Finding Zeros of Single-Variable, Real Functions

Gautam Wilkins
University of California, San Diego

General Problem

- Given a single-variable, real-valued function, f, we would like to find a real number, x, such that f(x)=0.
- If we have an interval, [a, b] where f(a)f(b)<0 and f is continuous on [a, b], then there is guaranteed to be a zero of f in [a, b].
- The interval [a, b] is called a straddle, and finding one can be part of the problem.

Zero-Finding Methods

- Bisection
- Newton's Method
- Secant
- Inverse Quadratic Interpolation (IQI)

- Hyperbolic, Bi-Confluent Hyperbolic
- Halley's Method

Bisection Method

- Requires a straddle, [a, b].

- Compute f((a+b)/2). If f(a)f((a+b)/2)<0 then new straddle is [a, (a+b)/2], otherwise it's [(a+b)/2, b]. Stops when size of interval is smaller than some $\delta>0$.

- Guaranteed to converge, but only linearly.

Newton's Method

- Tracks a single iterate, x_n .

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- Converges super-linearly in general.

Secant Method

- Tracks two iterates, x_n and x_{n-1} .

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$

- Converges super-linearly in general.

Inverse Quadratic Interpolation

- Tracks three iterates, x_n , x_{n-1} , x_{n-2} .

$$x_{n+1} = \frac{f_{n-1}f_n}{(f_{n-2} - f_{n-1})(f_{n-2} - f_n)}x_{n-2} + \frac{f_{n-2}f_n}{(f_{n-1} - f_{n-2})(f_{n-1} - f_{n-2})}x_{n-1} + \frac{f_{n-2}f_{n-1}}{(f_n - f_{n-2})(f_n - f_{n-1})}x_n$$

- Converges super-linearly in general.

What we want

- Given a function, f, and a straddle, construct a method that converges super-linearly in general, but gives the same guarantees as bisection.

- If we do not have a straddle, begin searching for a zero around a given starting point. If we find a straddle, then maintain it.

First Attempt: Dekker's Method

- Maintains straddle, [a,b].
- Uses secant method whenever possible.
- Uses bisection method if secant method returns an iterate, x_{n+1} , that is not between x_n and (a+b)/2.
- Terminates when it finds a zero, or when $|b-a| < \delta$ for some $\delta > 0$.

Problem with Dekker's Method

- Although the method is guaranteed to converge, it does not place a reasonable bound on the complexity of the search.

 For poorly-behaved functions, the method can take a very large number of extremely small steps with the secant method.

Brent's Method (Zero-In)

 Uses IQI when possible, defaults to secant if it cannot.

- Let b_j be j^{th} iterate, computed with IQI. Forces a bisection unless:

1)
$$|b_{j+1} - b_j| < 0.5 |b_{j-1} - b_{j-2}|$$
, and

2)
$$|b_{i+1} - b_i| > \delta$$

Brent's Method

- Terminates when it finds a zero, or when $|b-a|<\delta$.
- The two inequalities ensure that in the worst-case, a bisection will be forced every $2\log_2((b-a)/\delta)$ steps.
- This places an $O(n^2)$ complexity bound on Brent's Method, where n is the number of steps that the Bisection Method would take.

Brent's Method: Proof of $O(n^2)$ Time

If the first condition is never violated, then at the j^{th} step, the second condition will be violated after at most k more steps, where:

$$\frac{|b_{j-1} - b_{j-2}|}{2^{k/2}} = \delta$$

$$k = 2\log_2\left(\frac{|b_{j-1} - b_{j-2}|}{\delta}\right)$$

Brent's Method: Proof of $O(n^2)$ Time

$$k = 2\log_2\left(\frac{|b_{j-1} - b_{j-2}|}{\delta}\right)$$

Thus, a bisection step is performed at least every *k* steps following an interpolation step.

So the interval size decreases by a factor of 2 every k steps, meaning that given an initial interval [a, b], the method will terminate in no more than m steps, where:

Brent's Method: Proof of $O(n^2)$ Time

$$k = 2\log_2\left(\frac{|b_{j-1} - b_{j-2}|}{\delta}\right)$$

$$\frac{|b-a|}{2^{m/k}} = \delta$$

$$m = k \log_2 \left(\frac{|b-a|}{\delta}\right)$$

$$m = 2 \log_2 \left(\frac{|b-a|}{\delta}\right)^2$$

The running time of the bisection method is $O(\log_2(|b-a|/\delta))$, so Brent's Method is $O(n^2)$

Worst-Case Function

- We want to show that Brent's Method can take Θ (n^2) time. We do so by explicitly constructing a worse case function.
- Start with straddle [a, b], and tolerance, δ . We will force Brent's Method to take $k = \log_2(|b-a|/\delta)$ steps before it performs a bisection.
- In order to satisfy the first condition the distance between successive iterates must also decrease by less than a factor of 0.5 every two steps.

