ParNes: A New Algorithm for Compressed Sensing Problems

Cinna Wu

Department of Mathematics UC Berkeley

Joint work with Ming Gu and Lek-Heng Lim

$$\min \|x\|_1 \text{ s.t. } \|Ax - b\|_2 \le \sigma$$

Contents

- Background
 - Motivation
 - Applications
 - Solvers
- ParNes
 - The Algorithm
 - Convergence
 - Numerical Experiments

Sparse Signal Recovery

• Classical approach: Sample then compress.

$f = Bx_0$

- $-B \in \mathbb{R}^{n \times n}$: compression matrix
- $-f \in \mathbb{R}^n$: sampled signal
- $-x_0 \in \mathbb{R}^n$: sparse compressed signal.
- Compressed Sensing: Sample and compress in one stage.

 $b = Mf = MBx_0 = Ax_0$

- $-M \in \mathbb{R}^{m \times n}$: measurement matrix with m < n
- $-b \in \mathbb{R}^m$: measurements

Can we recover x_0 given A and b?

Applications of Compressed Sensing

Compressed sensing may be useful when...

- signals are sparse in a known basis.
- measurements are expensive but computations are cheap.
- Magnetic Resonance Imaging (MRI):
 - Lengthy procedure! Needs a large number of measurements of the patient.
 - Compressed sensing can reduce the number of measurements.
 - This could reduce the procedure time or produce better images in the same amount of time.

Rice Single Pixel Camera^[1]

$$b = Mf = MBx_0 = Ax_0$$

 $-b \in \mathbb{R}^m$: measurements

- $-M \in \mathbb{R}^{m \times n}$: measurement matrix with m < n, rows determined by the digital micromirror device (DMD)
- $-f \in \mathbb{R}^n$: the image we wish to recover
- $-x_0 \in \mathbb{R}^n$: sparse representation of f under the basis given by B.

[1] Image courtesy of Rice University.

Recovering the Sparse Signal

• We can try to recover the sparse signal with

 $\min \|x\|_0$ s.t. Ax = b

 $- \|x\|_0$: number of nonzero coefficients in x.

- Combinatorial and NP-hard!
- Relax to the Basis Pursuit (BP) problem:

 $\min \|x\|_1$ s.t. Ax = b

- This can recovers the sparse signal!
 - * *Mutual coherence* of A: Given A, works if the signal is sufficiently sparse. (Donaho, Elad, Huo, etc)
 - * Given the sparsity of the signal, depends on the *restricted isometry constants* of A. (Candès, Romberg, Tao)

ℓ_1 -relaxations for Noisy Measurements

Recover the sparse vector x when $Ax \approx b$.

• Basis pursuit denoise (BP_{σ})

$$\min \|x\|_1$$
 s.t. $\|Ax - b\|_2 \le \sigma$

• Penalized least squares (\mathbf{QP}_{λ})

$$\min \|Ax - b\|_2^2 + \lambda \|x\|_1$$

• Lasso Problem (LS_{τ})

$$\min \|Ax - b\|_2$$
 s.t. $\|x\|_1 \le \tau$

Solutions coincide for appropriate choices of σ, λ, τ .

• Many solvers use this relationship.

• PDCO - Primal-Dual IP method for Convex Objectives (Saunders, Kim):

– Solves Basis Pursuit

$$\min \|x\|_1$$
 s.t. $Ax = b$

by solving an equivalent Linear Program.

• **HOMOTOPY** (Osborne, Presnell, Turlach):

– Solves a sequence of \mathbf{QP}_{λ} problems to solve \mathbf{BP}_{σ} .

$$\min \|x\|_1$$
 s.t. $\|Ax - b\|_2 \le \sigma$

• FPC - Fixed Point Continuation Method (Hale, Yin, Zhang):

– Uses a version of fixed point iteration to solve \mathbf{QP}_{λ} .

$$\min \|Ax - b\|_2^2 + \lambda \|x\|_1$$

• **SPGL1** - spectral gradient-projection method (Berg, Friedlander):

– Solves a sequence of \mathbf{LS}_{τ} problems

$$\min \|Ax - b\|_2$$
 s.t. $\|x\|_1 \le \tau$

to solve BP_{σ}

$$\min \|x\|_1$$
 s.t. $\|Ax - b\|_2 \le \sigma$

- **NESTA** (Becker, Bobin, Candès):
 - Uses a method to minimize non-smooth functions proposed by Yu. Nesterov to solve $BP_{\sigma}.$

Our algorithm, ParNes, combines the ideas used in NESTA and SPGL1.

