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Sparse Signal Recovery

• Classical approach: Sample then compress.

f = Bx0

– B ∈ Rn×n : compression matrix

– f ∈ Rn : sampled signal

– x0 ∈ Rn : sparse compressed signal.

• Compressed Sensing: Sample and compress in one stage.

b = Mf = MBx0 = Ax0

– M ∈ Rm×n : measurement matrix with m < n

– b ∈ Rm : measurements

Can we recover x0 given A and b?
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Applications of Compressed Sensing

Compressed sensing may be useful when...

• signals are sparse in a known basis.

• measurements are expensive but computations are cheap.

• Magnetic Resonance Imaging (MRI):

– Lengthy procedure! Needs a large number of measurements of the patient.

– Compressed sensing can reduce the number of measurements.

– This could reduce the procedure time or produce better images in the same

amount of time.
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Rice Single Pixel Camera[1]

b = Mf = MBx0 = Ax0

– b ∈ Rm : measurements

– M ∈ Rm×n : measurement matrix with m < n, rows determined by the digital

micromirror device (DMD)

– f ∈ Rn : the image we wish to recover

– x0 ∈ Rn : sparse representation of f under the basis given by B.

[1] Image courtesy of Rice University.
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Recovering the Sparse Signal

• We can try to recover the sparse signal with

min ‖x‖0 s.t. Ax = b

– ‖x‖0 : number of nonzero coefficients in x.

– Combinatorial and NP-hard!

• Relax to the Basis Pursuit (BP) problem:

min ‖x‖1 s.t. Ax = b

– This can recovers the sparse signal!

∗ Mutual coherence of A: Given A, works if the signal is sufficiently sparse.

(Donaho, Elad, Huo, etc)

∗ Given the sparsity of the signal, depends on the restricted isometry con-

stants of A. (Candès, Romberg, Tao)
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`1-relaxations for Noisy Measurements

Recover the sparse vector x when Ax ≈ b.

• Basis pursuit denoise (BPσ)

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ σ

• Penalized least squares (QPλ)

min ‖Ax− b‖2
2 + λ ‖x‖1

• Lasso Problem (LSτ)

min ‖Ax− b‖2 s.t. ‖x‖1 ≤ τ

Solutions coincide for appropriate choices of σ, λ, τ .

• Many solvers use this relationship.
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Solvers

• PDCO - Primal-Dual IP method for Convex Objectives (Saunders, Kim):

– Solves Basis Pursuit

min ‖x‖1 s.t. Ax = b

by solving an equivalent Linear Program.

• HOMOTOPY (Osborne, Presnell, Turlach):

– Solves a sequence of QPλ problems to solve BPσ.

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ σ

• FPC - Fixed Point Continuation Method (Hale, Yin, Zhang):

– Uses a version of fixed point iteration to solve QPλ.

min ‖Ax− b‖2
2 + λ ‖x‖1
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Solvers

• SPGL1 - spectral gradient-projection method (Berg, Friedlander):

– Solves a sequence of LSτ problems

min ‖Ax− b‖2 s.t. ‖x‖1 ≤ τ

to solve BPσ

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ σ

• NESTA (Becker, Bobin, Candès):

– Uses a method to minimize non-smooth functions proposed by Yu. Nesterov

to solve BPσ.

Our algorithm, ParNes, combines the ideas used in NESTA and SPGL1.
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Comparison of Solvers

• Comparison of HOMOTOPY, PDCO, SPGL1 [2].

• Two 3GHz CPU’s, 4Gb RAM. Problems from the SPARCO toolbox.

– ? : solver failed to converge in the allowed CPU time (1 hour)

– nz(x) : number of ”nonzero” entries of x above some tolerance

– r : residual.