Worst-Case Iterates

- Choose a factor, $p > \sqrt{2}$. We will make the distance between two successive iterates decrease by a factor of 1/p.

- The last step before a bisection is performed will decrease the size of the interval by δ , violating the second condition.

Worst-Case Iterates

- If the last step decreases the interval by δ , then the first step must decrease the interval by $(p^{(k-1)}\delta)$.

- So we get the series:

$$[b, b - p^{k-1}\delta, b - p^{k-1}\delta - p^{k-2}\delta, \dots, b - \sum_{j=1}^{k} p^{k-j}\delta]$$

Worst-Case Iterates

 We will force Brent's Method to evaluate the function at this set of worst-case iterates, and then perform a bisection.

- This gives a new straddle, [a, b'] that is roughly half the length of the original interval.

- We now repeat the same process for [a, b'].

124 Brent's Method Iterates for a root near zero, tolerance = 1e-5

Worst-Case Function

- In conclusion, we first constructed a sequence, X, containing $\Theta(n^2)$ points.

- Then we constructed a function that caused Brent's Method to evaluate it at every point in X, proving that Brent's Method is $\Theta(n^2)$ in the worst-case.

Modified Zero-In

- Brent's Method may be modified to ensure O(n) time instead of $O(n^2)$.
- Force a bisection if:
 - 1) If the size of the original interval is not reduced by a factor of 1/2 after five interpolation steps.
 - 2) If an interpolation step produces a point, x, such that |f(x)| is not a factor of 1/2 smaller than the previous best point.

Modified Zero-In

- The first condition ensures that the complexity of the search is O(n).

 The second condition addresses the issue of very flat functions, for which Brent's Method converges rather slowly.

Comparison

- For the worst-case function shown earlier, when Brent's Method took 2914 iterations, Modified Zero-In took 85 iterations.
- This reduction in complexity, as far as we can tell, comes at virtually no cost to performance in general.
- We compared the performance against a number of functions from Burden and Faires' 2009 Numerical Analysis textbook.

Function	Interval	Brent's Method	Modified Zero-in	Bisection
$\sqrt{x} - \cos(x)$	[0.0,1.0]	7	8	52
3(x+1)(x-5)(x-1)	[-2.0,1.5]	2	2	53
3(x+1)(x-5)(x-1)	[-1.2,2.5]	8	8	54
$x^3 - 7x^2 + 14x - 6$	[0.0,1.0]	8	8	51
$x^3 - 7x^2 + 14x - 6$	[3.2,4.0]	13	14	47
$x^4 - 2x^3 - 4x^2 + 4x + 4$	[-2.0, -1.0]	9	9	51
$x^4 - 2x^3 - 4x^2 + 4x + 4$	[0.0,2.0]	8	8	52
$x - 2^{(} - x)$	[0.0,1.0]	5	6	52
$e^x - x^2 + 3x - 2$	[0.0,1.0]	7	7	52
$2x\cos(2x) - (x+1)^2$	[-3.0, -2.0]	8	8	50
$2x\cos(2x) - (x+1)^2$	[-1.0,0.0]	9	9	52
$3x-e^x$	[1.0,2.0]	9	10	50
$x + 3\cos(x) - e^x$	[0.0,1.0]	7	6	52
$x^2 - 4x + 4 - \log(x)$	[1.0,2.0]	9	8	49
$x^2 - 4x + 4 - \log(x)$	[2.0,4.0]	10	10	51
$x+1-2\sin(\pi x)$	[0.0,0.5]	9	8	51
$x+1-2\sin(\pi x)$	[0.5,1.0]	10	10	51
,	[-1.0,2.0]	11	11	53
$(x+2)(x+1)^2x(x-1)^3(x-2)$	[-0.5,2.4]	13	13	53
$(x+2)(x+1)^2x(x-1)^3(x-2)$	[-0.5,3.0]	15	15	52
$(x+2)(x+1)^2x(x-1)^3(x-2)$		13	13	52
$(x+2)(x+1)x(x-1)^3(x-2)$	[-1.5,1.8]	15	15	53
$x^4 - 3x^2 - 3$	[1.0,2.0]	7	8	51
$x^3 - x - 1$	[1.0,2.0]	9	10	51
$\pi + 5\sin(x/2) - x$	[0.0,6.3]	7	7	52
$2^{-x} - x$	[0.3,1.0]	6	6	51
$(2-e^{-x}+x^2)/3-x$	[-5.0,5.0]	11	15	53
$5x^{-2} + 2 - x$	[1.0,5.0]	8	8	52
$\sqrt{\frac{e^x}{3}-x}$	[2.0,4.0]	9	9	51
$5^{-x}-x$	[-2.0,5.0]	8	9	54

Finding a Straddle

 Methods that guarantee convergence need to maintain an interval, [a, b], such that f(a)f(b)<0.

