## MATH 54 - FINAL EXAM PRACTICE 3

## 1. Computations

Find the Fourier series for the function $f(x)=x^{3}-2 x^{2}$, defined on $-\pi<x<\pi$ :
Solution: First notice that here $L=\pi$. If we write $f$ in a fourier series

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

then the coefficients $a_{n}$ and $b_{n}$ are found by integrating, as follows:

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x^{3}-2 x^{2}\right) \cos n x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{3} \cos n x d x-\frac{1}{\pi} \int_{-\pi}^{\pi} 2 x^{2} \cos n x d x \\
& =0-\frac{1}{\pi} \int_{-\pi}^{\pi} 2 x^{2} \cos n x d x \quad\left(\text { since } x^{3} \cos n x \text { is odd }\right)
\end{aligned}
$$

When $n=0$, this is just

$$
a_{0}=-\frac{1}{\pi} \int_{-\pi}^{\pi} 2 x^{2} d x=-\frac{1}{\pi}\left[\frac{2}{3} x^{3}\right]_{-\pi}^{\pi}=-4 \pi^{2} / 3
$$

For $n>0$, this integral can be computed using the "tabular method" for repeated integration by parts, differentiating down the left column, and integrating down the right column, as follows:


Thus the only term which survives in the integration by parts is (beware the many negative signs!):

$$
a_{n}=-\frac{1}{\pi}\left[-4 x\left(-\frac{1}{n^{2}} \cos n x\right)\right]_{-\pi}^{\pi}=-2 \frac{1}{\pi}\left[4 x\left(\frac{1}{n^{2}} \cos n x\right)\right]_{0}^{\pi}=-8 \frac{1}{n^{2}}(-1)^{n}=\frac{8}{n^{2}}(-1)^{n+1} .
$$

Next we compute the $b_{n}$ 's:

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x^{3}-2 x^{2}\right) \sin n x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{3} \sin n x d x-\frac{1}{\pi} \int_{-\pi}^{\pi} 2 x^{2} \sin n x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{3} \sin n x d x \quad\left(\text { since } 2 x^{2} \sin n x \text { is odd }\right)
\end{aligned}
$$

To evaluate this integral, we again use the tabular method:


So the integral is

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi}\left[-x^{3} \frac{1}{n} \cos n x+6 x \frac{1}{n^{3}} \cos n x\right]_{-\pi}^{\pi} \\
& =2 \frac{1}{\pi}\left[-x^{3} \frac{1}{n} \cos n x+6 x \frac{1}{n^{3}} \cos n x\right]_{0}^{\pi} \\
& =-2 \pi^{2} \frac{1}{n} \cos n \pi+12 \frac{1}{n^{3}} \cos n \pi \\
& =-2 \pi^{2} \frac{1}{n} \cos n \pi+12 \frac{1}{n^{3}} \cos n \pi \\
& =-2 \pi^{2} \frac{1}{n}(-1)^{n}+12 \frac{1}{n^{3}}(-1)^{n} \\
& =(-1)^{n} \frac{2}{n}\left[\frac{6}{n^{2}}-\pi^{2}\right]
\end{aligned}
$$

Putting this all together, we obtain the following fourier series expansion for $f$ :

$$
f(x) \sim \frac{2 \pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{8}{n^{2}}(-1)^{n+1} \cos n x+\sum_{n=1}^{\infty}(-1)^{n} \frac{2}{n}\left[\frac{6}{n^{2}}-\pi^{2}\right] \sin n x
$$

## 2. Linear Algebra

(1) In a vector space $V$, which of the following statements is false, for vectors $\mathbf{u}$ and $\mathbf{v}$ in $V$, and scalars $c$ and $d$ ?
(a) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(b) $c(d \mathbf{u})=(c d) \mathbf{u}$
(c) $\mathbf{u}(c \mathbf{u}+\mathbf{v})=c \mathbf{u}+\mathbf{u} \mathbf{v}$
(d) $(c+d)(\mathbf{u}+\mathbf{v})=c \mathbf{u}+d \mathbf{v}+c \mathbf{v}+d \mathbf{u}$

## Solution:

(c) is false. For one thing, uv doesn't even make sense, since in a general vector space, we usually can't multiply vectors, only multiply a vector by a scalar. Furthermore, even if we could, the term involving $c$ on the right seems to be missing a factor of $\mathbf{u}$.
(2) Which of the following is a vector space?
(a) The set of all polynomials $p(x)$ such that $p(1) \neq 1$.
(b) The set of all $3 \times 3$ matrices of determinant one.
(c) The set of points $\{(x, y) \mid x=y$ or $x=-y\}$ in $\mathbb{R}^{2}$
(d) The set of all sequences of real numbers.

## Solution:

(a) is not a vector space, since if we have two polynomials $p_{1}$ and $p_{2}$, for which $p_{1}(1) \neq 1$ and $p_{2}(1) \neq 1$, it may still be true that $p_{1}+p_{2}$ is equal to 1 when evaluated at 1 . For instance, take $p_{1}(x)=1 / 2$ and $p_{2}(x)=1 / 2$, both constant polynomials.
(b) is not a vector space, since the only matrix which could play the role of "zero vector" would be the zero matrix, but this one does not have determinant one.
(c) is not a vector space since it is not closed under addition in $\mathbb{R}^{2}$ : the vectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are both in this set, but their sum is the vector $\left[\begin{array}{l}0 \\ 2\end{array}\right]$, which is not in the set. [Note, though, that this set is closed under scalar multiplication]
(d) is a vector space. The sum of two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ is a new sequence $\left\{a_{n}+b+n\right\}$, and for any real number $c$ and sequence $\left\{a_{n}\right\}$, we get a new sequence $\left\{c a_{n}\right\}$. It is tedious, but not too hard to check that all the properties of addition and scalar multiplication hold.
(3) Which of the following is a subspace of $\mathbb{R}^{2}$ ?
(a) The set of all points $(a, b)$ such that $f(a, b)=0$, where $f$ is the function $f(x, y)=x^{2}+y^{2}$
(b) The set of eigenvectors for the matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$
(c) The set of all $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ such that $x+2 y+z=0$.
(d) South Dakota.

Solution:
(a) consists only of the single point $(0,0)$. This is the zero subspace of $\mathbb{R}^{2}$. It is the correct answer.
(b) is not a subspace since the zero vector is not an eigenvector - so this set does not contain the zero vector [note that when we speak of an "eigenspace" we mean a set of eigenvectors plus the zero vector. We have to throw in the zero vector in addition, to say that it is actually a vector space]
(c) is a subspace of $\mathbb{R}^{3}$, but not of $\mathbb{R}^{2}$ - the elements of this set aren't even IN $\mathbb{R}^{2}$ !
(d) Alas, South Dakota, too, is three-dimensional (or four? or eleven? - O physics, tell us what dimension it really is!). Thus it cannot be in $\mathbb{R}^{2}$, as a subspace or otherwise.