Problem Data PDCO HOMOTOPY SPGL1

Problem size A ‖r‖2 ‖x‖1 nz(x) ‖r‖2 ‖x‖1 nz(x) ‖r‖2 ‖x‖1 nz(x)

blocksig 1024×1024 3.3e-4 4.5e+2 703 1.0e-4 4.5e+2 246 2.0e-14 4.5e+2 21

blurrycam 65536×65536 ? ? ? ? ? ? 9.9e-5 1.0e+4 8237

blurspike 16384×16384 9.1e-3 3.4e+2 5963 ? ? ? 9.9e-5 3.5e+2 5066

cosspike 1024×2048 1.6e-4 2.2e+2 2471 1.0e-4 2.2e+2 500 8.6e-5 2.2e+2 111

sgnspike 600×2560 9.3e-6 2.0e+1 131 1.0e-04 2.0e+1 80 8.0e-5 2.0e+1 56

seismic 41472×480617 ? ? ? ? ? ? 8.6e-5 3.9e+3 3871

[2] Probing the Pareto Frontier for Basis Pursuit Solutions. E. Berg, M. Fried-

lander. 2008.
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An Outline of ParNes

Combines the best features of NESTA and SPGL1 to solve BPσ

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ σ

• SPGL1

– Like SPGL1, ParNes solves BPσ by solving a sequence of LSτ problems.

min ‖Ax− b‖2 s.t. ‖x‖1 ≤ τ

– LSτ and BPσ are related by the Pareto Curve.

– In SPGL1, LSτ is solved with a spectral projected gradient method.

• NESTA

– Uses a method by Y. Nesterov to minimize non-smooth functions.

– ParNes solves the LSτ problems with a similar method for minimizing

smooth functions.
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The Pareto Curve

• Convex, continuously differentiable, and strictly decreasing.

• Graph of (‖xτ‖1 , ‖b− Axτ‖2) where xτ solves LSτ .

• Also the graph of (‖xσ‖1 , ‖b− Axσ‖2) where xσ solves BPσ.

• Since ‖xτ‖1 = τ and ‖b− Axσ‖2 = σ, the Pareto curve is the graph of a function

φ(τ ) = σ.
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Root Finding

• BPσ can be solved by finding a root τσ to φ(τ ) = σ.

• Newton’s method can be applied to φ(τ ) = σ to get τk → τσ:

τk+1 = τk + (σ − φ(τk))/φ′(τk)

• Since each iteration involves solving a potentially large LSτk problem, an in-

exact Newton method is used.
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Solving LSτk : min ‖Ax− b‖2 s.t. ‖x‖1 ≤ τ

• Each iteration of SPGL1 involves computing:

τk+1 = τk + (σ − φ(τk))/φ′(τk)

• Let xτk approximately solve LSτk and rτk = Axτk − b, then

φ(τk) =
∥∥rτk

∥∥
2
and φ′(τk) =

∥∥A>rτk

∥∥
∞ /

∥∥rτk

∥∥
2

• Note: φ(τk) and φ′(τk) are the approximate solution and dual solution to LSτk,

respectively.

• SPGL1 uses a SPG (Spectral Projected Gradient) method to solve LSτk.

• ParNes uses the same framework except the SPG method is replaced with a

proximal gradient method.
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Nesterov’s Proximal Gradient Algorithm for Smooth
Minimization

• Solves:

min f (x) s.t. x ∈ Q

where Q ⊆ Rn is closed and convex and f : Q → R is smooth, convex, and

Lipschitz differentiable with Lipschitz constant L.

• Computes the sequences:

yk = argminy∈Q∇f (xk)
>(y − xk) + L

2 ‖y − xk‖2
2 ,

zk = argminz∈Q

∑k
i=0

i+1
2 ∇f (xi)

>(z − xi) + L
2 ‖z − c‖2

2 ,

xk = 2
k+3zk + k+1

k+3yk. (f (xk) converges to the solution)

• c is a constant called the prox-center.
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Nesterov’s Algorithm for Non-Smooth Minimization

• Solves:

min f (x) s.t. x ∈ Q

where Q ⊆ Rn is closed and convex and f : Q → R is convex but not necessarily

differentiable.

• Assume there is a convex set Qd ⊂ Rp and W ∈ Rp×n where f can be written as

f (x) = max
u∈Qd

〈u, Wx〉.

