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Outline

• Introduction to parametrized scattering problems
• The Reduced Basis Method
• The Empirical Interpolation Method
• Numerical results
• First results on multi-object scattering
• Conclusions
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Introduction to parametrized Electromagnetic 
scattering
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Parametrized Electromagnetic Scattering
(time-harmonic ansatz)

Ω = R3\Ωi

Γ = ∂Ωi

n

(perfect conductor)
Ωi⊂R3

Ei(x;µ) = −p eikx·k̂(θ,φ)

Γ

where µ = (k, θ,φ,p) ∈ D ⊂ R7 is a vector of parameters:
1) k: wave number
2) k̂(θ, φ): wave direction in spherical coordinates
3) p: polarization (is complex and lies in the plane perpendicular to k̂(θ, φ))
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Parametrized Electromagnetic Scattering
(time-harmonic ansatz)

Ω = R3\Ωi

Γ = ∂Ωi
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Governing equations 
(not parametrized for sake of simplicity)

Boundary condition is equivalent to γtE = 0 where γt denotes the tangential
trace operator on surface Γ, γtE = n× (E× n).

Assume that Ω is a homogenous media with magnetic permeability µ and elec-
trical permittivity ε.

Then, the electric field E = Ei + Es ∈H(curl,Ω) satisfies

curl curl E− k2E = 0 in Ω, Maxwell
E× n = 0 on Γ, boundary condition

���curlEs(x)× x
|x| − ikEs(x)

��� = O

�
1

|x|

�
as |x|→∞. Silver-Müller radiation condition
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Integral representation

Applying the tangential trace operator and invoking the boundary conditions
yield the strong form of the Electric Field Integral Equation (EFIE):
Find u ∈ V s.t.

ikZγt(Tku)(x) = −γtEi(x), ∀x ∈ Γ

for some appropriate complex functional space V on Γ.

Stratton-Chu representation formula:

E(x) = Ei(x) + ikZTku(x) ∀x ∈ Ω

where
Tk: single layer potential
u: electrical current on surface
Z =

�
µ/ε: impedance (k = ω

√
µε: wave number)
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Integral representation

Model reduction: 3d ➱ 2d problem

Applying the tangential trace operator and invoking the boundary conditions
yield the strong form of the Electric Field Integral Equation (EFIE):
Find u ∈ V s.t.

ikZγt(Tku)(x) = −γtEi(x), ∀x ∈ Γ

for some appropriate complex functional space V on Γ.

Stratton-Chu representation formula:

E(x) = Ei(x) + ikZTku(x) ∀x ∈ Ω

where
Tk: single layer potential
u: electrical current on surface
Z =

�
µ/ε: impedance (k = ω

√
µε: wave number)
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Variational formulation of the EFIE
(also called the Rumsey principle)

Multiplying by a test function v ∈ V and taking the scalar product yields: Find
u ∈ V s.t.

ikZ�γt(Tku),v�Γ = −�γtEi(x),v�Γ, ∀v ∈ V.
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Variational formulation of the EFIE
(also called the Rumsey principle)

Multiplying by a test function v ∈ V and taking the scalar product yields: Find
u ∈ V s.t.

ikZ�γt(Tku),v�Γ = −�γtEi(x),v�Γ, ∀v ∈ V.

After integration by parts and introducing the parameter dependence we get: for
any fixed µ ∈ D, find u(µ) ∈ V s.t.

a(u(µ),v;µ) = f(v;µ), ∀v ∈ V

with

a(u,v;µ) = ikZ

�

Γ

�

Γ
Gk(x,y)

�
u(x) · v(y)− 1

k2 divΓ,xu(x)divΓ,yv(y)
�

dx dy

f(v;µ) = −
�

Γ
γtEi(x;µ) · v(x) dx
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Variational formulation of the EFIE
(also called the Rumsey principle)

[Colton, Kress 1992],[Nédélec 2001]

Multiplying by a test function v ∈ V and taking the scalar product yields: Find
u ∈ V s.t.

ikZ�γt(Tku),v�Γ = −�γtEi(x),v�Γ, ∀v ∈ V.

