
Math 113, Summer 2014: Solution to Exam 1

Instructor: James McIvor

Thursday, July 17th

Attempt to answer all of the following FIVE questions. You DO NOT need to justify your
response to the TRUE/FALSE problems.

1. This is a closed book exam. Please put away all your notes, textbooks, calculators and portable
electronic devices and turn your mobile phones to ‘silent’ (non-vibrate) mode.

2. Explain your answers CLEARLY and NEATLY, and in COMPLETE ENGLISH SENTENCES.
State all theorems you have used from class. To receive full credit you will need to justify each of your

calculations and deductions coherently and fully.

3. Correct answers without appropriate justification will be treated with great skepticism.

4. Write your name on this exam and any extra sheets you hand in.

Question 1: /20

Question 2: /20

Question 3: /25

Question 4: /30

Question 5: /30

Total: /125

Name:
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1. (20 points)

(a) Let H be a subgroup of a group G . Give the definition of a left-H coset.

(b) Prove that if g ∈ G , gH = H if and only if g ∈ H.

(c) If G = S3, find a subgroup H ⊆ S3, and an element g ∈ S3 such that gH 6= Hg .

Solution:

(a) A left H-coset is a set {gh | h ∈ H}. Equivalently, it is an equivalence class of the
equivalence relation g ∼ g ′ if and only if g−1g ′nH. Both answers were accepted.

(b) First assume that gH = H. Then since g = ge ∈ gH = H, g ∈ H. Conversely, suppose
g ∈ H. Then g ∼ e under the above equivalence relation. We proved in class that
equivalent elements represent the same equivalence class, so gH = eH = H.

(c) Take H to be < (12) >, the subgroup generated by (12); pick g = (123). Then
gH = {(123), (13)}, but Hg = {(123), (23)}.

2. True/False (20 points - 2 points each). No justification required.

(a) There exists a nonabelian group G such that every subgroup of G is normal in G . True:
the group Q of quaternions is such a group.

(b) The permutations (1435)(23456) and (123)(456) are conjugate in S6. False: We have
(1435)(23456) = (14)(256), so they don’t have the same cycle type, hence are not
conjugate.

(c) The center Z (G ) of a group G can be written Z (G ) =
⋃

g∈G CentG (g). False: The center
is the intersection of the centralizers.

(d) A subgroup H of G is normal in G if and only if H can be written as a union of conjugacy
classes. True: both conditions ensure that all conjugates of elements of H lie in H.

(e) For each 1 ≤ m ≤ n, there is a subgroup of Sn isomorphic to Z/mZ. True: The subgroup
generated by any m-cycle has order m and is cyclic, hence is isomorphic to Z/mZ.

(f) There exists a surjective homomorphism D10 → Z/2Z. True: one such homomorphism is
defined by sending r to 0 and s to 1.

(g) If a finite group G acts on a set X in such a way that there is just one orbit for this action,
then |X | ≤ |G |. True: The orbit stabilizer theorem says that the size of this orbit O (which
is equal to X ), is |G |/StabG (x) (for any x ∈ X ), which is at most |G |.

(h) In S4, the elements of order 3, together with the identity element, form a subgroup. False:
(123)(234) = (12)(34), so this set is not closed under composition.

(i) If G acts on the set X , and x ∈ X , then StabG (x) is normal if and only if x is a fixed point
of the action. False: x is a fixed point if and only the stabilizer x is all of G , which is a
normal subgroup. But if the stabilizer is normal, it still may not be all of G , and x would
not be a fixed point. For example, when N is a proper normal subgroup of G , then G acts
on G/N by permutation. The stabilizer of the coset N is N itself, which is normal. But N
is not a fixed point.

(j) There is an action of Z/3Z on Z/p3Z given by the formula i · j = pi j . False: This
expression is not well-defined. For example, 1 · j = pj , which is not necessarily 0; but we
could also write 1 = 4, and get 4 · j = p4j = p3pj = 0.
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3. (25 points)

(a) Prove that Z/7Z× Z/7Z is not isomorphic to Z/49Z.

(b) Let A be an abelian group of order 392. List all possible isomorphism classes of A.

(c) Assume further that A contains an element of order 196. List the possible isomorphism
classes of A.

(d) Let G = Z/49Z× Z/4Z× Z/2Z. Find subgroups H,K ⊂ G of order 2 such that G/H and
G/K are not isomorphic.

Solution:

(a) Z/49Z contains an element of order 49, but Z/7Z× Z/7Z does not, because for any
(a, b) ∈ Z/7Z× Z/7Z, 7(a, b) = (7a, 7b) = (0, 0), so the order of (a, b) is at most 7.