• Replace f (x) with the smooth approximation

fµ(x) = max
u∈Qd

〈u, Wx〉 − µ

2
‖u‖2

2

• Apply Nesterov’s algorithm for smooth minimization to fµ(x).
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Convergence of Nesterov’s Algorithms

• Convergence of Smooth Version:

– Let x∗ be the optimal solution to:

min f (x) s.t. x ∈ Q

– The iterates yk satisfy:

f (yk)− f (x∗) ≤ 2L
(k+1)(k+2) ‖x

∗ − c‖2
2 = O

(
L
k2

)
implying O

(√
L
ε

)
iterations bring f (yk) within ε of the optimal value.

• Convergence of Non-Smooth Version:

– ∇fµ has Lipschitz constant Lµ = 1/µ.

– Assuming µ is chosen to be proportional to ε, O
(

1
ε

)
iterations bring f (yk)

within ε of the optimal value.
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Nesterov-LASSO

• NESTA uses Nesterov’s algorithm for non-smooth minimization to solve BPσ.

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ σ

• ParNes uses the smooth version to solve LSτk in each iteration

min ‖Ax− b‖2 s.t. ‖x‖1 ≤ τ

• The sequences in Nesterov’s smooth algorithm simplify to:

yk = proj1(xk −∇f (xk)/L, τ ),

zk = proj1

(
c− 1

L

∑k
i=0

i+1
2 ∇f (xi), τ

)
,

xk = 2
k+3zk + k+1

k+3yk. (f (xk) converges to the solution)

where proj1(s, τ ) := argmin ‖s− x‖2 s.t. ‖x‖1 ≤ τ .
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One-norm Projector

• Each iteration of Nesterov-LASSO involves two solves of

proj1(s, τ ) := argmin ‖s− x‖2 s.t. ‖x‖1 ≤ τ

• Assume the coefficients of s are positive and ordered from largest to smallest.

• The solution x∗ is given by

x∗i = max{0, si − η} with η =
τ−(s1+...+sk)

k

where k is the largest index such that η ≤ sk. (Duchi, Shalev-Schwartz, Berg,

etc.)

• Each solve costs O(n log n) in the worst case and much less in practice.
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Convergence of Nesterov-LASSO

• Recall minimizing f with Nesterov’s method gives (x∗ = argminx∈Qf (x))

f (yk)− f (x∗) ≤ 2L
(k+1)(k+2) ‖x

∗ − c‖2
2 = O

(
L
k2

)
• Assume x∗ is unique. Since xk → yk, updating c with xk should speed up the

convergence.

• In ParNes, Nesterov-LASSO is restarted every q iterations with c = xkcurrent.

• q can be chosen in an optimal manner if

1. the solution x∗ is s-sparse,

2. the iterates xk are s-sparse,

3. A satisfies the restricted isometry property of order 2s: ∃δ2s ∈ (0, 1) s.t

(1− δ2s) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ2s) ‖x‖2
2

whenever x is 2s-sparse.
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Convergence Results of Nesterov-LASSO

• Let xp,q represent the q-th iterate after the p-th prox-center change.

• With the assumptions on the previous slide, we have the following results:

– Let e be the base of the natural logarithm and

qopt = e
√

L
δ2s

and ptot = − log ε

Then the total number of iterations, ptot × qopt, to get ‖xp,q − x∗‖2 ≤ ε is

minimized with these choices of qopt and ptot.

– For each p, ∥∥xp,qopt
− x∗

∥∥
2
≤ 1/e ‖xp,1 − x∗‖2

– Nesterov-LASSO is linearly convergent under the previous assumptions!

21



ParNes: Experiment Details

• To gain a good comparison, we repeat some of the experiments done in the

NESTA paper (Becker, Bobin, Candès) using their code.

• Tests some of the most competitive algorithms using hard, realistic problems.

• The next two experiments recover an s-sparse signal with n = 262144, m = n/8,

s = m/5, and noise level σ = 0.1.