After integration by parts and introducing the parameter dependence we get: for
any fixed µ ∈ D, find u(µ) ∈ V s.t.

a(u(µ),v;µ) = f(v;µ), ∀v ∈ V

with

a(u,v;µ) = ikZ

�

Γ

�

Γ
Gk(x,y)

�
u(x) · v(y)− 1

k2 divΓ,xu(x)divΓ,yv(y)
�

dx dy

f(v;µ) = −
�

Γ
γtEi(x;µ) · v(x) dx

1) Sesquilinear form a(·, ·;µ) is symmetric but not coercive

2) Gk(x,y) =
eik|x−y|

|x−y| is the fundamental solution of the Helmholtz operator

∆ + k2
and depends on the paramter k.
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Variational formulation of the EFIE
(also called the Rumsey principle)
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Parametrized EFIE and its discretization

Boundary Element Method (BEM). In practice the code CESC is used,
CESC: CERFACS Electromagnetic Solver Code.

[Bendali 1984],[Schwab, Hiptmair 2002],[Buffa et al. 2002,2003], 
[Christiansen 2004]

Galerkin approach: replace continuous space V by the finite dimensional sub-
space Vh: For any fixed parameter µ ∈ D, find uh(µ) ∈ Vh such that

a(uh(µ),vh;µ) = f(vh;µ) ∀vh ∈ Vh. (1)

For Vh we use the lowest order (complex) Raviart-Thomas space RT0, also called
Rao-Wilton-Glisson (RWG) basis in the electromagnetic community.

Friday, September 17, 2010



Example of parametrized solution

φ

θ
Incident plane wave parametrized by Ei(x; k) = −p e

ikx·k̂( π
4 ,0) .
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Example of parametrized solution

φ

θ
Incident plane wave parametrized by Ei(x; k) = −p e

ikx·k̂( π
4 ,0) .
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Output functional: Radar Cross Section (RCS)

• Describes pattern/energy of electrical field at infinity
• Functional of the current on body

where
u: current on surface
d̂: given directional unit vector
d̂0: reference unit direction

A∞(u, d̂) =
ikZ

4π

�

Γ
d̂× (u(x)× d̂)e−ikx·d̂dx

RCS(u, d̂) = 10 log10

�
|A∞(u, d̂)|2

|A∞(u, d̂0)|2

�
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Output functional: Radar Cross Section (RCS)

x
y

z

φ

θ

Incident plane wave parametrized by Ei(x; k) = −p e
ikx·k̂( π

4 ,0) .

Directional unit vector given by d̂ = d̂(θ,φ) with θ ∈ [0,π], φ = 0.
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Reduced basis method
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Reduced basis method: Overview

Assume that we want to compute the scattered field for many different values of

the parameters:

• Applying the BEM many times is too expensive and unnecessary since the

parametrized solutions lie often on a low order manifold.

On a discrete level, assume that:

Assumption (Existence of ”ideal” reduced basis):
The subspace Mh := {uh(µ) |∀µ ∈ D}, is of low dimensionality, i.e.

Mh
Tol= span{ζi | i = 1, . . . , N}

up to a certain given tolerance Tol for some properly chosen {ζi}N
i=1 and moder-

ate N � N = dim(Vh)). More precisely, we assume an exponentially decreasing
Tol in function of N .

• The reduced basis method is a tool to construct an approximation {ξi}N
i=1

of the “ideal” reduced basis.
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Example: Existence of an “ideal” reduced basis
POD: Proper Orthogonal Decomposition

x
y

z

0 500 1000 1500 2000 2500 3000

singular values

1x10-17
1x10-16
1x10-15
1x10-14
1x10-13
1x10-12
1x10-11
1x10-10
1x10-9
1x10-8
1x10-7
1x10-6

0.00001

0.0001

0.001

0.01

0.1
Geometry:

Parameters: (k, θ) ∈ [1, 25]× [0,π], φ is fixed.
For a fine discretization of [1, 25] × [0,π], compute the BEM-
solution for each parameter value. Save all solutions in a matrix
and compute the singular values.

Indication of linear dependence of solutions
Friday, September 17, 2010
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Reduced basis method - Interpolation between 
snapshots

In practice we use {ξi}N
i=1 as reduced basis where

1) ξi = uh(µi) are solutions of (1) with µ = µi ∈ D (snapshots),
2) SN = {µi}N

i=1 carefully chosen.

The reduced basis approximation is the solution of: For µ ∈ D, find uN (µ) ∈
WN such that:

a(uN (µ),vN ;µ) = f(vN ;µ) ∀vN ∈ WN (2)

with WN = span{ξi | i = 1, . . . , N}.

Questions:

1) Accuracy: How to choose SN?

2) Efficiency: How to solve (2) in a fast way?

⇒ Parameter dependent Ritz-type projection onto reduced basis.

