
Solution to Sample Exam 2. Math 113 Summer 2014.

These problems are practice for the second exam, on rings and fields.

1. True or False

(a) The canonical homomorphism π : R → R/I is surjective. True: Every coset r is the
image of the element r .

(b) Every homomorphism of rings is injective. False: See the previous problem.

(c) The element x is a unit in Q[x ]/(x4 + 1). True: Since x4 = −1, we have x(−x3) =
1, so x is a unit.

(d) There exists a homomorphism Z→ Z× Z. True: The “diagonal map” a 7→ (a, a)
is a homomorphism.

(e) If R is a unique factorization domain and I a proper ideal of R, then R/I is a unique
factorization domain. False: the quotient is often not even a domain, e.g., R = Z,
I = (4), and R/I = Z/4Z.

(f) If σ ∈ Gal(L : K ), and α ∈ L is a root of f ∈ K [x ], then σ(α) is a root of f . True:
This was a (very important) proposition from lecture, 10.1.5.

(g) If R and S are domains, then R×S is a domain. False: The ring R×S will almost
always have zero divisors, e.g., take R = S = Z; in Z×Z, (1, 0)(0, 1) = (0, 0), but
neither (1, 0) nor (0, 1) are the zero element.

(h) Every algebraic field extension is finite. False: It is possible to adjoin infinitely many
algebraic elements, e.g., Q(

√
2,
√

3,
√

5,
√

7, ...)

(i) Q(i−
√

7) = Q(i ,
√
−7+1). True: Both of these fields can be written as Q(i ,

√
7).

(j) The minimal polynomial of the extension Q ⊂ Q(e2πi/3) is x3 − 1. False: This
polynomial is not irreducible. The correct minimal polynomial is x2 + x + 1, the
third “cyclotomic polynomial”.

(k) If F is any field, there exists a homomorphism F → C. False: Every homomorphism
of fields must be injective, so for instance the “larger” field C(x) of rational functions
cannot map to C, simply because you cannot have an injective map from an infinite-
dimensional space to a finite dimensional space.

(l) If K ⊂ L is a normal field extension of degree 4, then there exists exactly one
intermediate subfield F 6= K , L. False: We have seen examples, such as Q(i ,

√
3),

which have more than one intermediated subfield, in this case Q(i), Q(
√

3), and
Q(i
√

3). This can also be seen by observing that the extension is normal, and its
Galois group is K4, which has three proper nontrivial subgroups, so by the Galois
correspondence, we get three proper nontrivial subextensions.

(m) The polynomial 3x4 − 30x2 + 10x + 15 is irreducible over Z. True: Use Eisenstein
with p = 5 to get that it’s irreducible over Q, and then note that the gcd of the
coefficients is 1, so it’s also irreducible over Z.

(n) If f : R → S is a surjective ring homomorphism, and m a maximal ideal in S , then
f −1(m) is a maximal ideal in R. True: A surjective map induces a bijection of
ideals, which preserves inclusions (by basically the same argument as proposition
7.4.1).

(o) There exists a homomorphism Q[x ]/(x2 + 2x + 1)→ C. True: Map x to −1.
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2. (a) If R is a ring, say what it means for an element r ∈ R to be irreducible.

Solution: r ∈ R is irreducible it is nonzero, a nonunit, and if the only way to write
r = st is by taking either s or t to be a unit.

(b) Give an example of an irreducible polynomial of degree larger than 2 in the ring
Q[x ].

Solution: x4 + x + 1, or any cyclotomic polynomial of big enough degree.

(c) Let R be a domain and I = (f ) a nonzero ideal. Prove that if I is prime, then f is
irreducible.

Solution: First note that since I is a nonzero ideal, f 6= 0; since I is prime, it’s
proper, so f is not a unit. Now suppose f = gh. Then gh ∈ I so since I is prime,
either g or h is in I . Suppose it’s g , then we have g = af for some a ∈ R. Thus
f = gh = afh, so f (1− ah) = 0 and since we’re in a domain and f 6= 0, 1− ah = 0,
so h is a unit.

3. (a) Let α =
3
√√

2 +
√

3, and consider the field extensions

Q ⊂ Q(
√

2) ⊂ Q(
√

2 +
√

3) ⊂ Q(α) ⊂ Q(i ,α) = K

Given that [K : Q] = 24, determine [Q(α) : Q(
√

2 +
√

3)]. Justify your answer.

Solution: Let k = [Q(α) : Q(
√

2+
√

3)], and note that [Q(
√

2+
√

3) : Q(
√

2)] = 2
by computations from class. So the degrees of the extensions in the tower are, in
order from left to right, 2, 2, k, and 2. Since degree is muliplicative in towers, we
get 8k = 24, so k = 3.

(b) Let ω =
−1 + i

√
3

2
, a cube root of 1. Consider the extensions Q ⊂ Q(ω) ⊂

Q( 3
√

7,ω). Let f and g be the automorphisms of Q( 3
√

7,ω) defined by

f :

{
3
√

7 7→ ω 3
√

7

ω 7→ ω
g :

{
3
√

7 7→ 3
√

7

ω 7→ ω2

Show that f ∈ Gal(Q( 3
√

7,ω) : Q(ω)).

Solution: If a + bω ∈ Q(ω), with a, b ∈ Q then f (a + bω) = f (a) + f (b)f (ω) =
a + bω.

(c) Find an element x ∈ Q( 3
√

7,ω) such that f (g(x)) 6= g(f (x)).

