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9.4.2 Write the given system in matrix form x′ = Ax+ f

r′(t) = 2r(t) + sin t
θ′(t) = r(t)− θ(t) + 1

We write this as

(
r′(t)
θ′(t)

)
=

(
2 0
1 −1

)(
r(t)
θ(t)

)
+

(
sin(t)

1

)
9.4.4 Write the given system in matrix form x′ = Ax+ f

dx
dt = x+ y + z

dy
dt = 2x− y + 3z

dz
dt = x+ 5z

We write this as

dx
dt
dy
dt
dz
dt

 =

1 1 1
2 −1 3
1 0 5

xy
z



9.4.8 Rewrite d3y
dt3 −

dy
dt + y = cos(t) as a first order system in normal form.

Note that the equation says that d3y
dt3 = dy

dt − y + cos(t). Setting x1 = y,
x2 = dy

dt , x3 = d2y
dt2 , (so d3y

dt3 = x2 − x1 + cos(t)) we get

x′1x′2
x′3

 =


dy
dt
d2y
dt2
d3y
dt3

 =

 x2

x3

x2 − x1 + cos(t)


=

 0 1 0
0 0 1
−1 1 0

x1

x2

x3

 +

 0
0

cos(t)





9.4.10 Write the given system as a set of scalar equations

x′ =
(

2 1
−1 3

)
x + et

(
t
1

)
This becomes the equations

x′1 = 2x1 + x2 + tet

x′2 = −x1 + 3x2 + et

9.4.16 Determine whether the given vector functions are linearly dependent
or independent on the interval (−∞,∞)

(
sin t
cos t

)
,

(
sin 2t
cos 2t

)
We compute the Wronskian

det
(

sin t sin 2t
cos t cos 2t

)
= sin t cos 2t− sin 2t cos t = − sin t

where the last step can be deduced by using trig identities. Since − sin t is
not identically 0, the vector functions are linearly independent. (Alternatively,
one can check that the Wronksian is nonzero at a point such as t = π

2 .)

9.4.18 Determine whether the given vector functions are linearly dependent
or independent on the interval (−∞,∞)

1
0
1

 ,

t0
t

 ,

t20
t2



These functions are linearly independent, since a linear relations requires
finding nonzero constants c1, c2, c3 such that c1 + c2t + c3t

2 = 0. But 1, t, t2

are linearly independent, so no such constants exist.

Note that even though the vector functions are linearly independent, their
Wronksian is still zero.

9.4.22 Determine whether the given functions form a fundamental solution
set to an equation x′(t) = Ax. If they do, find a fundamental matrix for the
system and give a general solution.



x1 =

etet
et

 , x2 =

 sin t
cos t
− sin t

 , x3 =

− cos t
sin t
cos t


We start by computing the Wronksian

det

et sin t − cos t
et cos t sin t
et − sin t cos t

 = et(cos2 t+sin2 t)−et(sin t cos t−sin t cos t)+et(sin2 t+cos2 t) = 2et

Since this is nowhere 0, the solutions are linearly independent and form a
fundamental set. A fundamental matrix is

et sin t − cos t
et cos t sin t
et − sin t cos t


and a general solution is c1x1 + c2x2 + c3x3.

9.4.24 Verify that the vector functions

x1 =

e3t0
e3t

 , x2 =

−e3te3t

0

 , x3 =

−e−3t

−e−3t

e−3t


are solutions to the homogenous system

x′ = Ax =

 1 −2 2
−2 1 2
2 2 1

x,

on (−∞,∞) and that

xp =

5t+ 1
2t

4t+ 2


is a particular solution to

x′ = Ax+

 −9t
0
−18t

 = Ax+ f(t)



Find a general solution to x′ = Ax+ f(t).

We check directly that

x′1 =

3e3t

0
3e3t

 = Ax1

x′2 =

−3e3t

3e3t

0

 = Ax2

x′3 =

 3e−3t

3e−3t

−3e−3t

 = Ax3

x′p =

5
2
4

 = Axp + f(t)

A general solution to x′ = Ax+ f(t) is c1x1 + c2x2 + c3x3 + xp.