⇒ Requires only N BEM computations.
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Reduced basis method - Interpolation between 
snapshots

In practice we use {ξi}N
i=1 as reduced basis where

1) ξi = uh(µi) are solutions of (1) with µ = µi ∈ D (snapshots),
2) SN = {µi}N

i=1 carefully chosen.

The reduced basis approximation is the solution of: For µ ∈ D, find uN (µ) ∈
WN such that:

a(uN (µ),vN ;µ) = f(vN ;µ) ∀vN ∈ WN (2)

with WN = span{ξi | i = 1, . . . , N}.

See [Rozza et al. 2008] for a review.

Questions:

1) Accuracy: How to choose SN?

2) Efficiency: How to solve (2) in a fast way?

⇒ Parameter dependent Ritz-type projection onto reduced basis.

⇒ Requires only N BEM computations.
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V WN

uN (µ̃)
uN (µ�)

u(u�) u(ũ)

Step 1: Construct an approximation WN ⊂ Vh (reduced basis) to the
solution space

WN ≈ span{Mh} with Mh = {uh(µ) |µ ∈ D}.

Step 2: Project the exact solution u(µ) onto the reduced basis using a
parameter dependent Ritz-projection:

PN (µ) : V → WN .

In other words: find uN (µ) ∈ WN such that

a(uN (µ), vN ;µ) = f(vN ;µ), ∀vN ∈ WN .

Reduced basis method - Overall strategy
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Offline Loop:

Offline Initialization:

Accuracy: Choice of reduced basis (Greedy 
algorithm)

For N = 1, . . . , Nmax

Ξ ⊂ D is a finite dimen-
sional pointset of D.

Choose initial parameter value µ1 ∈ Ξ and set S1 = {µ1}, put W0 = ∅

1) Compute the truth solution uh(µN ), solution of (1), with µ = µN

2) WN = WN−1 ∪ {uh(µN )}
3) For all µ ∈ Ξ, do:

i) Compute uN (µ) ∈ WN solution of (2)
ii) Compute a posteriori error estimation η(µ) ≈ �uh(µ)− uN (µ)�

4) Choose µN+1 = arg maxµ∈Ξ η(µ)
5) SN+1 = SN ∪ {µN+1}

Online Loop:
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Offline Loop:

Offline Initialization:

Accuracy: Choice of reduced basis (Greedy 
algorithm)

For N = 1, . . . , Nmax

Ξ ⊂ D is a finite dimen-
sional pointset of D.

Choose initial parameter value µ1 ∈ Ξ and set S1 = {µ1}, put W0 = ∅

1) Compute the truth solution uh(µN ), solution of (1), with µ = µN

2) WN = WN−1 ∪ {uh(µN )}
3) For all µ ∈ Ξ, do:

i) Compute uN (µ) ∈ WN solution of (2)
ii) Compute a posteriori error estimation η(µ) ≈ �uh(µ)− uN (µ)�

4) Choose µN+1 = arg maxµ∈Ξ η(µ)
5) SN+1 = SN ∪ {µN+1}

Online Loop:Online Loop:
1) For any new µ ∈ D, compute uN (µ) ∈ WNmax solution of (2)
2) Compute the output functional of RCS(uN (µ), d̂)
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 Assumption:

Efficiency:  Affine assumption

a(w,v;µ) =
M�

m=1

Θm(µ) am(w,v),

f(v;µ) =
M�

m=1

Θm
f (µ) fm(v),

where for m = 1, . . . ,M

Θm,Θm
f : D → C µ− dependent functions,

am : Vh × Vh → C µ− independent forms,
fm : Vh → C µ− independent forms,
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 Assumption:

Efficiency:  Affine assumption

a(w,v;µ) =
M�

m=1

Θm(µ) am(w,v),

f(v;µ) =
M�

m=1

Θm
f (µ) fm(v),

where for m = 1, . . . ,M

Θm,Θm
f : D → C µ− dependent functions,

am : Vh × Vh → C µ− independent forms,
fm : Vh → C µ− independent forms,

Caution: This is not feasible in the framework of the EFIE!  

a(uh,vh;µ) = ikZ

�

Γ

�

Γ

eik|x−y|

|x−y|

�
uh(x) · vh(y)− 1

k2 divΓ,xuh(x) · divΓ,yvh(y)
�

dx dy

f(vh;µ) = n×(p×n)
�

Γ
eikx·ŝ(θ,φ) · vh(x) dx

Friday, September 17, 2010



 Assumption:

Efficiency:  Affine assumption

a(w,v;µ) =
M�

m=1

Θm(µ) am(w,v),

f(v;µ) =
M�

m=1

Θm
f (µ) fm(v),

where for m = 1, . . . ,M

Θm,Θm
f : D → C µ− dependent functions,

am : Vh × Vh → C µ− independent forms,
fm : Vh → C µ− independent forms,

Caution: This is not feasible in the framework of the EFIE!  

a(uh,vh;µ) = ikZ

�

Γ

�

Γ

eik|x−y|

|x−y|

�
uh(x) · vh(y)− 1

k2 divΓ,xuh(x) · divΓ,yvh(y)
�

dx dy

f(vh;µ) = n×(p×n)
�

Γ
eikx·ŝ(θ,φ) · vh(x) dx

Luckily this problem can be fixed (later in this talk), assume 
for now that the assumption holds approximatively
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Efficiency: How to solve (2) in a fast way?

Offline:

Online:

Given WN = span{ξi | i = 1, . . . , N} precompute

(Am)i,j = am(ξj , ξi), ∀ 1 ≤ i, j ≤ N,

(Fm)i = fm(ξi), ∀ 1 ≤ i ≤ N.

Rem. Depends on N = dim(Vh).
Rem. Size of Am and Fm is N2 resp. N .

For a given parameter value µ ∈ D
1) Assemble (depending on M and N , i.e. ∼ MN2 resp. ∼ MN)

A =
M�

m=1

Θm(µ)Am F =
M�

m=1

Θm
f (µ)Fm

2) Solve AuN (µ) = F . (depending on N , i.e ∼ N3 for LU factorization)
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Efficiency: How to solve (2) in a fast way?

Offline:

Online:

• In the same vein we can compute the a posteriori estimate and the RCS/output 
functional

• Computation time also depends on M!

Given WN = span{ξi | i = 1, . . . , N} precompute

(Am)i,j = am(ξj , ξi), ∀ 1 ≤ i, j ≤ N,

(Fm)i = fm(ξi), ∀ 1 ≤ i ≤ N.

Rem. Depends on N = dim(Vh).
Rem. Size of Am and Fm is N2 resp. N .

For a given parameter value µ ∈ D
1) Assemble (depending on M and N , i.e. ∼ MN2 resp. ∼ MN)

A =
M�

m=1

Θm(µ)Am F =
M�

m=1

Θm
f (µ)Fm

2) Solve AuN (µ) = F . (depending on N , i.e ∼ N3 for LU factorization)
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Efficiency: Empirical Interpolation Method (EIM)
(allows to realize the affine assumption approximatively)
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Efficiency: EIM

0 0.2 0.4 0.6 0.8 1

x

1

10

100

f(
x
;!
)

f(x;µ) = x−µ

f(x;µ) ≈
3�

m=1

αm(µ)x−µm

[Grepl et al.  2007], [Maday et al. 2007]

Let f : Ω × D → C such that f( · ;µ) ∈ C0(Ω) for all µ ∈ D. The EIM is a
procedure that provides {µm}M

m=1 such that

IM (f)(x;µ) =
M�

m=1

αm(µ)f(x;µm)

is a good approximation of f(x;µ) for all (x,µ) ∈ Ω × D. Uses also a greedy
algorithm to pick the parameters {µm}M

m=1.
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Efficiency: EIM

Let f : Ω × D → C such that f( · ;µ) ∈ C0(Ω) for all µ ∈ D. The EIM is a
procedure that provides {µm}M

m=1 such that

IM (f)(x;µ) =
M�

m=1

αm(µ)f(x;µm)

is a good approximation of f(x;µ) for all (x,µ) ∈ Ω × D. Uses also a greedy
algorithm to pick the parameters {µm}M

m=1.

Examples:
1) Non-singular part of kernel function:

Gns
k (r) = Gns(r; k) =

eikr − 1
r

, r ∈ R+, k ∈ R+

2) Incident plane wave:

Ei(x;µ) = −p eikk̂(θ,φ)·x, x ∈ Γ,µ ∈ D,

with µ = (k, θ,φ).
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1) Split the kernel function into the singular part and non-singular part

Gk(r) = r−1 + Gns
k (r)

Efficiency: EIM implementation for EFIE
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a(w,v; k) =
�

Γ×Γ

1
4π|x−y|

�
w(x) · v(y)− 1

k2 divΓw(x) divΓv(y)
�

dx dy

+
�

Γ×Γ
Gns

k (|x−y|)
�

w(x) · v(y)− 1
k2 divΓw(x) divΓv(y)

�
dx dy.