(b) 392 = 23 · 72. The isomorphism classes are

Z/8Z× Z/49Z
Z/4Z× Z/2Z× Z/49Z
Z/2Z× Z/2Z× Z/2Z× Z/49Z
Z/8Z× Z/7Z× Z/7Z
Z/4Z× Z/2Z× Z/7Z× Z/7Z
Z/2Z× Z/2Z× Z/2Z× Z/7Z× Z/7Z

(c) An element of order 196 = 22 · 72 must be a product of an element of order 4 and an
element of order 49, so out of the above list we select those groups containing elements of
both order 4 and 49, namely

Z/8Z× Z/49Z
Z/4Z× Z/2Z× Z/49Z

(d) We will sloppily write just 0 for a trivial group. The subgroups H = 0× < 2 > ×0 and
K = 0× 0× Z/2Z both have order two. But G/H ∼= Z/49Z× Z/2Z× Z/2Z whereas
G/K ∼= Z/49Z× Z/4Z× 0. These are not isomorphic by an analogous argument to that in
part (a).
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4. (30 points)

(a) Give the definition of a Sylow p-subgroup of a finite group G .

(b) Let G be a group of order 99. Prove that there is exactly one Sylow 3-subgroup H and
exactly one Sylow 11-subgroup K .

(c) If G is a group of order prm with gcd(p,m) = 1, m > 1, and |G | > m!, prove that G is not
simple1. [Hint: find a certain subgroup, and let G act on its left cosets]

Solution:

(a) Let p be a prime dividing |G |, with pr being the largest power of p which divides |G |. Then
a Sylow p-subgroup of G is a subgroup of order pr . Equivalently, it is a maximal subgroup
whose order is a power of p, but this was not the definition we gave in class.

(b) First factor |G | = 99 = 32 · 11. Using the notation from class, we must show that
k3 = k11 = 1. By SYL3 and one of the corollaries we have k3 ≡ 1 mod 3, so
k3 = 1, 4, 7, 10, ... and k3|11. So k3 = 1. Similarly, k11 ≡ 1 mod 11, so k11 = 1, 12, 23, ...;
but k11|9, so k3 = 1.

(c) By SYL1, there is at least one Sylow p-subgroup S . Its order is pr , so its index is
[G : S ] = m; this is the size of G/S (which may not be a group, since we do not know
whether S is normal). We let G act on this set G/S of left S-cosets by permutation:
g · g ′S = gg ′S . This induces a homomorphism f : G → Perm(G/S) ∼= Sm. The first
isomorphism theorem tells us that

imf ∼= G/ ker f ,

so that | ker f | = |G |/|imf |. But |imf | ≤ |Sm| = m!, since imf is a subgroup of Sm, and we
are given that |G | > m!, so |G |/|imf | > 1, which implies the kernel is nontrivial. Also, the
kernel is not all of G , because this would mean that the action is trivial, but for g 6∈ S
(there is such a g , since the index of S is m > 1), gS 6= S , so the action is not trivial.
Finally, we have seen in class that the kernel of any map is normal, so ker f is a proper
nontrivial normal subgroup of G , so G is not simple.

1Recall that a group is simple if it has no proper nontrivial normal subgroups.
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5. (30 points)

(a) Let K = {e, (12)(34), (13)(24), (14)(23)} ⊂ S4. The subgroup < (23) > acts on K by
conjugation. How many orbits are there for this action?

Now let H and K be normal subgroups of an arbitrary finite group G .

(b) The subgroup H acts on K by conjugation. If H ∩K = {e}, prove that this action is trivial.

(c) Now let H act instead on G/K by left translation via h · (gK ) = (hg)K . If |G | = |H||K |
and there is only one orbit of this action, prove that H ∩ K = {e}.

(d) In the situation of part (c), prove that the map φ : H × K → G , φ(h, k) = hk, is an
isomorphism.

Solution:

(a) The orbits are Oe = {e}, O(12)(34) = {(12)(34), (13)(24)}, and O(14)(23) = {(14)(23)}.
(b) First of all, the action makes sense, since if h ∈ H, k ∈ K , then h · k = hkh−1 ∈ K because

K is normal. To show the action is trivial, pick any h ∈ H and k ∈ K . We wish to show
that h · k = k . This is equivalent to showing that hkh−1k−1=e. Since
hkh−1k−1 = (hkh−1k−1, and hkh−1 ∈ K , we get hkh−1k−1 ∈ K since K is closed under
multiplication. Similarly, since hkh−1k−1 = h(kh−1k−1), and kh−1k−1 ∈ H (as H is
normal), we get hkh−1k−1 ∈ H. Thus hkh−1k−1 ∈ H ∩ K , which is trivial, so
hkh−1k−1 = e, as desired.

(c) We denote the one orbit by O = OK , which is equal to all of G/K . By the orbit-stabilizer
theorem, we get |O| = |H|/|StabG (K )|. Replacing |O| = |G/K | = |G |/|K |, and using
|G | = |H||K |, this gives |O| = |H||K |/|K | = |H|. Thus the orbit-stabilizer theorem tells us
that |StabG (K )| = 1, so the stabiliser is trivial. Thus we will be done if we can show that
H ∩ K is equal to the stabilizer of K under this action.

For this, note that an element h ∈ H stabilizes K if and only if hK = K , which happens if
and only if h ∈ K . So the stabilizer consists precisely of those elements in H ∩ K . So
H ∩ K = StabH(K ) = {e}.
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