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Sparse Signal Recovery

e Classical approach: Sample then compress.

| = Bx

— B € R™" : compression matrix
— f e R" : sampled signal

—x9 € R" : sparse compressed signal.

e Compressed Sensing: Sample and compress in one stage.

b=M{f = MDBzxy= Axg

— M € R"™" . measurement matrix with m <n

—beR™ : measurements

Can we recover z; given A and b?




Applications of Compressed Sensing

Compressed sensing may be useful when...

e signals are sparse in a known basis.

e measurements are expensive but computations are cheap.

e Magnetic Resonance Imaging (MRI):

— Lengthy procedure! Needs a large number of measurements of the patient.
— Compressed sensing can reduce the number of measurements.

— This could reduce the procedure time or produce better images in the same
amount of time.



Rice Single Pixel Cameralll

Low-cost, fast, sensitive
optical detection

_ )

Compressed, encoded
image data sent via RF
for reconstruction

------- ‘ (2

b=Mf = MBxy= Axg

Image encoded by DMD
and random basis

—be R™ : measurements

— M € R™" : measurement matrix with m < n, rows determined by the digital
micromirror device (DMD)

—feR” : the image we wish to recover

—x9 € R" : sparse representation of f under the basis given by B.

[1] Image courtesy of Rice University.



Recovering the Sparse Signal

e We can try to recover the sparse signal with

min ||z||, s.t. Az =0

—||z||, : number of nonzero coefficients in z.

— Combinatorial and NP-hard!

e Relax to the Basis Pursuit (BP) problem:

min ||z||; s.t. Az =0

— This can recovers the sparse signal!

* Mutual coherence of A: Given A, works if the signal is sufficiently sparse.
(Donaho, Elad, Huo, etc)

* (Given the sparsity of the signal, depends on the restricted isometry con-
stants of A. (Candes, Romberg, Tao)



{1-relaxations for Noisy Measurements

Recover the sparse vector x when Az =~ b.

e Basis pursuit denoise (BP,)

min ||z||; s.t. ||[Az —bl; <o

e Penalized least squares (QP))

. 2
min [|[Az — b||5 + A [z

e Lasso Problem (LS,)

min ||Ax — b||y s.t. ||x||; < T

Solutions coincide for appropriate choices of o, \, 7.

e Many solvers use this relationship.



Solvers

e PDCO - Primal-Dual IP method for Convex Objectives (Saunders, Kim):

— Solves Basis Pursuit

min ||x||; s.t. Ar =0

by solving an equivalent Linear Program.

e HOMOTOPY (Osborne, Presnell, Turlach):

— Solves a sequence of QP), problems to solve BP,.

min|[z]]; s.t. Az — 0|, <o

e FPC - Fixed Point Continuation Method (Hale, Yin, Zhang):

— Uses a version of fixed point iteration to solve QP,.

- 2
min || Az — b]|5 + Az ]y




Solvers

e SPGL1 - spectral gradient-projection method (Berg, Friedlander):

— Solves a sequence of LS, problems

min ||Ax — b||y s.t. ||z||; <7

to solve BP,

min ||z||; s.t. [|[Az —b|; <o

e NESTA (Becker, Bobin, Candeés):

— Uses a method to minimize non-smooth functions proposed by Yu. Nesterov
to solve BP,.

Our algorithm, ParNes, combines the ideas used in NESTA and SPGLI1.



Comparison of Solvers

e Comparison of HOMOTOPY, PDCO, SPGL1 [2].

e Two 3GHz CPU’s, 4Gb RAM. Problems from the SPARCO toolbox.