Comparison of Solvers

- Comparison of HOMOTOPY, PDCO, SPGL1 [2].
- Two 3GHz CPU's, 4Gb RAM. Problems from the SPARCO toolbox.
 - $-\star$: solver failed to converge in the allowed CPU time (1 hour)
 - -nz(x): number of "nonzero" entries of x above some tolerance
 - -r : residual.

Problem Data		PDCO		НОМОТОРҮ			SPGL1			
Problem	size A	$\ r\ _2$	$\ x\ _1$	nz(x)	$\ r\ _2$	$\ x\ _1$	nz(x)	$\ r\ _2$	$\ x\ _1$	nz(x)
blocksig	1024×1024	3.3e-4	4.5e+2	703	1.0e-4	4.5e+2	246	2.0e-14	4.5e+2	21
blurrycam	65536×65536	*	*	*	*	*	*	9.9e-5	1.0e+4	8237
blurspike	16384×16384	9.1e-3	3.4e+2	5963	*	*	*	9.9e-5	3.5e+2	5066
cosspike	1024×2048	1.6e-4	2.2e+2	2471	1.0e-4	2.2e+2	500	8.6e-5	2.2e+2	111
sgnspike	600×2560	9.3e-6	2.0e+1	131	1.0e-04	2.0e+1	80	8.0e-5	2.0e+1	56
seismic	41472×480617	*	*	*	*	*	*	8.6e-5	3.9e+3	3871

[2] Probing the Pareto Frontier for Basis Pursuit Solutions. E. Berg, M. Friedlander. 2008.

An Outline of ParNes

Combines the best features of NESTA and SPGL1 to solve BP_{σ}

$$\min \|x\|_1$$
 s.t. $\|Ax - b\|_2 \le \sigma$

• SPGL1

- Like SPGL1, ParNes solves BP_{σ} by solving a sequence of LS_{τ} problems.

$$\min \|Ax - b\|_2$$
 s.t. $\|x\|_1 \le \tau$

 $-LS_{\tau}$ and BP_{σ} are related by the Pareto Curve.

- In SPGL1, LS_{τ} is solved with a spectral projected gradient method.

 \bullet NESTA

- Uses a method by Y. Nesterov to minimize non-smooth functions.
- ParNes solves the LS_{τ} problems with a similar method for minimizing smooth functions.

The Pareto Curve

- Convex, continuously differentiable, and strictly decreasing.
- Graph of $(||x_{\tau}||_1, ||b Ax_{\tau}||_2)$ where x_{τ} solves LS_{τ} .
- Also the graph of $(||x_{\sigma}||_1, ||b Ax_{\sigma}||_2)$ where x_{σ} solves \mathbf{BP}_{σ} .
- Since $||x_{\tau}||_1 = \tau$ and $||b Ax_{\sigma}||_2 = \sigma$, the Pareto curve is the graph of a function $\phi(\tau) = \sigma$.

Root Finding

- \mathbf{BP}_{σ} can be solved by finding a root τ_{σ} to $\phi(\tau) = \sigma$.
- Newton's method can be applied to $\phi(\tau) = \sigma$ to get $\tau_k \to \tau_\sigma$:

$$\tau_{k+1} = \tau_k + (\sigma - \phi(\tau_k)) / \phi'(\tau_k)$$

• Since each iteration involves solving a potentially large LS_{τ_k} problem, an inexact Newton method is used.

