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General Problem

- Given a single-variable, real-valued function, f, we
would like to find a real number, x, such that

f(x)=0.

- If we have an interval, [a, b] where f(a)f(b)<0 and
fis continuous on [a, b], then there is guaranteed
to be a zero of fin [a, b].

- The interval [q, b] is called a straddle, and finding
one can be part of the problem.



Zero-Finding Methods

Bisection
Newton’s Method
Secant

Inverse Quadratic Interpolation (1Ql)

Hyperbolic, Bi-Confluent Hyperbolic
Halley’s Method



Bisection Method

- Requires a straddle, [a, b].

- Compute f((a+b)/2). If fla)f((a+b)/2)<0 then
new straddle is [a, (a+b)/2], otherwise it’s

[(a+b)/2, b]. Stops when size of interval is
smaller than some 6>0.

- Guaranteed to converge, but only linearly.



Newton’s Method

- Tracks a single iterate, x,.

n

- Converges super-linearly in general.



Secant Method

- Tracks two iterates, x, and x, , .

- Converges super-linearly in general.



Inverse Quadratic Interpolation

- Tracks three iterates, x,, x, ;, X
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- Converges super-linearly in general.



What we want

- Given a function, f, and a straddle, construct a
method that converges super-linearly in
general, but gives the same guarantees as
bisection.

- If we do not have a straddle, begin searching
for a zero around a given starting point. If we
find a straddle, then maintain it.



First Attempt: Dekker’s Method

Maintains straddle, [a,b].
Uses secant method whenever possible.

Uses bisection method if secant method returns
an iterate, x,,,, that is not between x_ and (a+b)/
2.

n+1?7’

Terminates when it finds a zero, or when
|b-a| < 6 for some 6 > 0.



Problem with Dekker’s Method

- Although the method is guaranteed to
converge, it does not place a reasonable
bound on the complexity of the search.

- For poorly-behaved functions, the method can
take a very large number of extremely small
steps with the secant method.



Brent’s Method (Zero-In)

- Uses |Ql when possible, defaults to secant if it
cannot.

- Let b; be j* iterate, computed with IQl. Forces
a bisection unless:

1) |b,; —b;| <0.5|b.;—b,,|, and
2) |b,;—b;| >6




Brent’s Method

- Terminates when it finds a zero, or when | b-a|<é.

- The two inequalities ensure that in the worst-

case, a bisection will be forced every
2log,((b-a)/d) steps.

- This places an O(n?) complexity bound on Brent’s
Method, where n is the number of steps that the
Bisection Method would take.



Brent’s Method: Proof of O(n?) Time

If the first condition is never violated, then at
the jt step, the second condition will be
violated after at most k more steps, where:

b1 —bj_o
2k /2 =0

k:210g2<‘b‘7 1~ by 2‘)




Brent’s Method: Proof of O(n?) Time

k = 2log, (ybjl g ij)

Thus, a bisection step is performed at least every
k steps following an interpolation step.

So the interval size decreases by a factor of 2
every k steps, meaning that given an initial
interval [ag, b], the method will terminate in no
more than m steps, where:



Brent’s Method: Proof of O(n?) Time

= g, (s

b—a|

m = klog, (]b;a!)

2
m = 2log, (]b;a!)

The running time of the bisection method is
O(log,(|b-a|/b)), so Brent’s Method is O(n?)




Worst-Case Function

- We want to show that Brent’s Method can take ©
(n?) time. We do so by explicitly constructing a
worse case function.

- Start with straddle [a, b], and tolerance, 6. We wiill
force Brent’s Method to take k = log,(|b-a|/d)
steps before it performs a bisection.

- In order to satisfy the first condition the distance
between successive iterates must also decrease
by less than a factor of 0.5 every two steps.



Worst-Case lterates

- Choose a factor, p > v2. We will make the
distance between two successive iterates

decrease by a factor of 1/p.

- The last step before a bisection is performed
will decrease the size of the interval by 6,
violating the second condition.