—nz(x) :

—r : residual.

number of "nonzero” entries of £ above some tolerance

: solver failed to converge in the allowed CPU time (1 hour)

Problem Data PDCO HOMOTOPY SPGL1
Problem size A Irlly  Nzlly nez() | irll, =l nez(@)| irlly, (=], ne(z)
blocksig 1024x1024 | 3.3e-4 4.5e+2 703 | 1.0e-4 4.5e+2 246 |2.0e-14 4.5e+2 21
blurrycam 65536 x 65536 * * * * * * 9.9e-5 1.0e+4 8237
blurspike  16384x16384 | 9.1e-3 3.4e4+2 5963 * * * 9.9e-5 3.5e+2 5066
cosspike 1024%x2048 | 1.6e-4 2.2e+2 2471 | 1.0e-4 22e4+2 500 | 8.6e-5 2.2¢+2 111
sgnspike 600x2560 |9.3e-6 2.0e+1 131 |1.0e-04 2.0e+1 80 | 8.0e-5 2.0e+1 56
seismic  41472x480617 | x * * * * * 8.6e-5 3.9e+3 3871

[2] Probing the Pareto Frontier for Basis Pursuit Solutions. E. Berg, M. Fried-

lander. 2008.
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An Outline of Par

Combines the best features of NESTA and SPGL1 to solve BP,

min ||z||; s.t. [|[Az —b|l;, <o

e SPGL1

— Like SPGL1, ParNes solves BP, by solving a sequence of LS. problems.

min ||Ax — bl s.t. ||x||; <7

— LS, and BP, are related by the Pareto Curve.

—In SPGL1, LS, is solved with a spectral projected gradient method.

e NESTA

— Uses a method by Y. terov to minimize non-smooth functions.

— ParNes solves the LS, problems with a similar method for minimizing
smooth functions.
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The Pareto Curve
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one—norm of solution

e Convex, continuously differentiable, and strictly decreasing.
e Graph of (||z;|,,||b — Az;||,) where =, solves LS.
e Also the graph of (||z,||,,||b — Az,||,) where z, solves BP,,.

e Since ||z;||; = 7 and ||b — Az, ||, = o, the Pareto curve is the graph of a function

(1) =o.
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Root Finding

BPs: min||z|; s.t. ||Az —b|, <o

LS:: min ||[Az —b|y s.t. |[z]jy <7

two=norm of residual

one—norm of solution

e BP, can be solved by finding a root 7, to ¢(7) = o.

e Newton’s method can be applied to ¢(7) = o to get 7, — 7,:

Thp1 = T + (00 — O(73)) /¢ (%)

e Since each iteration involves solving a potentially large LS, problem, an in-
exact Newton method is used.
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Solving LS, : min ||Az — bl s.t. [[z||; <7

e Each iteration of SPGL1 involves computing:

Thi1 = T + (0 — d(11)) /&' (73,)

e Let z; approximately solve LS, and r; = Az, — b, then

é(1) = |[ra ]|, and ¢'(m) = | A 7| / [lraell

e Note: ¢(7;) and ¢'(7;) are the approximate solution and dual solution to LS, ,
respectively.

e SPGL1 uses a SPG (Spectral Projected Gradient) method to solve LS, .

e ParNes uses the same framework except the SPG method is replaced with a
proximal gradient method.

14



Nesterov’s Proximal Gradient Algorithm for Smooth
Minimization

e Solves:

min f(x) s.t. x € Q

where () C R” is closed and convex and f : () — R is smooth, convex, and
Lipschitz differentiable with Lipschitz constant L.

e Computes the sequences:

Y = argminyeQVf(iUk)T(y — z) + Elly — a5
2, = argmin,.o S0 BV (@) (2 — 2) + L2 — cff5.

Ty = k+3z K+ Ziéyk (f(x;) converges to the solution)

e c is a constant called the prox-center.
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Nesterov’s Algorithm for Non-Smooth Minimization

e Solves:

min f(x) s.t. z € Q

where () C R"” is closed and convex and f : () — R is convex but not necessarily
differentiable.

e Assume there is a convex set (); C R and W € RP*" where f can be written as
f(z) = max (u, Wzx).
ueRq

e Replace f(x) with the smooth approximation

e Apply Nesterov’s algorithm for smooth minimization to f,(x).
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Convergence of Nesterov’s Algorithms

e Convergence of Smooth Version:

— Let z* be the optimal solution to:

min f(x) s.t. x € Q)

— The iterates y; satisty:

fyr) — f(a¥)

I

2L * 2 L
(1) (F+2) [z —cl; =0 (P)

implying O <\/%) iterations bring f(y;) within ¢ of the optimal value.

e Convergence of Non-Smooth Version:

— V[, has Lipschitz constant L, = 1/px.