Solving
$$\mathbf{LS}_{\tau_k}$$
 : min $||Ax - b||_2$ **s.t.** $||x||_1 \le \tau$

• Each iteration of SPGL1 involves computing:

$$\tau_{k+1} = \tau_k + (\sigma - \phi(\tau_k)) / \phi'(\tau_k)$$

• Let x_{τ_k} approximately solve LS_{τ_k} and $r_{\tau_k} = Ax_{\tau_k} - b$, then

$$\left\| \phi(\tau_k) = \left\| r_{\tau_k} \right\|_2 \text{ and } \phi'(\tau_k) = \left\| A^\top r_{\tau_k} \right\|_\infty / \left\| r_{\tau_k} \right\|_2$$

- Note: $\phi(\tau_k)$ and $\phi'(\tau_k)$ are the approximate solution and dual solution to LS_{τ_k} , respectively.
- SPGL1 uses a SPG (Spectral Projected Gradient) method to solve LS_{τ_k} .
- ParNes uses the same framework except the SPG method is replaced with a proximal gradient method.

Nesterov's Proximal Gradient Algorithm for Smooth Minimization

• Solves:

$$\min f(x)$$
 s.t. $x \in Q$

where $Q \subseteq \mathbb{R}^n$ is closed and convex and $f : Q \to \mathbb{R}$ is smooth, convex, and Lipschitz differentiable with Lipschitz constant L.

• Computes the sequences:

$$y_{k} = \operatorname{argmin}_{y \in Q} \nabla f(x_{k})^{\top} (y - x_{k}) + \frac{L}{2} \|y - x_{k}\|_{2}^{2},$$

$$z_{k} = \operatorname{argmin}_{z \in Q} \sum_{i=0}^{k} \frac{i+1}{2} \nabla f(x_{i})^{\top} (z - x_{i}) + \frac{L}{2} \|z - c\|_{2}^{2},$$

$$x_{k} = \frac{2}{k+3} z_{k} + \frac{k+1}{k+3} y_{k}.$$
 ($f(x_{k})$ converges to the solution)

• c is a constant called the prox-center.

Nesterov's Algorithm for Non-Smooth Minimization

• Solves:

$$\min f(x)$$
 s.t. $x \in Q$

where $Q \subseteq \mathbb{R}^n$ is closed and convex and $f : Q \to \mathbb{R}$ is convex but not necessarily differentiable.

- Assume there is a convex set $Q_d \subset \mathbb{R}^p$ and $W \in \mathbb{R}^{p \times n}$ where f can be written as $f(x) = \max_{u \in Q_d} \langle u, Wx \rangle$.
- \bullet Replace f(x) with the smooth approximation

$$f_{\mu}(x) = \max_{u \in Q_d} \langle u, Wx \rangle - \frac{\mu}{2} \|u\|_2^2$$

• Apply Nesterov's algorithm for smooth minimization to $f_{\mu}(x)$.

Convergence of Nesterov's Algorithms

- Convergence of Smooth Version:
 - Let x^* be the optimal solution to:

$$\min f(x)$$
 s.t. $x \in Q$

- The iterates y_k satisfy:

$$|f(y_k) - f(x^*)| \le \frac{2L}{(k+1)(k+2)} ||x^* - c||_2^2 = O\left(\frac{L}{k^2}\right)$$

implying $O\left(\sqrt{\frac{L}{\epsilon}}\right)$ iterations bring $f(y_k)$ within ϵ of the optimal value.

• Convergence of Non-Smooth Version:

 $-\nabla f_{\mu}$ has Lipschitz constant $L_{\mu} = 1/\mu$.

- Assuming μ is chosen to be proportional to ϵ , $O\left(\frac{1}{\epsilon}\right)$ iterations bring $f(y_k)$ within ϵ of the optimal value.