Solution: 3
√

7 itself is such an element: f (g( 3
√

7)) = f ( 3
√

7) = ω 3
√

7; but g(f ( 3
√

7)) =
g(ω 3
√

7) = g(ω)g( 3
√

7) = ω2 3
√

7.

(d) Using (d), and given that [Q( 3
√

7,ω) : Q] = 6, prove that Gal(Q( 3
√

7,ω) : Q) ∼= S3.

Solution: If we knew that the extension was normal, we would know that the
Galois group has order 6; by (d), it’s non-abelian, and hence must be isomorphic
to S3. So it remains to explain why the extension is normal. We can factorize it
as Q ⊂ Q(ω) ⊂ Q( 3

√
7,ω). The first extension is clearly normal, since the other

root of the minimal polynomial x2 + x + 1 is just ω2. For the second extension, its
minimal polynomial is x3−7, and its roots are 3

√
7,ω 3
√

7, and ω2 3
√

7, all of which are
in Q( 3

√
7,ω), so it’s normal. A normal extension of a normal extension is normal,

so we’re done.

(e) Prove that Gal(Q( 3
√

7,ω) : Q(ω)) ∼= Z/3Z.

Solution: This is a degree 3 extension, and as explained in (d), it’s normal, hence
its Galois group is a group of order 3; up to isomorphism, it must be Z/3Z.
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4. (a) For each of the following rings say, whether they are a field; domain; principal ideal
domain; euclidean domain; unique factorization domain

i. Z[x ] Solution: UFD but not PID.

ii. Q[x ]/(x2 + x + 1) Solution: Field.

iii. C[x , y ] Solution: UFD but not PID.

(b) Define a principal ideal domain. Solution: A principal ideal domain is an integral
domain in which every ideal is principal (can be generated by a single element).

(c) Prove that if R is a principal ideal domain and I a prime ideal of R, then R/I is a
principal ideal domain.

Solution: Pick an ideal J of R/I . We must show that it’s principal. By the corre-
spondence between ideals in the quotient and ideals in R containing I , J corresponds
to some ideal J ′ in R, which is principal since R is a PID; say J ′ = (r). Now, for
any x ∈ J, x = π(y) for some y ∈ J ′ (again by the correspondence just mentioned),
and y = ar for some r , since J ′ = (r). Thus x = π(y) = π(ar) = π(a)π(r), which
shows that J is generated by π(r), so it’s principal.

(d) Let f : Z [x ]→ Z/2Z be f = g ◦h, where h : Z [x ]→ Z is the evaluation map at −1
and g : Z→ Z/2Z is the quotient map. Prove that ker f = (x + 1, x2 + 1).

Solution: First we check that ker f ⊇ (x + 1, x2 + 1), for which it is sufficient to
check that ker f contains the two generators x + 1 and x2 + 1. But f (x + 1) =
g(h(x + 1)) = g(0) = 0 and f (x2 + 1) = g(h(x2 + 1)) = g(2) = 0. The other
inclusion is messy to check directly; instead observe that ker f is maximal because
Z[x ]/ ker f is a field, namely Z/2Z. since ker f is maximal, but also contained in
(x + 1, x2 + 1), they’re either equal or else (x + 1, x2 + 1) is the unit ideal. But
(1 + x , x2 + 1) is not the unit ideal, because in Z[x ]/(x + 1, x2 + 1), x = −1
and x2 = −1, so (−1)2 = −1, hence 2 = 0, and x = −1 = 1 = x2. Thus
Z[x ]/(x + 1, x2 + 1) ∼= Z/2Z, so the ideal is not the whole ring1. Thus ker f must
be equal to (x + 1, x2 + 1).

5. (a) State the (first) isomorphism theorem for rings.

Solution: If f : R → S is a ring homomorphism, then R/ ker f ∼= im f .

(b) Consider the map φ : C[x , y ] → C[y ] given by φ(p(x , y)) = p(y2, y3). Compute
φ(x2 + xy + y2).

Solution: φ(x2 + xy + y2) = (y2)2 + (y2)(y3) + (y3)2 = y4 + y5 + y6

(c) Prove that im φ = C[y2, y3] ⊂ C[y ].

Solution: im φ = {φ(p(x , y) | p ∈ C[x , y ]} = {p(y2, y3) | p ∈ C[x , y ]}, and this is
exactly the subring C[y2, y3].

(d) Prove that ker φ is a prime ideal in C[x , y ].

Solution: The image C[y2, y3] is a subring of a domain, hence a domain. Since
C[x , y ]/ ker φ ∼= im φ, ker φ is a prime ideal.

1This is not completely rigorous, because for all we know there is some other relation we did not notice, which
forces 0 = 1 as well. Here’s a different proof for the sticklers. First of all, write I = (x + 1) and J = (x2 + 1),
so that (x + 1, x2 + 1) = I + J. Suppose for contradiction that I + J = Z[x ]; then by the chinese remainder
theorem (which was on a WS one day), I ∩ J = IJ, and Z[x ]/IJ ∼= Z[x ]/I × Z[x ]/J. In our situation this reads,
Z[x ]/(x3 + x2 + x + 1) ∼= Z × Z[i ], where the map is determined by x 7→ (−1, i). But this map cannot be
surjective, for instance, (0, i) is not in the image, so we have a contradiction, and I + J 6= Z[x ].
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(e) Is im φ a unique factorization domain?

Solution: No. In C[y2, y3], we have y6 = (y2)3 = (y3)2; these factorizations are
distinct because for example, they have different numbers of factors.
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