- Given a function, f, and an initial guess, x_0 , we want to either find a straddle, or, if we have monotonic convergence, a zero.

Matlab's Approach

 Matlab has a function, fzero, that tries find zeros of functions.

- Given an initial guess, x_0 , it chooses $dx=x_0/50$ and constructs the interval $[x_0-dx, x_0+dx]$.

- If $[x_0-dx, x_0+dx]$ is a straddle, it returns it. Otherwise it sets $dx=\sqrt{2*dx}$ and tries again.

Problems with Matlab's Approach

- Can easily miss sign reversals since it takes increasingly large steps. Simple example: $f(x)=x^2-10^{-3}$, start with $x_0=1$.

- Discards the computed values of the function.

- In some cases, **fzero** takes longer to find a straddle than it does to find the zero.

Our Method

- If $f(x_0) < 0$, then set f(x) = -f(x).

- Choose a second number, x_1 . Start performing iterations of Secant Method.

Termination Conditions

Terminate the search if:

- 1) We find a point, x, such that f(x) <= 0
- 2) Two successive iterates are the same
- 3) Five successive iterates fail to reduce function value by a factor of 0.5
- 4) After five successive iterates the step size has not decreased by a factor of 0.5

Edge Cases

- If $f(x_{n+1}) > f(x_n)$ then there is a local min between x_{n+1} and x_{n-1} .
- Start searching for this min using a modified Brent's minimization method to ensure that it has O(n) complexity.
- Stop search if we find a number, x, where f(x) <= 0, or we find a minimum.

Edge Cases

- If we find two successive iterates, x_{n+1} and x_n , where $f(x_{n+1})=f(x_n)$, perturb x_{n+1} .

- Fail if five successive points all have the same function value.

Edge Cases

 If complex, NaN, or Inf value is encountered, exclude that point, and do not allow search to continue in that direction.

- If two non-successive iterates have the same value then we entered a cycle. Use modified Brent's minimization method to find a local min.

Function	x_0	Our Method	fzero
$x^4 - 2x^3 - 4x^2 + 4x + 4$	-1.0	3	17
$(x-2^{(1)}-x)$	0.0	4	23
$e^x - x^2 + 3x - 2$	0.0	4	17
$2x\cos(2x) - (x+1)^2$	-3.0	10	17
$x\cos(x) - 2x^2 + 3x - 1$	0.2	3	21
$x-2\sin(x)$	-1.0	14	23
$3x - e^x$	1.0	3	19
$x + 3\cos(x) - e^x$	0.0	3	25
$x^2 - 4x + 4 - \log(x)$	1.0	4	19
$x^2 - 4x + 4 - \log(x)$	2.0	3	17
$x+1-2\sin(\pi x)$	0.0	4	15
$x+1-2\sin(\pi x)$	0.5	3	19
$(x+2)(x+1)^2x(x-1)^3(x-2)$	-0.5	3	25
$(x+2)(x+1)x(x-1)^3(x-2)$	-1.5	10	19
$x^3 - x - 1$	1.0	3	19
$\pi + 5\sin(x/2) - x$	0.0	5	33
$2^{-x} - x$	0.3	3	25
$(2-e^{-x}+x^2)/3-x$	-5.0	18	19
$5x^{-2} + 2 - x$	1.0	11	27
$\sqrt{e^x/3}-x$	2.0	3	21
$5^{-x} - x$	-2.0	18	25
$5(\sin(x) + \cos(x)) - x$	-2.0	4	27
$2\sin(\pi x) + x$	-2.0	5	13
$-x^3 - \cos(x)$	-3.0	18	23
$x^3 + 3x^2 - 1$	-3.0	4	7
$x - \cos(x)$	0.0	3	23
$x-8-2\sin(x)$	0.0	3	25
$e^x + 2^{-x} + 2\cos(x) - 6$	1.0	3	23
$\log(x-1) + \cos(x-1)$	1.3	3	9
$2x\cos(2x) - (x-2)^2$	2.0	4	15

Conclusions

- Given a straddle, we have constructed a method that performs as well as Brent's Method, but only has O(n) complexity.
- The method to bound the complexity may be applied to arbitrary zero-finding iterators as long as we have a straddle.
- Linear time to find local min, straddle, or zero given an initial point.

Future Work

- Modify Brent's Minimization Method to reduce complexity from $O(n^2)$ to O(n).

- Continue to develop and stress test zerofinding method when we start with a single point instead of a straddle.

Acknowledgements

- This work was done jointly with Professor Ming Gu.

 We would also like to thank Professor William Kahan and Dr. Hanyou Chu for a number of enlightening discussions while conducting this research.