– Tests dynamic range values (ratio of the largest and smallest non-zero co-

efficients of the unknown signal) of d = 20, 40, 60, 80, 100 dB.

– A is a randomly subsampled discrete cosine transform.

– Let xNES be NESTA’s solution when the relative variation of the objective

function is less than 10−7. The stopping rule is

‖xk‖1 ≤ ‖xNES‖1 and ‖b− Axk‖2 ≤ 1.05 ‖b− AxNES‖2.
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Numerical Experiments: Speed

• Table gives the number of function calls.

• DNC if calls to A or A> exceeds 20,000.

Method 20 dB 40 dB 60 dB 80 dB 100 dB
parnes 122 172 214 470 632
nesta 383 809 1639 4341 15227
nesta + ct 483 513 583 685 787
gpsr 64 622 5030 dnc dnc
gpsr + ct 271 219 357 1219 11737
sparsa 323 387 465 541 693
spgl1 58 102 191 374 504
fista 69 267 1020 3465 12462
fpc-as 209 231 299 371 287
fpc-as (cg) 253 289 375 481 361
fpc 474 386 478 1068 9614
fpc-bb 164 168 206 278 1082
bregman-bb 211 223 309 455 1408
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Numerical Experiments: Accuracy

• DNC if calls to A or A> (NA) exceeds 20,000.

• Dynamic range is d = 100 dB.

Methods NA ‖x‖1
‖x−x∗‖1
‖x∗‖1

parnes 632 942197.606 0.000693
nesta 15227 942402.960 0.004124
nesta + ct 787 942211.581 0.000812
gpsr dnc dnc dnc
gpsr + ct 11737 942211.377 0.001420
sparsa 693 942197.785 0.000783
spgl1 504 942211.520 0.001326
fista 12462 942211.540 0.000363
fpc-as 287 942210.925 0.000672
fpc-as (cg) 361 942210.512 0.000671
fpc 9614 942211.540 0.001422
fpc-bb 1082 942209.854 0.001378
bregman-bb 1408 942286.656 0.000891
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Numerical Experiments: Speed

An approximately sparse signal (obtained from permuting the Haar wavelet co-

efficients of a 512× 512 image) is recovered with the same stopping rule as before.

• The measurement vector b consists of m = n/8 = 5122/8 = 32, 768 random discrete

cosine measurements, and the noise level is set to 0.1.

Method Run 1 Run 2 Run 3 Run 4 Run 5
parnes 838 810 1038 1098 654
nesta 8817 10867 9887 9093 11211
nesta + ct 3807 3045 3047 3225 2735
gpsr dnc dnc dnc dnc dnc
gpsr + ct dnc dnc dnc dnc dnc
sparsa 2143 2353 1977 1613 dnc
spgl1 916 892 1115 1437 938
fista 3375 2940 2748 2538 3855
fpc-as dnc dnc dnc dnc dnc
fpc-as (cg) dnc dnc dnc dnc dnc
fpc dnc dnc dnc dnc dnc
fpc-bb 5614 7906 5986 4652 6906
bregman-bb 3288 1281 1507 2892 3104
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Software Download

• Resources used in paper and talk

– NESTA - http://www.acm.caltech.edu/ nesta/

– SPGL1 - http://www.cs.ubc.ca/labs/scl/index.php/Main/Spgl1

– BREGMAN - http://www.caam.rice.edu/ optimization/L1/2006/10/bregman-

iterative-algorithms-for.html

– SparseLab - http://sparselab.stanford.edu/

– FPC-AS - http://www.caam.rice.edu/ optimization/L1/FPC AS/

– FPC - http://www.caam.rice.edu/ optimization/L1/fpc/

– SPARCO - http://www.cs.ubc.ca/labs/scl/sparco/

– GSPR - http://www.lx.it.pt/ mtf/GPSR/

– SpaRSA - http://www.lx.it.pt/ mtf/SpaRSA/

• Many other resources available at - http://www-dsp.rice.edu/cs
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