using the Kernel Method

The parametric forms in (38) and (41) are very similar to that
in (4). But sinceN; andN, are related to the number of elements
in the computational domain, so is the size of the reducedeinod
Hence we have not obtained a mask model that is independent of
the original problem size yet. In fact, this is the main reeady
we can not directly apply the technique in [9] to generaterthe
duced mask model. The next critical task is to approximateby
resent the large number 6f(c) andgj(a) by the linear combina-
tion of a small number of the so-called Kernel functions i
independent of the original problem size. Essentially wekge
approximate a high-dimension space where the nonlineatium
fi and gj reside with a much lower dimension space. This kind
of approximation has been well-studied in the Machine Liegrn
literatures and the so-called Kernel Method has been shovoe t
effective [17].

The gist of the Kernel Method is the following. Consider epr
senting a scalar functiofi(x) : R" — R of multi-variable argument.
An interesting class of approximations are of the form

Ng

10 =3 akK(X%) 42)
k=1



wherex € R" is the evaluation point{(X,y) : R” x R" — Riis the
Kernel, and thé\i vectorsx, € R" are denoted as the “support vec-
tors”. The basic kernel methods [17] use simple functiomf®for
the kernels and pick the coefficieaf based on certain loss func-
tions.

from u. An important benefit from (48) is that we only need to
storeP, = AP in the mask model. Matri®, is much smaller than
matrix P. The algorithmic details for the offline and the online stage
are shown in Algorithm 1 and Algorithm 2, respectively. Wenva
to emphasize again that the cost of online stagB(NS + (Np +

In this paper, we choose the kemel form to be the same as the, )N2). This is clearly independent of the orginal problem dize

nonlinear functions to be approximated. So the kernel ssjoa
formis

Nk . Nk .
i@~ Y o Ki(&), 90)~ Y BIKa(E),  (43)
k=1 k=1

where
&
K =_k =
1(Ek) 1re, 11 g
and§, =< d;, G >, N is the number of kernels necessary to achieve
the desired accuracy. As shown in section 8, 10 to 15 kerragls c

achieve 3 to 4 digits of accuracy. The coeﬁicieu@ and Bf(j)
are obtained by the simple Least Square Fitting, the sirhjoes
function form [17]. The support vecto are selected from all

possible values otﬂ_g'e), and d_gl) in (40) by the K-mean Clustering
Methods [17].

It should be noted that due to the locality of the parametesim
each mesh node is influenced by a small number of parameteys, t

ically 2 in the 2D cases and 4 in the 3D cases. This means that th

length of the vectod_ig and d_£'1> is 2 for 2D cases and 4 for 3D
cases, respectively. Essentially the number of clusterdiepen-
dent of the number of the parameters in the mask structutas.ig
a key benefit from using the parametric mesh in section 5. Cove
ing a relatively low-dimensional space with the K-mean tigag
usually means small cluster numhkiég in (43). Hence the mask
model size is largely determined by the number of samplihgeso
in (5).

Substituting (43) into (38), we obtain the final parametoomf
of the stiff matrix

Ka(&k) (44)

Np Ng Ny
SO+ Y A+ Y K@ + Y K8 (45)
k=1 k=1 k=1

Wheresék) and %'0 are the results of the stampimgs(i)ﬁ,p+1 and
Bf(j)sﬁp 2 respectively.
7. PARAMETRIC MASK MODEL

Now we are ready to put everything together to present thé fina
mask model. Substituting (45) and (41) into (3), we obtain

Lk, X 0, & e
Aot Yy OkA + Y Ki(G)A + ) Ka(&A; | U=T, (46)
k=1 k=1 k=1

whereAy = S—Mo—B, Al =g — MY, A — 9 anda

%k). Using the congruence projection in (6), we obtain the reduc
model

Nk Nk

> Kl(Ek)A(zk) +> Kz(Ek)":\(sk)

k=1

~ Np ~
Rot Y aAl + i=F. (47)
k=1

The usage of this mask model is similar to that describeddn se
tion 4. But there is a key difference. In lithography simidatflow,
we only care about the near field at the bottom of the mask.elw vi
of (8), this can be accomplished by using

Un = AU= APG = P, (48)

whereu, is the portion ofuthat corresponds to the near field at the
bottom of the mask, and the sparse matkiselects those entries

Algorithm 1: Offline Stage to generate mask model
Input: Range of parameters io; mesh;Ng:

number of samplinggpl: truncation tolerance

for rank revealing QR

output: Ao, ALY AL AL .