9.4.25 Prove that the operator L[x] = x′ −Ax is a linear operator.

We must show L[x+ y] = L[x] + L[y] and L[cx] = cL[x].

L[x+ y] = (x+ y)′−A(x+ y) = x′+ y′−Ax−Ay = (x′−Ax) + (y′−Ay) =
L[x] + L[y]

L[cx] = (cx)′ −A(cx) = cx′ − cAx = c(x′ −Ax) = cL[x]

9.4.26 Let X(t) be a fundamental matrix for the system x′ = Ax. Show
that x(t) = X(t)X−1(t0)x0 is the solution to the initial value problem x′ =
Ax, x(to) = x0.

Since x(t) is a linear combination of the columns of the fundamental ma-
trix, we just need to check that it satisfies the initial conditions. But x(t0) =
X(t0)X−1(t0)x0 = Ix0 = x0 as desired, so x(t) is the dersired solutions.

9.5.6 Find eigenvalues and eigenvectors of the matrix

0 1 1
1 0 1
1 1 0


We start by computing the characteristic polynomial.



det

−λ 1 1
1 −λ 1
1 1 −λ

 = −λ3 + 3λ+ 2 = (2− λ)(1 + λ)2

So the eigenvalues are 2 and -1.

For λ = −1 we must find the kernel of

1 1 1
1 1 1
1 1 1


Row reducing we get 1 1 1

0 0 0
0 0 0


which gives eigenvectors

−1
0
1

 ,

−1
1
0


For λ = 2 we must find the kernel of

−2 1 1
1 −2 1
1 1 −2


Row reducing we get 1 1 −2

0 −3 3
0 0 0


which gives the eigenvector

1
1
1


9.5.10 Find all eigenvalues and eigenvectors of



1 2 −1
0 1 1
0 −1 1


We start by computing the characteristic polynomial.

det

1− λ 2 −1
0 1− λ 1
0 −1 1− λ

 = (1− λ)(λ2 − 2λ+ 2)

The first factor gives eigenvalue 1, the second gives eigenvalues 1± i.

For λ = 1, we must find the kernel of

det

0 2 −1
0 0 1
0 −1 0


which gives the eigenvector

1
0
0


For λ = 1− i we must find the kernel of

det

i 2 −1
0 i 1
0 −1 i


Solving this we get the eigenvector

−2 + i
i
1


Taking conjugates, we get that the eigenvector for λ = 1 + i is

−2− i
−i
1


9.5.14 Find a general solution to the equation x′ = Ax where



A =

−1 1 0
1 2 1
0 3 −1


We start by computing the characteristic polynomial.

det

−1− λ 1 0
1 2− λ 1
0 3 −1− λ

 = −(λ3 − 7λ− 6) = −(λ+ 1)(λ+ 2)(λ− 3)

So the eigenvalues are −1,−2, 3.

For λ = −1, we must find the kernel of

0 1 0
1 3 1
0 3 0


Row reducing we get

1 3 1
0 1 0
0 0 0


which gives the eigenvector

−1
0
1


For λ = −2, we must find the kernel of

1 1 0
1 4 1
0 3 1


Row reducing we get

1 1 0
0 3 1
0 0 0


which gives the eigenvector



 1
3
− 1

3
1


For λ = 3, we must find the kernel of

−4 1 0
1 −1 1
0 3 −4


Row reducing we get

1 −1 1
0 3 −4
0 0 0


which gives the eigenvector

 1
3
4
3
1


Combining these, we get that the general solution to the differential equation

is

c1e
−t

−1
0
1

+ c2e
−2t

 1
3
− 1

3
1

+ c3e
3t

 1
3
4
3
1


9.5.20 Find a fundamental matrix for the system x’=Ax, where

A =
(

5 4
−1 0

)
The characteristic polynomial of A is λ2 − 5λ + 4 = (λ − 1)(λ − 4), so the

eigenvalues are λ = 1, 4. For λ = 1 we must find the kernel of

(
4 4
−1 −1

)
which is spanned by

(
−1
1

)