• NESTA uses Nesterov's algorithm for non-smooth minimization to solve BP_{σ} .

$$\min \|x\|_1$$
 s.t. $\|Ax - b\|_2 \le \sigma$

 \bullet ParNes uses the smooth version to solve \mathbf{LS}_{τ_k} in each iteration

$$\min \|Ax - b\|_2$$
 s.t. $\|x\|_1 \le \tau$

• The sequences in Nesterov's smooth algorithm simplify to:

$$y_{k} = \operatorname{proj}_{1}(x_{k} - \nabla f(x_{k})/L, \tau),$$

$$z_{k} = \operatorname{proj}_{1}\left(c - \frac{1}{L}\sum_{i=0}^{k} \frac{i+1}{2}\nabla f(x_{i}), \tau\right),$$

$$x_{k} = \frac{2}{k+3}z_{k} + \frac{k+1}{k+3}y_{k}.$$
 (f(x_{k}) converges to the solution)

where $proj_1(s, \tau) := \operatorname{argmin} \|s - x\|_2$ s.t. $\|x\|_1 \le \tau$.

• Each iteration of Nesterov-LASSO involves two solves of

 $proj_1(s, \tau) := argmin ||s - x||_2 \text{ s.t. } ||x||_1 \le \tau$

- Assume the coefficients of s are positive and ordered from largest to smallest.
- The solution x^* is given by

$$x_{i}^{*} = \max\{0, s_{i} - \eta\}$$
 with $\eta = \frac{\tau - (s_{1} + \dots + s_{k})}{k}$

where k is the largest index such that $\eta \leq s_k$. (Duchi, Shalev-Schwartz, Berg, etc.)

• Each solve costs $O(n \log n)$ in the worst case and much less in practice.

Convergence of Nesterov-LASSO

• Recall minimizing f with Nesterov's method gives $(x^* = \operatorname{argmin}_{x \in Q} f(x))$

$$f(y_k) - f(x^*) \le \frac{2L}{(k+1)(k+2)} ||x^* - c||_2^2 = O\left(\frac{L}{k^2}\right)$$

- Assume x^* is unique. Since $x_k \to y_k$, updating c with x_k should speed up the convergence.
- In ParNes, Nesterov-LASSO is restarted every q iterations with $c = x_{k_{current}}$.
- \bullet q can be chosen in an optimal manner if
 - 1. the solution x^* is *s*-sparse,
 - **2.** the iterates x_k are *s*-sparse,
 - **3.** A satisfies the *restricted isometry property* of order 2s: $\exists \delta_{2s} \in (0,1)$ s.t

$$(1 - \delta_{2s}) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_{2s}) \|x\|_2^2$$

whenever x is 2s-sparse.

Convergence Results of Nesterov-LASSO

- Let $x_{p,q}$ represent the q-th iterate after the p-th prox-center change.
- With the assumptions on the previous slide, we have the following results:
 - Let e be the base of the natural logarithm and

$$q_{ ext{opt}} = e \sqrt{rac{L}{\delta_{2s}}} ext{ and } p_{ ext{tot}} = -\log arepsilon$$

Then the total number of iterations, $p_{tot} \times q_{opt}$, to get $||x_{p,q} - x^*||_2 \leq \varepsilon$ is minimized with these choices of q_{opt} and p_{tot} .

- For each p,

$$||x_{p,q_{\text{opt}}} - x^*||_2 \le 1/e ||x_{p,1} - x^*||_2$$

- Nesterov-LASSO is linearly convergent under the previous assumptions!

ParNes: Experiment Details

- To gain a good comparison, we repeat some of the experiments done in the NESTA paper (Becker, Bobin, Candès) using their code.
- Tests some of the most competitive algorithms using hard, realistic problems.
- The next two experiments recover an s-sparse signal with n = 262144, m = n/8, s = m/5, and noise level $\sigma = 0.1$.
 - Tests dynamic range values (ratio of the largest and smallest non-zero coefficients of the unknown signal) of d = 20, 40, 60, 80, 100 dB.
 - -A is a randomly subsampled discrete cosine transform.
 - Let x_{NES} be NESTA's solution when the relative variation of the objective function is less than 10^{-7} . The stopping rule is

$$||x_k||_1 \le ||x_{\text{NES}}||_1$$
 and $||b - Ax_k||_2 \le 1.05 ||b - Ax_{\text{NES}}||_2$.