1) Split the kernel function into the singular part and non-singular part

Gk(r) = r−1 + Gns
k (r)

2) Insert it into the sequilinear form

Efficiency: EIM implementation for EFIE
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3) Replace non-singular kernel function by its EIM interpolant
Gns

k (r) ≈
�M

m=1 αm(k)Gns
km

(r)

a(w,v; k) =
�

Γ×Γ

1
4π|x−y|

�
w(x) · v(y)− 1

k2 divΓw(x) divΓv(y)
�

dx dy

+
�

Γ×Γ
Gns

k (|x−y|)
�

w(x) · v(y)− 1
k2 divΓw(x) divΓv(y)

�
dx dy.

1) Split the kernel function into the singular part and non-singular part

Gk(r) = r−1 + Gns
k (r)

2) Insert it into the sequilinear form

Efficiency: EIM implementation for EFIE
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3) Replace non-singular kernel function by its EIM interpolant
Gns

k (r) ≈
�M

m=1 αm(k)Gns
km

(r)

1) Split the kernel function into the singular part and non-singular part

Gk(r) = r−1 + Gns
k (r)

2) Insert it into the sequilinear form

Efficiency: EIM implementation for EFIE

a(w,v; k) ≈ 1
�

Γ×Γ

w(x) · v(y)
4π|x−y| dx dy

− 1
k2

�

Γ×Γ

divΓw(x) divΓv(y)
4π|x−y| dx dy

+
M�

m=1

αm(k)
�

Γ×Γ
Gns

km
(|x−y|)w(x) · v(y)dx dy

−
M�

m=1

αm(k)
k2

�

Γ×Γ
Gns

km
(|x−y|)divΓw(x) divΓv(y)dx dy

blue: parameter independent
red: parameter dependent
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3) Replace non-singular kernel function by its EIM interpolant
Gns

k (r) ≈
�M

m=1 αm(k)Gns
km

(r)

1) Split the kernel function into the singular part and non-singular part

Gk(r) = r−1 + Gns
k (r)

2) Insert it into the sequilinear form

Efficiency: EIM implementation for EFIE

In the same manner for

F (v;µ) ≈
Mf�

m=1

αf (µ)
�

Γ
γtEi(y;µm) · v(y)dy

a(w,v; k) ≈ 1
�

Γ×Γ

w(x) · v(y)
4π|x−y| dx dy

− 1
k2

�

Γ×Γ

divΓw(x) divΓv(y)
4π|x−y| dx dy

+
M�

m=1

αm(k)
�

Γ×Γ
Gns

km
(|x−y|)w(x) · v(y)dx dy

−
M�

m=1

αm(k)
k2

�

Γ×Γ
Gns

km
(|x−y|)divΓw(x) divΓv(y)dx dy

blue: parameter independent
red: parameter dependent
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Numerical results for EIM
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Picked parameters km in the parameter domain
Interpolation error depending on the 

length of the expansion

f(x; k) =
eikx − 1

x
, x ∈ (0, Rmax], k ∈ [1, kmax]

Friday, September 17, 2010



5 10 15 20 25

k

0

20

40

60

80

100

120

140

160

180

!

0 20 40 60 80 100 120 140

M

1x10
-8

1x10
-7

1x10
-6

0.00001

0.0001

0.001

0.01

0.1

1

10

re
la

ti
v
e
 e

rr
o
r

1 ! k ! 6.25

1 ! k ! 12.5

1 ! k ! 25

Numerical results for EIM

Interpolation error depending on the 
length of the expansion

Picked parameters in the parameter domain for kmax=25 Surface Γ given by:

f(x;µ) = eikk̂(θ,φ)·x, x ∈ Γ,µ ∈ D,

µ = (k, θ), φ fixed,

D = [1, kmax]× [0,π]
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• Schematic illustration (2d parameter domain):

Efficiency: Elementwise EIM/hp-Interpolant

• Problems with large parameter domains, the expansion becomes too large and this can 
become that severe that the computing time of the RB solution (only online time) is in 
the order of a direct computation.

• As solution, the parameter domain can adaptively be split into subelements on which 
the function is approximated by a different Magic point expansion.
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• Schematic illustration (2d parameter domain):

D

Efficiency: Elementwise EIM/hp-Interpolant

• Problems with large parameter domains, the expansion becomes too large and this can 
become that severe that the computing time of the RB solution (only online time) is in 
the order of a direct computation.