For λ = 4 we must find the kernel of

(
1 4
−1 −4

)
which is spanned by

(
−4
1

)
The corresponding fundamental matrix is

(
−et −4e4t

et e4t

)
9.5.26 Find a general solution to the system of equations

x′ = 3x− 4y
y′ = 4x− 7y

This system can be rewritten as x′ = Ax, where

A =
(

3 −4
4 −7

)
The characteristic polynomial is λ2 + 4λ− 5 = (λ− 1)(λ+ 5), so the eigen-

values are 1 and -5. For λ = 1 we must find the kernel of

(
2 −4
4 −8

)
which is spanned by

(
2
1

)
For λ = −5 we must find the kernel of

(
8 −4
4 −2

)
which is spanned by



(
1
2

)
Combining these, we see the general solution to the initial system is x =

2c1et + c2e
−5t, y = c1e

t + 2c2e−5t.

9.5.34 Solve the initial value problem

x′(t) =

0 1 1
1 0 1
1 1 0

x, x(0) =

−1
4
0


From the eigenvectors and eigenvalues from problem 6, the general solution

to this equation is

x(t) = c1e
−t

−1
1
0

+ c2e
−t

−1
0
1

+ c3e
2t

1
1
1


Plugging in the initial condition, we must solve the equations

−1 −1 1
1 0 1
0 1 1

c1c2
c3

 =

−1
4
0


Row reducing the system and backsolving gives, c1 = 3, c2 = −1, c3 = 1, so

the desired solution is

x(t) = 3e−t

−1
1
0

− e−t
−1

0
1

+ c3e
2t

1
1
1


9.5.35 a. Show that the matrix

A =
(

1 −1
4 −3

)
has a repeated eigenvalue, and only one eigenvector.

The characteristic polynomial is λ2+2λ+1 = (λ+1)2, so the only eigenvalue
is λ = −1. Searching for eigenvectors, we must find the kernel of

(
2 −1
4 −2

)



which is spanned by (
1
2

)
b. Use your answer to part a. to find a nontrivial solution to x′ = Ax.

e−t
(

1
2

)
c. Try to find a second solution of the form te−tu1 + e−tu2.

Plugging this expression into x′ = Ax, we get

−te−tu1 + e−tu1 − e−tu2 = te−tAu1 + e−tAu2.

Grouping the e−t and te−t terms together, we get to vector relations

−u2 + u1 = Au2 or (A+ I)u2 = u1

and −u1 = Au1, or (A+ I)u1 = 0.

We want u1 to be an eigenvector. To find u2, we can either solve the given
set of linear equations, or just guess a u2 and see if (A+ I)u2 is an eigenvector.
(This may seem ad hoc, but it works as long as your guess for u2 is not already
an eigenvector.) If we guess

u2 =
(

1
0

)
then

(A+ I)u1 =
(

1
0

)
=
(

2
4

)
which is an eigenvector. So we get a solution of the differential equation

e−t
(

1
0

)
+ te−t

(
2
4

)
d. What is (A+ I)2u2?
(A + I)2u2 = (A + I)(A + I)u2 = (A + I)u1 = 0 from the equations we

derived in part c.

9.5.36 Use the method of problem 35 to find a general solution to the system



x′(t) =
(

5 −3
3 −1

)
x(t)

Computing the characteristic polynomial, we get that λ = 2 is a double root,
and

v1 =
(

1
1

)
is an eigenvector, so e2tv1 is a solution to the differential equation.

As in problem 35, we guess a solution of the form te2tu1 + e2tu2. This gives
rise to the equations (A− 2I)u1 = 0, (A− 2I)2u2 = u1.

Guessing

u2 =
(

1
0

)
we get

u1 =
(

3 −3
3 −3

)(
1
0

)
=
(

3
3

)
which is an eigenvector. So another solution is te2tu1 + e2tu2. Combining

these, we get a general solution

c1e
2t

(
1
1

)
+ c2(te2t

(
3
3

)
+ e2t

(
1
0

)
)