Worst-Case lterates

- If the last step decreases the interval by 6,
then the first step must decrease the interval

by (p'*1) 6).

- So we get the series:

b, b —pF18,b—pP~15 — pF25,...,b — Zle pF=I6)



Worst-Case lterates

- We will force Brent’s Method to evaluate the
function at this set of worst-case iterates, and
then perform a bisection.

- This gives a new straddle, [a, b’] that is roughly
half the length of the original interval.

- We now repeat the same process for [a, b’].
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Worst-Case Function

- In conclusion, we first constructed a sequence,
X, containing ©(n?) points.

- Then we constructed a function that caused
Brent’s Method to evaluate it at every point in
X, proving that Brent’s Method is ©(n?) in the
worst-case.



Modified Zero-In

- Brent’s Method may be modified to ensure
O(n) time instead of O(n?).

- Force a bisection if:

1) If the size of the original interval is not reduced
by a factor of 1/2 after five interpolation steps.

2) If an interpolation step produces a point, x,
such that [f(x)]| is not a factor of 1/2 smaller than
the previous best point.



Modified Zero-In

- The first condition ensures that the complexity
of the search is O(n).

- The second condition addresses the issue of
very flat functions, for which Brent’s Method
converges rather slowly.
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Comparison

- For the worst-case function shown earlier, when
Brent’s Method took 2914 iterations, Modified
Zero-In took 85 iterations.

- This reduction in complexity, as far as we can tell,
comes at virtually no cost to performance in
general.

- We compared the performance against a number
of functions from Burden and Faires’ 2009
Numerical Analysis textbook.



Function Interval Brent’s Method  Modified Zero-in ~ Bisection
\/x —cos(x) [0.0,1.0] 8 52
3(x+1)(x—5)(x—1) [-2.0,1.5] 2 53
3(x+1)(x—5)(x—1) [-1.2,2.5] 8 8 54
3 —7x +14x—6 [0.0,1.0] 8 8 51
3 7% 4+ 14x—6 [3.2,4.0] 13 14 47
b2 —aAx? +4x+-4 [-2.0.-1.0] 9 9 51
-2 4 4 Ax+4 [0.0,2.0] 8 8 52
x—20—x) [0.0,1.0] 5 6 52
e —x?+3x—2 [0.0,1.0] 7 7 52
2xc0s(2x) — (x+1)? [-3.0,-2.0] 8 8 50
2xcos(2x) — (x+1)? [-1.0,0.0] 9 9 52
3x— & [1.0,2.0] 9 10 50
x+3cos(x) —e* [0.0,1.0] 7 6 52
x? —4x+4 —log(x) [1.0,2.0] 9 8 49
x> —4dx+4—log(x) [2.0,4.0] 10 10 51
x4 1 — 2sin(mx) [0.0,0.5] 9 8 51
x+1—2sin(mx) [0.5,1.0] 10 10 51
e* —2—cos(e*—2) [-1.0,2.0] 11 11 53
(x+2)(x+1)2x(x—1)3(x—2) [-0.5,24] 13 13 53
(x+2)(x+1)2x(x—1)3(x—2) [-0.5,3.0] 15 15 52
(x+2)(x+1)%>x(x—1)3(x—2)  [-3.0,-0.5] 13 13 52
(x+2)(x+Dx(x—1*(x—2)  [-1.5,1.8] 15 15 53
x*t—3x2 -3 [1.0,2.0] 7 8 51
¥ —x—1 [1.0,2.0] 9 10 51
T+ 5sin(x/2) —x [0.0,6.3] 7 7 52
27 —x [0.3,1.0] 6 6 51
(2—e ™ +x%)/3—x [-5.0,5.0] 11 15 53
Sx242—x [1.0,5.0] 8 8 52
& —x [2.04.0] 9 51
5% —x [-2.0,5.0] 9 54



Finding a Straddle

- Methods that guarantee convergence need to
maintain an interval, [a, b], such that

Aa)f(b)<O0.