— Assuming u is chosen to be proportional to ¢, O (%) iterations bring f(y)
within ¢ of the optimal value.
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Nesterov-LASSO

e NESTA uses Nesterov’s algorithm for non-smooth minimization to solve BP,.

min ||z||; s.t. [[Az —0b|, <o

e ParNes uses the smooth version to solve LS;, in each iteration

min ||Ax — b||y s.t. ||x||; < T

® The sequences in Nesterov’s smooth algorithm simplify to:

yp = proj,(xy — V f(xy) /L, 7),

. k4
2 = proj; (e = X IV f(a). 7))

Ty = k%i,)zk + z—i?l)yk (f(xy) converges to the solution)

where proj(s,7) ;= argmin ||s — z||, s.t. |[z], < 7.
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One-norm Pro jector

e FEach iteration of Nesterov-LASSO involves two solves of

proji(s,7) :=argmin |[s — z||, s.t. ||z||; < T

e Assume the coefficients of s are positive and ordered from largest to smallest.

e The solution z* is given by

. —(S1+...+
¥ =max{0,s; —n} with n="1 (51 T 5k)

[/

where £ is the largest index such that n < s;. (Duchi, Shalev-Schwartz, Berg,
etc.)

e Each solve costs O(nlogn) in the worst case and much less in practice.
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Convergence of Nesterov-LASSO

e Recall minimizing f with Nesterov’s method gives (z* = argmin, ., f(7))

f(yk> - f(x*) < (k+12) k+2) Hx CHS =0 (#)

e Assume z* is unique. Since z; — y;, updating ¢ with z; should speed up the
convergence.

e In ParNes, Nesterov-LASSO is restarted every ¢ iterations with ¢ =y, .. ..

® ¢ can be chosen in an optimal manner if

1. the solution z* is s-sparse,
2. the iterates x; are s-sparse,

3. A satisfies the restricted isometry property of order 2s: Jdys € (0,1) s.t

(1= bss) [l < (| Azl < (1 + &) ||l

whenever z is 2s-sparse.
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Convergence Results of Nesterov-LASSO

e Let z,, represent the ¢-th iterate after the p-th prox-center change.
e With the assumptions on the previous slide, we have the following results:

— Let e be the base of the natural logarithm and

Qope = €4 /é and p,, = —loge

Then the total number of iterations, p.. X ¢, to get |z,,— 2%, < ¢ is

minimized with these choices of ¢,,, and p,.

— For each p,

HZC}37QOP‘G o 'CE*HQ S 1/6 H'rp,l o 'CE*HQ

— Nesterov-LASSO is linearly convergent under the previous assumptions!
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ParNes: Experiment Details

e To gain a good comparison, we repeat some of the experiments done in the
NESTA paper (Becker, Bobin, Candeés) using their code.

e Tests some of the most competitive algorithms using hard, realistic problems.

e The next two experiments recover an s-sparse signal with n = 262144, m = n/8,
s =m/5, and noise level o = 0.1.

— Tests dynamic range values (ratio of the largest and smallest non-zero co-
efficients of the unknown signal) of d = 20,40, 60, 80, 100 dB.

— A is a randomly subsampled discrete cosine transform.

— Let zngs be NESTA’s solution when the relative variation of the objective
function is less than 10~7. The stopping rule is

lzelly < lloneslly  and  [|b— Azglls < 1.05 [0 — Azyes|l2.
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Numerical Experiments: Speed

e Table gives the number of function calls.

e DINC if calls to A or A" exceeds 20,000.