Numerical Experiments: Speed

- Table gives the number of function calls.
- DNC if calls to A or A^{\top} exceeds 20,000.

Method	20 dB	40 dB	60 dB	80 dB	100 dB
PARNES	122	172	214	470	632
NESTA	383	809	1639	4341	15227
NESTA $+$ CT	483	513	583	685	787
GPSR	64	622	5030	DNC	DNC
GPSR + CT	271	219	357	1219	11737
SPARSA	323	387	465	541	693
SPGL1	58	102	191	374	504
FISTA	69	267	1020	3465	12462
FPC-AS	209	231	299	371	287
FPC-AS (CG)	253	289	375	481	361
FPC	474	386	478	1068	9614
FPC-BB	164	168	206	278	1082
BREGMAN-BB	211	223	309	455	1408

Numerical Experiments: Accuracy

- DNC if calls to A or A^{\top} (N_A) exceeds 20,000.
- Dynamic range is d = 100 dB.

Methods	N_A	$\left\ x ight\ _{1}$	$\frac{\ x - x^*\ _1}{\ x^*\ _1}$
PARNES	632	942197.606	0.000693
NESTA	15227	942402.960	0.004124
NESTA $+$ CT	787	942211.581	0.000812
GPSR	DNC	DNC	DNC
GPSR + CT	11737	942211.377	0.001420
SPARSA	693	942197.785	0.000783
SPGL1	504	942211.520	0.001326
FISTA	12462	942211.540	0.000363
FPC-AS	287	942210.925	0.000672
FPC-AS (CG)	361	942210.512	0.000671
FPC	9614	942211.540	0.001422
FPC-BB	1082	942209.854	0.001378
BREGMAN-BB	1408	942286.656	0.000891

Numerical Experiments: Speed

An approximately sparse signal (obtained from permuting the Haar wavelet coefficients of a 512×512 image) is recovered with the same stopping rule as before.

• The measurement vector b consists of $m = n/8 = 512^2/8 = 32,768$ random discrete cosine measurements, and the noise level is set to 0.1.

Method	Run 1	Run 2	Run 3	Run 4	Run 5
PARNES	838	810	1038	1098	654
NESTA	8817	10867	9887	9093	11211
NESTA $+$ CT	3807	3045	3047	3225	2735
GPSR	DNC	DNC	DNC	DNC	DNC
GPSR + CT	DNC	DNC	DNC	DNC	DNC
SPARSA	2143	2353	1977	1613	DNC
SPGL1	916	892	1115	1437	938
FISTA	3375	2940	2748	2538	3855
FPC-AS	DNC	DNC	DNC	DNC	DNC
FPC-AS (CG)	DNC	DNC	DNC	DNC	DNC
FPC	DNC	DNC	DNC	DNC	DNC
FPC-BB	5614	7906	5986	4652	6906
BREGMAN-BB	3288	1281	1507	2892	3104

Software Download

- Resources used in paper and talk
 - NESTA http://www.acm.caltech.edu/ nesta/
 - $-\,SPGL1\ \text{-}\ http://www.cs.ubc.ca/labs/scl/index.php/Main/Spgl1$
 - $\ BREGMAN \ \ http://www.caam.rice.edu/optimization/L1/2006/10/bregman-iterative-algorithms-for.html$
 - ${\bf SparseLab} \ {\bf -http://sparselab.stanford.edu/}$
 - FPC-AS http://www.caam.rice.edu/ optimization/L1/FPC_AS/
 - FPC http://www.caam.rice.edu/ optimization/L1/fpc/
 - SPARCO http://www.cs.ubc.ca/labs/scl/sparco/
 - GSPR http://www.lx.it.pt/ mtf/GPSR/
 - SpaRSA http://www.lx.it.pt/ mtf/SpaRSA/
- Many other resources available at http://www-dsp.rice.edu/cs