- Given a function, f, and an initial guess, x,, we
want to either find a straddle, or, if we have
monotonic convergence, a zero.



Matlab’s Approach

- Matlab has a function, fzero, that tries find
zeros of functions.

- Given an initial guess, x,, it chooses dx=x,/50
and constructs the interval [x,-dx, x,+dXx].

- If [xy-dx, x,+dx] is a straddle, it returns it.
Otherwise it sets dx=v2*dx and tries again.



Problems with Matlab’s Approach

- Can easily miss sign reversals since it takes
increasingly large steps. Simple example:
fix)=x?— 1073, start with x,=1.

- Discards the computed values of the function.

- In some cases, fzero takes longer to find a
straddle than it does to find the zero.



Our Method

- If f(x,)<0, then set f(x) = -f(x).

- Choose a second number, x,. Start performing
iterations of Secant Method.



Termination Conditions

Terminate the search if:
1) We find a point, x, such that f(x)<=0
2) Two successive iterates are the same

3) Five successive iterates fail to reduce
function value by a factor of 0.5

4) After five successive iterates the step size
has not decreased by a factor of 0.5



Edge Cases

- If flx,,,) > f(x,) then there is a local min
between x, ., and x, ;.

- Start searching for this min using a modified
Brent’s minimization method to ensure that it
has O(n) complexity.

- Stop search if we find a number, x, where
f(x)<=0, or we find a minimum.



Edge Cases

- If we find two successive iterates, x,,, and x,,
where f(x,.,)=f(x,), perturb x_ ., .

- Fail if five successive points all have the same
function value.



Edge Cases

- If complex, NaN, or Inf value is encountered,
exclude that point, and do not allow search to
continue in that direction.

- If two non-successive iterates have the same
value then we entered a cycle. Use modified
Brent’s minimization method to find a local
min.



Function To Our Method fzero

xt —22% —42% + 41 + 4 -1.0 3 17
r—20—2) 0.0 4 23
e — 2+ 3x — 2 0.0 4 17
22 cos(2x) — (v + 1)? -3.0 10 17
xcos(z) — 222 + 3z — 1 0.2 3 21
x — 2sin(z) -1.0 14 23
3r — e’ 1.0 3 19
x + 3cos(z) — €* 0.0 3 25
12 — 4z + 4 — log(x) 1.0 4 19
1% — 4z + 4 — log(x) 2.0 3 17
x +1—2sin(7x) 0.0 4 15
x4+ 1 — 2sin(7z) 0.5 3 19
(x+2)(z +1)%z(z —1)3(x —2) -0.5 3 25
(x+2)(z+ Da(z —1)3(x—-2) -1.5 10 19
w3 —z—1 1.0 3 19
T+ 5sin(x/2) — z 0.0 5 33
277 —x 0.3 3 25
(2—e®+2%)/3—x -5.0 18 19
5r%24+2—ux 1.0 11 27

/3 — 1z 2.0 3 21
Y —uw -2.0 18 25
5(sin(x) + cos(x)) — x -2.0 4 27
2sin(mx) + o -2.0 5 13
—x3 — cos(x) -3.0 18 23
23+ 322 — 1 -3.0 4 7
x — cos(x) 0.0 3 23
z — 8 — 2sin(z) 0.0 3 25
e’ +27% 4+ 2cos(z) — 6 1.0 3 23
log(z — 1) + cos(z — 1) 1.3 3 9
2z cos(2x) — (z — 2)? 2.0 4 15



Conclusions

- Given a straddle, we have constructed a method
that performs as well as Brent’s Method, but only
has O(n) complexity.

- The method to bound the complexity may be
applied to arbitrary zero-finding iterators as long
as we have a straddle.

- Linear time to find local min, straddle, or zero
given an initial point.



Future Work

- Modify Brent’s Minimization Method to
reduce complexity from O(n?) to O(n).

- Continue to develop and stress test zero-
finding method when we start with a single
point instead of a straddle.
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