(1) Form matricesAo,A(llo,A(2'>,A(3I> and
rin (46)

2) foreachk =1 :Ns

3) Randomly sample®¥ using the
given ranges

(4) Solve (46) fout®)

(5) P=[P ]

(6) Run rank-revealing incremental
QR to obtain rank and the full-
rank columnsPy,P;, ..., P using
the given truncation tolerandel

©) if r <Kk, i.e.,Pis rank deficient

(8) P= [P17P27“~7Pf]

(©)] Exit the sampling loop

(10) Use P as projector and compute

AO,A<1k) A(Z'),Ag”,f as shown in (6)

(1)) Py = AP as shown in (48)

Algorithm 2: Online Stage to evaluate mask model
Input: G*; Ao,/:\(lw,A(zk),/:\gk);f; P,
Output: un: the near field at the bottom of the

mask

Q) Instantiate the compact mask model
in (47) usingox

2) Solve (47) fou™

3) Un = Pyd as shown in (48)

8. EXPERIMENTAL EVIDENCE

We use the mask in Figure 1 to validate our ideas. For tmer32
node, the nominal values of;, wo ands are assumed to be 128
They have identically independent distribution with theiamace
being 10%. This 20% variation range is probably more thafi-suf
cient for practical consideration. It should be noted tfiaté add
correlation among these parameters, it will only changestire-
pling but not the main steps in algorithm 1 and 2. With a ranigom
generated parameter set, we substitute (38) and (41) into (3) and
solve (3) foru;. This is treated as the accurate solution. This way,
we can clearly see the error introduced separately by thadfer
based fitting in (43) and the model order reduction in Aldorit
1

A) Kernel-based Regression Accuracy With the same parame-
ter seto*x mentioned above, we solve (46) fay and then compute

the relativel, norm error“”ﬁﬂi“z. The relative error vs. the num-

ber of kernels is shown in Fig. 4.

B) Model Order Reduction Accuracy In this experimentNy, =
20 kernels are used in (47). The corresponding small erregiinel
fitting ensures that the MoR error in (47) dominates the divera
ror, as is clearly seen in Figure 5. With the increase of thaler
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5 10 15 20 25
Number of Kernels

Figure 4: Relative error in regression.

of sampled\s in Algorithm 1, the relative error due to model order
reduction decreases rapidly in Figure 5.

C) Mask Model Accuracy Figure 5 also shows the overall error
in the approximate solution provided by the new mask modéth W

about 8 kernels and 10 samples, the mask model can achieve a 1%

overall relative error or 2-digits of accuracy.

D) Mask Model Speed The main cost of using the reduced mask

model is to instantiate the small dense matrices in (47) aed t
invert one small dense matrix. Instantiating a fewx100 dense
matrices and then inverting a X010 dense matrix takes abowg4
4 second. For the simple two-dimensional phase-shift maskis

in Fig. 1, direct use of FEM approach would result in a sparse

matrix A(0) in (46) with N being around 5000. The CPU time used
by a direct sparse solver for such a system would be in the ofde

a few seconds on a desktop PC. So we see a 4-order of magnitude

improvement in speed.
In addition, since the CPU time at the online stage direetigtes
to the number of samples in Algorithm 1, the smooth tradebeff

tween the accuracy and the CPU time is clearly demonstrated i

Figure 5. Further more, our empirical studies indicate thahber
of samples is a weak function of the original problem sizeher t
number of parameters. This is certainly a very attractiagfee of
the new mask model proposed in this paper.

9. CONCLUSIONS

In this paper, we propose two key new ideas to improve our work

on the parametric mask model in [8]: 1) Parametric unstmactu
mesh using the distance function and the blending functif)n;
Kernel-based regression to significantly reduce the numtgara-
metric terms in the final system. Numerical experiments demo
strate that the new mask model offers smooth accuracy-<pesdet
off and hence can be tuned to different design applicatidrise
model generation in Algorithm 1 is inherently incrementadidooth
theoretical and practical ways to estimate the model enoread-
ily available. In addition, the parametric mesh allows tleeal-
pling between the mesh generation and the parametrizatithreo
FEM matrices, a considerable simplification from implenagion
point of view.
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-4 Fitting
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Figure 5: Convergence of the L2 norm relative error in field
distribution for the mask shown in Figure 1. Each parame-
ter varies between—10% and +10% from its nominal value of
12&m “MoR” refers to the error caused by the model reduc-
tion stage. “Fit” refers to the error caused by the regressia fit
in (43). “Overall” refers to the overall error due to both.
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