Method 20 dB 140 dB |60 dB |80 dB | 100 dB
PARNES 122 172 | 214 | 470 632
NESTA 383 | 809 | 1639 | 4341 | 15227
NESTA + CT | 483 | 513 | 583 | 685 787
GPSR 64 622 | 5030 | DNC | DNC
GPSR + CT 271 219 | 357 | 1219 | 11737
SPARSA 323 | 387 | 465 | 541 693
SPGL1 58 102 191 374 504
FISTA 69 207 | 1020 | 3465 | 12462
FPC-AS 209 | 231 299 | 371 287
FPC-AS (CG) 203 | 289 | 375 | 481 361
FPC 474 | 386 | 478 | 1068 | 9614
FPC-BB 164 168 | 206 | 278 1082
BREGMAN-BB| 211 223 309 | 455 1408
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Numerical Experiments: Accuracy

e DNC if calls to A or A" (N,) exceeds 20,000.
e Dynamic range is d = 100 dB.

Methods Ny |||, ”ﬁ;ﬂiﬂl
PARNES 632 |942197.606 | 0.000693
NESTA 15227 1942402.960 | 0.004124
NESTA + CT | 787 [942211.5810.000812
GPSR DNC DNC DNC

GPSR + CcT | 11737|942211.377]0.001420
SPARSA 693 |942197.78510.000783
SPGL1 504 1942211.520]0.001326
FISTA 12462 1942211.540 | 0.000363
FPC-AS 287 1942210.92510.000672
FPC-AS (CG) 361 1942210.51210.000671
FPC 9614 |942211.540 | 0.001422
FPC-BB 1082 1942209.854 | 0.001378
BREGMAN-BB | 1408 |942286.656 | 0.000891
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Numerical Experiments: Speed

An approximately sparse signal (obtained from permuting the Haar wavelet co-
efficients of a 512 x 512 image) is recovered with the same stopping rule as before.

e The measurement vector b consists of m = n/8 = 512?/8 = 32, 768 random discrete
cosine measurements, and the noise level is set to 0.1.

Method Run 1| Run 2| Run 3| Run 4 | Run 5
PARNES 838 | 810 | 1038 | 1098 | 654

NESTA 8817 | 10867 | 9887 | 9093 | 11211
NESTA + CT | 3807 | 3045 | 3047 | 3225 | 2735
GPSR DNC | DNC | DNC | DNC | DNC
GPSR + CT DNC | DNC | DNC | DNC | DNC
SPARSA 2143 | 2353 | 1977 | 1613 | DNC
SPGL1 916 892 | 1115 | 1437 | 938

FISTA 3375 | 2940 | 2748 | 2538 | 3855
FPC-AS DNC | DNC | DNC | DNC | DNC
FPC-AS (CG) | DNC | DNC | DNC | DNC | DNC
FPC DNC | DNC | DNC | DNC | DNC
FPC-BB 5614 | 7906 | 5986 | 4652 | 6906
BREGMAN-BB | 3288 | 1281 | 1507 | 2892 | 3104
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Software Download

e Resources used in paper and talk

— NESTA - http://www.acm.caltech.edu/ nesta/
— SPGL1 - http://www.cs.ubc.ca/labs/scl/index.php/Main/Spgll

— BREGMAN - http://www.caam.rice.edu/ optimization/L1/2006/10/bregman-
iterative-algorithms-for.html

— SparseLab - http://sparselab.stanford.edu/

— FPC-AS - http://www.caam.rice.edu/ optimization/L1/FPC_AS/
— FPC - http://www.caam.rice.edu/ optimization/L1/fpc/

— SPARCO - http://www.cs.ubc.ca/labs/scl /sparco/

— GSPR - http://www.Ix.it.pt/ mtf/GPSR/

— SpaRSA - http://www.Ix.it.pt/ mtf/SpaRSA/

e Many other resources available at - http://www-dsp.rice.edu/cs
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