• As solution, the parameter domain can adaptively be split into subelements on which 
the function is approximated by a different Magic point expansion.

• Refinement until on each subdomain a certain tolerance is reached
• Parameter domain only is refined
• Generalization to any dimension of the parameter space possible
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Numerical results elementwise EIM
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Surface Γ given by:
f(x;µ) = eikk̂(θ,φ)·x, x ∈ Γ,µ ∈ D,

µ = (k, θ), φ fixed,

D = [1, 25]× [0,π]
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Conclusion: A reduction of M implies a algebraic increase of number of elements (and dofs) needed. 
In this case:

But it reduces the online computing time (at the cost of a longer Offline procedure and more memory)
Shift of workload from Online part to Offline part

#elements ≈ CM−3.7
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Numerical results elementwise EIM
Picked parameter values and EIM elements 
(tol=1e-12): 

M=218 (without refinement) M=151 (1 refinement)

M=106 (2 refinements) M=74 (3 refinements)
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Numerical result for reduced basis method
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Numerical results: test 1

Surface Γ given by:

Convergence:

2 parameters, µ = (k, θ) with D = [1, 25]× [0,π]
φ = 0 fixed

Picked parameters:
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RB approximation error
Singular values

relative error =
maxµ �uh(µ)−uN (µ)�L2(Ω)

maxµ �uh(µ)�L2(Ω)
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Numerical results: test 1

2 parameters, µ = (k, θ) with D = [1, 25]× [0,π]
φ = 0 fixed
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Number of elements used for EEIMNumber of elements used for EEIMNumber of elements used for EEIMNumber of elements used for EEIMNumber of elements used for EEIMNumber of elements used for EEIMNumber of elements used for EEIM

Kernel function 1 4 16

Right hand side 1 4 16

RCS 4 16 64
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Numerical results: test 1

2 parameters, µ = (k, θ) with D = [1, 25]× [0,π]
φ = 0 fixed

θ = π/4 k = 25
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More complex scatterer and parallelization

• 12620 complex double unknowns
• BEM matrix has 160 Mio complex double entries
• Used 160 processors with distributed memory for computations
• Solving linear system: Cyclic distribution by Scalapack: parallel LU-factorization
• Matrix-matrix, matrix-vector multiplication: Blockwise computations using blacs/blas

x
y

z
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Numerical results: test 2

Repartition of 23 first picked parameters:

Convergence:

Surface Γ given by:
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Numerical results: test 3

Convergence:Picked parameters:

2 parameters, µ = (k, θ) with D = [1, 13]× [0,π]
φ = 0 fixed

Surface Γ given by:
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Current research - Multi object scattering

Strategy: 
1) Train a reduced basis for each type of geometry 
to be accurate for all incident angles, polarizations 
and wavenumber.

2) Approximate the interaction matrices between 
each pair of bodies using the EIM.
-> parametrization of the location of each object.

3) For a fixed wavenumber, incident angle and 
polarization we solve the problem in the reduced 
basis space using a Jacobi-type iteration scheme.

Remark: Observe that only for each new geometry a reduced basis needs to be assembled. 
The reduced basis is invariant under translation.

Example: for a lattice of 100x100 identical objects we need to assemble one reduced basis!
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Current research - Multi object scattering
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From broadside to endfire to broadsice for k=7.41
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Accuracy - 2 spheres
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Relative error of the currents.
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Lattice 6 x 6 spheres

The RCS is also measured for φ = 0, . . . , 2π and θ is fixed at 90 degrees.

The wavenumber is fixed to k = 3 for the simulation. The parameter is the
angle φ = 1, . . . , 2π and θ is fixed at 90 degrees.
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Lattice 6 x 6 spheres

0 1 2 3 4 5 6
-20

-10

0

10

20

30

40
RB approximation
Truth approximation

The Jacobi iterations need between 60 and 90 
iterations, depending on the angle. 
The total "online" simulation time for that plot was 
around 3-5 minutes, which involved 360 
computations/different angles.
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Conclusions:

• For the first time, the reduced basis method is applied to integral 
equations.

• EIM interpolation is an essential tool for parametrized integral 
equations due to the kernel function ➱ Efficiency

• For large parameter domains EIM elements are used to speed up the 
computation of the “online” routine

Current
• Promising initial results for multi-object scattering using RB

Future
• hp-RBM for large parameter domains (and dimensions)
• CFIE for wavenumber parametrization for scatterers with volume 
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Thank you for your attention
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